高三数学专题01-二次函数综合问题例谈

合集下载

二次函数综合压轴题型

二次函数综合压轴题型

二次函数综合压轴题型
二次函数综合压轴题型是一种难度较大的数学题目,通常涉及到二次函数的性质、图像、最值以及与其他数学知识的综合应用。

以下是一些常见的二次函数综合压轴题型的例子:
1. 二次函数与几何的综合:这类题目通常会涉及到二次函数图像与几何图形(如三角形、矩形、圆等)的结合,需要利用几何知识解决二次函数问题。

2. 二次函数与一次函数的综合:这类题目通常会涉及到两个函数图像的交点、性质以及与不等式相关的知识点,需要综合考虑一次函数和二次函数的性质。

3. 二次函数与方程根的综合:这类题目通常会涉及到求二次方程的根、判断根的情况以及与二次函数图像的关系,需要利用二次函数的性质和判别式的知识。

4. 二次函数的最值问题:这类题目通常会涉及到求二次函数的最值,需要利用配方法、顶点式等二次函数的性质和公式。

5. 二次函数的实际应用题:这类题目通常会涉及到生活中的问题,如抛物线的运动、物体下落等,需要将实际问题转化为数学问题,利用二次函数的知识求解。

解二次函数综合压轴题型需要熟练掌握二次函数的性质、图像和公式,同时还需要具备一定的数学思维和推理能力。

在解题过程中,要注意灵活运用所学知识,多角度思考问题,寻找最佳的解题方法。

(完整版)二次函数综合题分类讨论带答案.doc

(完整版)二次函数综合题分类讨论带答案.doc

(完整版)二次函数综合题分类讨论带答案.doc二次函数综合题分类讨论一、直角三角形分类讨论:11、已知点 A(1 ,0),B( -5,0),在直线y 2 x 2 上存在点C,使得 ABC 为直角三角形,这样的 C 点你能找到个2、如图 1,已知抛物线C1:y a x 2 2 5 的顶点为 P,与 x 轴相较于 A 、 B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a的值;( 2)如图 1,抛物线C2与抛物线C1关于x 轴对称,将抛物线C2向右平移,平移后得到抛物线C3, C,3的顶点为 M ,当点 P、 M 关于点 B 成中心对称时,求C,3的解析式;( 3)如图 2,点 Q 是 x轴正半轴上一点,将抛物线C1绕点Q 旋转180 后得到抛物线C,4,抛物线 C,4的顶点为N,与 x 轴相交于 E、 F 两点(点 E 在点 F 的左边),当以点 P、N、 F 为顶点的三角形是直角三角形时,求点Q 的坐标。

(2013 汇编 P56+P147)3、如图,矩形A’BC’O’是矩形 OABC( 边 OA 在 x 轴正半轴上,边 OC 在 y 轴正半轴上 )绕 B 点逆时针旋转得到的.O’点在 x 轴的正半轴上, B 点的坐标为 (1,3).(1)如果二次函数 y= ax2+ bx+c(a≠0)的图象经过 O、O’两点且图象顶点 M 的纵坐标为—1.求这个二次函数的解析式;(2) 在 (1)中求出的二次函数图象对称轴的右支上是否存在点P,使得POM 为直角三角形若存在,请求出P 点的坐标和POM 的面积;若不存在,请说明理由;(3)求边C’O’所在直线的解析式.练习( 09 成都 28)已知抛物线与x 轴交于 A 、 B 两点 (点 A 在点 B 的左侧 ),与 y 轴交于点C,其顶点为 M ,若直线 MC 的函数表达式为 y=kx-3 ,与 x 轴的交点为N,且cos∠BCO =(3 √ (10) /10).( 1)求此抛物线的解析式;( 2)在此抛物线上是否存在异于点 C 的点 P,使以 N 、 P、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标;( 3)过点 A 作 x 轴的垂线,交直线 MC 于点 Q. 若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度5 ?4A 二、4321N2 B 2 4 6 8 10 12 14 16 18123P4M56等腰三角形分类讨论1、如图,已知 Rt Rt ABC , ACB 90 , BAC 30 , 在直线BC或直线AC上取一点P,使得 PAB 是等腰三角形,则符合条件的P 点有个2 A的坐标为(12),,点B的坐标为(31),,二次函数 y x2、①,在平面直角坐标系中,点的图象记为抛物线l1.(1)平移抛物线l1,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式:(任写一个即可).(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图②,求抛物线l2 的函数表达式.(3)设抛物线l2 △△,求点 K 的坐标.的顶点为 C , K 为 y 轴上一点.若S ABK SABC( 4)请在图③上用尺规作图的方式探究抛物线l 2上是否存在点P ,使△ ABP 为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.yyyl 2l 1l 2AAA1B1CBx1BO xOO 111图①图②图③解:( 1 )有多种答案,符合条件即可.例如yx 2 1, y x 2 x , y( x 1)22 或y x 2 2x 3 , y (x2 1)2 , y (x 12) 2 .(2)设抛物线 l 2 的函数表达式为 y x 2bxc ,yl 2Q 点 A(12),, B(31),在抛物线 l 2 上,KGA1 b c ,b9 ,2 29 3b c 解得111c.抛物线 l 2 的函数表达式为y x 2 9 x 11 .2 29 x 119 27 ,9,7(3) yx 2 xC 点的坐标为.2 2 4 164 16 过 A , B , C 三点分别作 x 轴的垂线,垂足分别为 D ,E ,F ,则 AD 2 , CF7 , BE1, DE5 , FE316 2 , DF.44 S △ ABCS 梯形ADEBS梯形 ADFCS梯形 CFEB1(2 1) 2 1 2 75 1 1 73 15 .2 2 164 2 164 16延长 BA 交 y 轴于点 G ,设直线 AB 的函数表达式为 y mx n ,2 m ,m1 ,Q 点 A(12),, B(31),在直线 AB 上, n21 3m 解得5n.n.2直线 AB 的函数表达式为 y1x 5 G 点的坐标为52 .0,.22BCO D F E图②设 K 点坐标为(0,h),分两种情况:若 K 点位于 G 点的上方,则KG h 5 .连结AK ,BK .2S△ABK S△BKG S△AKG 1 3 h 5 1 1 h 5 h 5 .2 2 2 2 2Q S△ABK15 5 15,解得 h55K 点的坐标为55 S△ABC ,h16 16.0,.16 2 16若 K 点位于 G 点的下方,则KG 5h .同理可得, h25.2 16 yK 点的坐标为25.l 2 0,16 A(4)作图痕迹如图③所示. B由图③可知,点P 共有3个可能的位置.O图③2、如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,y点 A 、 C 的坐标分别为A(10 , 0)、 C( 0,4),点 D 是 OA 的中点,点 P 在PCBC 边上运动,当是腰长为 5 的等腰三角形时,点P 的坐标为O D 3、在菱形 ABCD 中,对角线AC , BD 相交于点 O,以 O 为坐标原点,以 BD 所在直线为 x 轴, CA 所在直线为 y 轴建立如图所示的坐标系,且AC=12 ,BD=16 ,E 为 AD 的中点,点 P 在线段 BD 上移动,若为等腰三角形,则所有符合条件的点P 的坐标为三、最值问题 B类型一:两点之间线段最短 C 1、请写出2m 3 2 1 8 2m 2 4 的最小值为 A2、如图,四边形ABCD 是正方形,ABE 是等边三角形,对角线BD 上60 ,得到BN,连EN任一点,将 BM 绕点 B 逆时针旋转EN、 AM 、CM ,求证:( 1)AMB ENB ,(2)M点在何处时,AM+CM值最小,(3)AM+BM+CN 最小值为3 1 时,求正方形的边长(2012 汇编P52+P137) B xBxAyAExDDMC3、( 2010 年天津 25)在平面直角坐标系中,矩形OACB 的顶点 O 在坐标原点,顶点 A 、B 分别在 x 轴、 y 轴的正半轴上,OA=3 ,OB=4 ,D 为边 OB 的中点。

二次函数的综合运用

二次函数的综合运用

二次函数的综合运用二次函数是一种形式为 y = ax² + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。

二次函数在数学中有广泛的应用,涉及到诸如物理学、经济学和工程学等多个领域。

本文将探讨二次函数在各个领域中的综合运用,包括最值问题、图像分析、实际问题的建模等。

一、最值问题对于二次函数 y = ax² + bx + c,其中a ≠ 0,我们可以通过一些方法求得其最值。

为了简化讨论,我们以函数 y = x² + 2x - 3 为例。

1. 定义域和值域首先,我们需要确定该二次函数的定义域和值域。

对于二次函数 y= x² + 2x - 3,由于 x²的值始终大于等于 0,所以该函数的定义域为全体实数。

而二次函数在开口向上的情况下,其最小值即为函数的值域的下界。

根据二次函数的顶点公式,可以求得该函数的顶点为(-1, -4),因此该函数的最小值为 -4。

2. 求解极值点我们可以通过求导数的方法求得二次函数的极值点。

对于函数 y =x² + 2x - 3,将其对 x 求导后可得 y' = 2x + 2。

令 y' = 0,解得 x = -1。

将 x = -1 代入函数 y = x² + 2x - 3 中可得 y = -4,即函数在 x = -1 处取得极小值 -4。

同样,对于开口向下的二次函数,可以通过类似的方法求得其极大值。

二、图像分析二次函数的图像一般为抛物线,通过分析图像可以获得更多关于函数的信息。

下面以函数 y = x² + 2x - 3 为例进行具体分析。

1. 对称轴和顶点二次函数的对称轴是由函数的一阶导数确定的直线,其方程形式为x = -b/(2a)。

对于函数 y = x² + 2x - 3,对称轴的方程为 x = -1。

根据二次函数的顶点公式,可以求得该函数的顶点坐标为 (-1, -4)。

高三数学专题01-二次函数综合问题例谈

高三数学专题01-二次函数综合问题例谈

二次函数综合问题例谈=二次函数是中学代数的基本内容之一;它既简单又具有丰富的内涵和外延. 作为最基本的初等函数;可以以它为素材来研究函数的单调性、奇偶性、最值等性质;还可建立起函数、方程、不等式之间的有机联系;作为抛物线;可以联系其它平面曲线讨论相互之间关系. 这些纵横联系;使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时;有关二次函数的内容又与近、现代数学发展紧密联系;是学生进入高校继续深造的重要知识基础. 因此;从这个意义上说;有关二次函数的问题在高考中频繁出现;也就不足为奇了. 学习二次函数;可以从两个方面入手:一是解析式;二是图像特征. 从解析式出发;可以进行纯粹的代数推理;这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发;可以实现数与形的自然结合;这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题.1. 代数推理由于二次函数的解析式简捷明了;易于变形(一般式、顶点式、零点式等);所以;在解决二次函数的问题时;常常借助其解析式;通过纯代数推理;进而导出二次函数的有关性质.1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数.例1 已知f x ax bx ()=+2;满足1≤-≤f ()12且214≤≤f ();求f ()-2的取值范围.分析:本题中;所给条件并不足以确定参数b a ,的值;但应该注意到:所要求的结论不是()2-f 的确定值;而是与条件相对应的“取值范围”;因此;我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件;先用()1-f 和()1f 来表示b a ,.解:由()b a f +=1;()b a f -=-1可解得:))1()1((21)),1()1((21--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2;并整理得()()⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=2)1(2122x x f x x f x f ,∴ ()()()1312-+=f f f .又∵214≤≤f ();2)1(1≤-≤f ,∴ ()1025≤≤f .例2 设()()f x ax bx c a =++≠20;若()f 01≤;()f 11≤;()f -11≤, 试证明:对于任意-≤≤11x ;有()f x ≤54. 分析:同上题;可以用()()()1,1,0-f f f 来表示c b a ,,.解:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1,∴ ()()()()0)),1()1((21),0211(21f c f f b f f f a =--=--+=, ∴ ()()()()()222102121x f x x f x x f x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=.∴ 当01≤≤-x 时;()()()().4545)21(1)1(2212210212122222222222≤++-=+--=-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+-=-+-++≤-⋅+-⋅-++⋅≤x x x x x x x x x x x x x x f x x f x x f x f当10-≤≤x 时; ()()()()222102121x f x x f x x f x f -⋅+-⋅-++⋅≤ 222122x x x x x -+-++≤ )1(22222x x x x x -+⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+= .4545)21(122≤+--=++-=x x x 综上;问题获证.1.2 利用函数与方程根的关系;写出二次函数的零点式()().21x x x x a y --=例3 设二次函数()()f x ax bx c a =++>20;方程()f x x -=0的两个根x x 12,满足0112<<<x x a. 当()x x ∈01,时;证明()x f x x <<1. 分析:在已知方程()f x x -=0两根的情况下;根据函数与方程根的关系;可以写出函数()x x f -的表达式;从而得到函数)(x f 的表达式.证明:由题意可知))(()(21x x x x a x x f --=-.a x x x 1021<<<< , ∴ 0))((21>--x x x x a ,∴ 当()x x ∈01,时;x x f >)(.又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f ,,011,0221>->+-<-ax ax ax x x 且∴ 1)(x x f <,综上可知;所给问题获证. 1.3 紧扣二次函数的顶点式,44222a b ac a b x a y -+⎪⎭⎫ ⎝⎛+=对称轴、最值、判别式显合力例4 已知函数xz a x f 22)(-=。

高中数学二次函数分类讨论经典例题

高中数学二次函数分类讨论经典例题

高中数学二次函数分类讨论经典例题一、二次函数的定义和基本性质二次函数是形如y=ax²+bx+c的函数,其中a、b、c都是实数且a≠0。

二次函数的图像是抛物线,其开口方向取决于a的正负性。

下面将讨论二次函数的分类及其相关的经典例题。

二、二次函数的分类讨论1. a>0的情况:抛物线开口向上当a>0时,二次函数的图像是开口向上的抛物线。

此时,函数的最值为最小值,且最小值点的横坐标为-b/2b。

例如,考虑函数y=x²+2x+1,其图像为一条开口向上的抛物线,最小值点为(-1,0)。

2. a<0的情况:抛物线开口向下当a<0时,二次函数的图像是开口向下的抛物线。

此时,函数的最值为最大值,且最大值点的横坐标为-b/2b。

例如,考虑函数y=-x²+2x+1,其图像为一条开口向下的抛物线,最大值点为(1,0)。

3. a=0的情况:一次函数当a=0时,二次函数变为一次函数,即y=bx+c。

此时,函数的图像是一条直线,且不会有最值点。

例如,考虑函数y=2x+1,其图像为一条斜率为2的直线。

三、经典例题1. 求解二次函数的最值例如,求解函数y=x²-4x+3的最值。

首先,可以将该二次函数写成标准形式y=(x-2)²-1,从中可以得知最小值点为(2,-1)。

2. 求解二次函数与坐标轴的交点例如,求解函数y=2x²-5x+2与x轴和y轴的交点。

首先,将y=0代入函数方程得到2x²-5x+2=0,然后可以通过因式分解或者求解一元二次方程的方法求解得到x的值。

进而可以求得函数与x轴的交点。

类似地,可以将x=0代入函数方程得到y的值,从而求得函数与y轴的交点。

3. 求解二次函数的对称轴例如,求解函数y=-x²+4x-3的对称轴。

对称轴是过抛物线最高点(或最低点)的一条直线,其方程可以通过x=-b/2b得到。

对于该函数,对称轴方程为x=-2。

高考数学专题讲座 第2讲 二次函数的综合应用问题

高考数学专题讲座 第2讲 二次函数的综合应用问题

高考数学专题讲座 第二讲二次函数的综合应用问题一、考纲要求1.理解二次函数,一元二次不等式及一元二次方程三者之间的关系,掌握一元二次不等式的解法; 2.以二次函数为背景的不等式问题作为代数推理题在高考中频繁出现,二次函数和绝对值不等式相结合的题目也在高考中出现多次;3.二次函数是简单的非线性函数之一,有着丰富的内涵,成为高考的一个热点.二、基础过关1.若关于x 的不等式01)1()1(22<----x a x a 恒成立,则a 的取值X 围是( B ).A .53-<a 或1>a B .a <-53≤1C .53≤a ≤1或1-=a D .以上均不对 2.函数54)(2+-=mx x x f 在区间2[-,)∞+上是增函数,则)1(f 的取值X 围是( A ).A .)1(f ≥25B .25)1(=fC .)1(f ≤25D .25)1(>f3.若32)1()(2++-=mx x m x f 为偶函数,则)(x f 在3(-,)1上是( B ).A .单调递增B .单调递减C .先增后减D .先减后增4.已知a ,∈b N *,方程022=++b ax x 和方程022=++a bx x 都有实根,则b a +的最小值是( D ).A .3B .4C .5D .65.已知函数32)(2+-=x x x f 在区间0[,]a )0(>a 上的最大值为3,最小值为2,那么 实数a 的取值X 围是 1≤a ≤2 .6.已知函数a b b ax x x f (1)(22+-++-=,∈b R )对任意实数x 都有)1()1(x f x f -=+成 立,若当1[-∈x ,]1时,0)(>x f 恒成立,则b 的取值X 围是 b<-1或b>2 .三、典型例题例1 已知函数22)(2++=ax x x f ,5[-∈x ,]5.(1)当1-=a 时,求函数)(x f 的最大值与最小值;(2)某某数a 的取值X 围,使)(x f y =在区间5[-,]5上是单调函数. 解:(1)当a =-1时, f (x )=x 2-2x +2=(x -1)2+1, x ∈ [-5,5] ∴x =1时,f (x )的最小值为1,x =-5时,f (x )的最大值为37.(2)函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a ∵f (x )在区间[-5,5]上是单调函数 ∴-a ≤-5或-a ≥5 即a ≥5或a ≤-5 故a 的取值X 围为 a ≤-5或 a ≥5.例2 (1)将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为π+44. (2)已知函数∈+-=x b ax x x f (|2|)(2R ),给出下列命题:①()f x 必是偶函数;② 当)2()0(f f =时,)(x f 的图象必关于直线1=x 对称; ③ 若b a -2≤0,则)(x f 在区面a [,)∞+上是增函数; ④)(x f 有最大值||2b a -. 其中正确命题的序号是③.例3 已知函数∈++-=x m x m x x f ()1()(2R ).(1)设A 、B 是ABC ∆的两个锐角,且A tan ,B tan 是方程04)(=+x f 的两个实根, 求证:m ≥5;(2)当m ≥3时,函数)(sin αf 的最大值是8,求m 的值. 解:(1) 方程f (x )+4=0 即x 2-(m +1)x +m +4=0依题意,得⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m 解之得 ⎪⎩⎪⎨⎧->->≥-≤4153m m m m 或∴m ≥5(2)f (sin α)=sin 2α-(m +1)sin α+m =(sin α2)21+-m +m 4)1(2+-m ∵m ≥3 ∴221≥+m ∴ 当sin α=-1时,f (sin α)取得最大值2m +2由题意得 2m +2=8 ∴m =3例4 已知函数x x x f (1)(2-=≥1)的图象为1C ,曲线2C 与1C 关于直线x y =对称. (1)求曲线2C 的方程)(x g y =;(2)设函数)(x g y =的定义域为M ,1x ,M x ∈2,且21x x ≠.求证:|||)()(|2121x x x g x g -<-;(3)设A 、B 为曲线2C 上任意两个不同点,证明直线AB 与直线x y =必相交. 解(1) ∵ C 1,C 2关于直线y =x 对称, ∴g (x )为f (x )的反函数. ∵y =x 2-1, 即 x 2=y +1, 又 x ≥1 ∴x =1+y∴ 曲线C 的方程为 g (x )=1+x (x ≥0)(2)设x 1,x 2∈M, 且x 1≠x 2, 则 x 1-x 2≠0 又 x 1≥0, x 2≥0∴|g (x 1)-g (x 2)|=|||2||11|||112121212121x x x x x x x x x x -<-≤+++-=+-+ (3)设A(x 1,y 1) 、B(x 2,y 2)为曲线C 2上任意两个不同的点, x 1,x 2∈M, 且 x 1≠x 2 由(2)知|k AB |1|||)()(|||21212121<--=--=x x x g x g x x y y∴直线AB 的斜率|k AB |≠1 又直线y =x 的斜率为1 ∴直线AB 与直线y =x 必相交.四、热身演练1.函数x x y (321--=≥)2的反函数是( B ).A .∈+-=x x x y (2212R )B .x x x y (2212+-=≤)0 C .∈-+=x x x y (2212 R ) D .x x x y (2212-+=≤)0 2.设函数()(2c bx ax x f ++=)0a <,满足)1()1(x f x f +=-,则)2(x f 与)3(x f 的大小关系是( C ).A .)2()3(x x f f >B .)2()3(x x f f <C .)3(x f ≥)2(x fD .)3(x f ≤)2(x f3.若a ,b ,c 成等差数列,则函数c bx ax x f ++=2)(的图象与x 轴的交点个数是( D ).A .0B .1C .2D .不确定4.已知二次函数12)2(24)(22+----=p p x p x x f ,若在区间1(-,)1内至少存在一个 实数c ,使0)(>c f ,则实数p 的取值X 围是( C ).A .21(-,)1 B .3(-,)21- C .3(-,0)23 D .21(-,)235.一辆中型客车的营运总利润y (单位:万元)与营运年数∈x x (N )的变化关系如下表所示,则客车的运输年数为( B )时,该客车的年平均利润最大.A .4B .5C .6D .76.已知函数422)(2++-=a ax x x f 的定义域为R ,值域为1[,)∞+,则a 的取值X 围 为 [-1,3] .7.如果函数)(x f 对于任意∈x R ,存在M 使不等式|)(|x f ≤||x M 恒成立(其中M 是与x 无关的正常数),则称函数)(x f 为有界泛函,给出下列函数: ①1)(1=x f ;②22)(x x f =;③)cos (sin )(3x x x x f +=;④1)(24++=x x xx f . 其中属于有界泛函的是③④(填上正确序号).8.若方程02=++b ax x 有不小于2的实根,则22b a +的最小值为516. 9.已知不等式032<+-t x x 的解集为m x x <<1|{,∈x R }.(1)求t ,m 的值;(2)若函数4)(2++-=ax x x f 在区面-∞(,]1上递增,求关于x 的不等式0)23(log 2<-++-t x mx a 的解集.解:(1)依题意 ⎩⎨⎧==+t m m 31∴⎩⎨⎧==22t m(2)∵f (x )=-(x -44)222a a ++在]1,(-∞上递增∴12≥a即 2≥a 又 )32(log )23(log 22x x t x mx a a +-=-++-<0∴13202<+-<x x 解之得 210<<x 或1<x <23 故 不等式的解集为 {x |0<x <21或1<x <23}.10.定义在R 上的函数)(x f 满足:如果对任意1x ,∈2x R ,都有)2(21x x f +≤)]()([2121x f x f +, 则称函数)(x f 是R 上的凹函数.已知二次函数∈+=a x ax x f ()(2 R ). (1)求证:当0>a 时,函数)(x f 是凹函数;(2)如果0[∈x ,]1时,|)(|x f ≤1,试某某数a 的取值X 围. 解:(1)对任意x 1,x 2∈R ,a >0,都有[f (x 1)+f (x 2)]-2f (221x x +)=a 21x +x 1+ax 22+x 2-2[a (2)221221x x x x +++] =ax 21+ax 22-21a (x 1+x 2+2x 1x 2) =21a (x 1-x 2)2≥0∴f ()]()([21)22121x f x f x x +≤+故函数f (x )是凹函数.(2)由|f (x )|≤1知: -1≤f (x )≤1 即 -1≤ax 2+x ≤1当 x =0时, a ∈R当x ∈(0,1)时, ⎩⎨⎧+-≤--≥1122x ax x ax 恒成立即 ⎪⎩⎪⎨⎧--=-≤++-=--≥41)211(1141)211(112222x x x a x x x a 恒成立 ∵x ∈(0,1) ∴11≥x当x 1=1 即x =1时, 41)211(2++-x 取最大值-2, 41)211(2--x 取最小值0 ∴ -2≤a ≤0, 而 a ≠0 ∴-2≤a <0 即 为所求. 11.已知二次函数c bx ax x f ++=2)(.(1)若a c b >>且0)1(=f ,是否存在实数m ,使得当a m f -=)(成立时,)3(+m f 为正数?若存在,则证明你的结论;若不存在,则说明理由.(2)若+∞<<<∞-21x x ,)()(21x f x f ≠且方程)]()([21)(21x f x f x f +=有两个不相等的实数根,求证:必有一实数根存1x 与2x 之间.证:(1)由f (1)=a +b +c 及a >b >c 得a >0,c <0,ac0< ∵ 1是0)(=x f 的一个根,记另一根为α,则ac=α0<又,,c a b c b a --=>>∴a >-a -c >c ∴-2a <c 即 -2<ac<0假设存在实数m ,使f (m )=-a 成立则由a c ,1是f (x )=0的两根知: f (x )=a (x -ac)(x -1) 从而 f (m )=0)1)((<-=--a m a c m a ∴1<<m ac进而33+<+m ac∴m +3>1 又f (x )在[1,)∞+上单调递增 ∴f (m +3)>f (1)=0 故满足条件的实数m 存在.(2)令g (x )=f (x )-)]()([2121x f x f +, 则g (x )为二次函数∴g (x 1)=f (x 1)-)]()([2121x f x f +∴g (x 2)=f (x 2)-)]()([2121x f x f +∴g (x 1)·g (x 2)=-0)]()([41221<-x f x f又x 1<x 2∴g (x )=0必有一根在x 1,x 2之间 故f (x )=)]()([2121x f x f +必有一根在x 1,x 2之间12.已知函数)0(12)(22<+++=b x cbx x x f 的值域为1[,]3. (1)某某数b ,c 的值;(2)判断函数)(lg )(x f x F =在1[-,]1上的单调性;(3)若∈t R ,求证:57lg≤|)61||61(|+--t t F ≤513lg .解:(1)由∆法得 b =-2 c =2(2) 由(1)f (x )=1221222222+-=++-x xx x x 用定义判断f (x )在[-1,1]上单调递减. ∴F(x )在[-1,1]上单调递减. (3)∵||t -61|-|t +61||≤|t -6161--t |=31∴31|61||61|31≤+--≤-t t∵F(x )在[-1,1]上为减函数∴)31(|)61||61(|)31(F t t F F ≤+--≤-即 513lg |)61||61(|57lg ≤+--≤t t F。

高考二次函数及其综合问题

高考二次函数及其综合问题

高考中二次函数及其综合问题 知识点归纳二次函数是高中最重要的函数,它与不等式、解析几何、数列、复数等有着广泛的联系 1二次函数的图象及性质:二次函数c bx ax y ++=2的图象的对称轴方程是a b x 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422, 2二次函数的解析式的三种形式:用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()((顶点式) 3 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0)(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ; (2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f 4 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响 1讨论二次函数的区间最值问题:①注意对称轴与区间的相对位置;② 2讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置 5二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞题型讲解例1函数2 ([0,))y x bx c x =++∈+∞是单调函数的充要条件是( ) A 0b ≥ B 0b ≤ C 0b > D 0<例2 已知二次函数的对称轴为x =截x 轴上的弦长为4,且过点(0,1)-,求函数的解析式例3 已知函数21sin sin 42a y x a x =-+-+的最大值为2,求a 的值例4 已知函数22()(21)2f x x a x a =--+-与非负x 轴至少有一个交点,求a 的取值范围例5对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围;(2)若函数的值域为R ,求实数a 的取值范围;(3)若函数在),1[+∞-内有意义,求实数a 的取值范围;(4)若函数的定义域为),3()1,(+∞-∞ ,求实数a 的值;(5)若函数的值域为]1,(--∞,求实数a 的值;(6)若函数在]1,(-∞内为增函数,求实数a 的取值范围.例6 设二次函数),()(2R c b c bx x x f ∈++=,已知不论α,β为何实数,恒有.0)cos 2(0)(sin ≤+≥βαf f 和(1)求证:;1-=+c b(2)求证:;3≥c(3)若函数)(sin αf 的最大值为8,求b ,c 的值例7 是否存在实数a,b,c 使函数f(x)=ax 2+bx+c(a ≠0),的图像经过M(-1,0),且满足条件“对一切实数x ,都有x ≤f(x) ≤212x +”例8 设f (x )=ax 2+bx +c (a >b >c ),f (1)=0,g (x )=ax +b(1)求证:函数y =f (x )与y =g (x )的图象有两个交点;(2)设f (x )与g (x )的图象交点A 、B 在x 轴上的射影为A 1、B 1,求|A 1B 1|的取值范围;例9 设f (x )是定义在[-1,1]上的奇函数,g (x )的图象与f (x )的图象关于直线x =1对称,而当).(4)(,]3,2[2为常数时c c x x x g x ++-=∈(1)求f (x )的表达式(2)对于任意.||2|)()(:|,]1,0[,12122121x x x f x f x x x x -<-≠∈求证且例10 设函数f (x )=|x -a |-ax ,其中0<a <1为常数(1)解不等式f (x )<0;(2)试推断函数f (x )是否存在最小值?若存在,求出其最小值;若不存在,说明理由例11 对于函数()f x ,若存在0x R ∈,使00()f x x =,则称0x 是()f x 的一个不动点,已知函数2()(1)(1)(0)f x ax b x b a =+++-≠,(1)当1,2a b ==-时,求函数()f x 的不动点;(2)对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围; 练习 1设x,y 是关于m 的方程m 2-2am+a+6=0的两个实根,则(x -1)2+(y -1)2的最小值是( )(A)-1225 (B)18 (C) 8 (D)无最小值2函数f(x)=2x 2-mx+3,当x ∈(-∞,-1]时是减函数,当x ∈[-1,+∞)时是增函数,则f(2)=3方程x 2+bx+c=0有两个不同正根的充要条件是 ;有一正根,一负根的充要条件是 ___ ;至少有一根为零的充要条件____4如果方程x2+2ax+a+1=0的两个根中,一个比2大,另一个比2小,则实数a5设方程x2-mx+1=0的两个根为α,β,且0<α<1,1<β<2,则实数m的取值范围是____6直线y=kx+1与双曲线x2-y2=1的左支相交,则k的取值范围是7已知关于x的不等式ax2+bx+c<0的解集是(-∞,-3)⋃(2,+∞),则关于x的不等式bx2+ax+c>0的解集是8方程x2+(m-2)x+2m-1=0在(0,1)内有一根,则m∈;或m=6-27)在(0,1)内至少有一根,则m∈9线段AB的两个端点分别为A(3,0),B(0,3),若抛物线y=x2-2ax+a2+1与线段AB有两个不同交点,试求实数a 的取值范围10已知f(x)=(m-2)x2-4mx+2m-6=0的图象与x轴的负半轴有交点,求实数m的取值范围11已知二次函数f(x),f(x+1)+f(x-1)=2x2-4x对任意实数x 都成立,试求f(1-2)的值12已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的取值范围13已知函数f(x)=lg(x2-2mx+m+2)(1)若f(x)的定义域为R,求实数m的取值范围;(2)若f(x)的值域为R,求实数m的取值范围14若二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一点c¸使f(c)>0,求实数p的取值范围15已知而二次函数f(x)=ax2+bx+c和一次函数g(x)= -bx,其中a,b,c满足a>b>c,a+b+c=0,(a,b,c∈R)(1)求证:两函数的图象相交于不同两点A,B;(2)求线段AB在x轴上的射影A1B1之长的取值范围16设2sin2x+acosx–1≤3a对x∈R 恒成立,求实数a的取值范围17已知函数f(x)=ax2+(2a-1)x-3 (a≠0)在区间[-3/2,2]上的最大值为1,求实数a的值18已知关于x的实系数二次方程x2+ax+b=0有两个实数根α,β证明:(Ⅰ)如果│α│<2,│β│<2,那么2│a│<4+b且│b│<4;(Ⅱ)如果2│a│<4+b且│b│<4,那么│α│<2,│β│<219已知a、b、c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时,│f(x)│≤1(Ⅰ)证明:│b│≤l;(Ⅱ)证明:当-1≤x≤1时,│g(x)│≤2;20已知二次函数f(x)=ax2+bx+c满足f(-1)=0,对于任意实数x,都有f(x)-x≥0,并且x∈(0,2)时,f(x)=(x+1)2/4,(1)求f(1); (2)求f(x)21若对任意实数x,sin2x+2kcosx-2k-2<0恒成立,求实数k的取值范围22AB的两个端点分别为A(3,0),B(0,3),若抛物线y=x2-2ax+a2+1与线段AB有两个不同交点,试求实数a 的取值范围。

高三数学总复习教学案例------二次函数综合问题

高三数学总复习教学案例------二次函数综合问题

高三数学总复习教学案例------二次函数综合问题一、内容分析:二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了.二、教学过程1. 代数推理由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质.(1)二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数.例1设,若,,, 试证明:对于任意,有. 分析:同上题,可以用()()()1,1,0-f f f 来表示c b a ,,.解:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1,∴ ()()()()0)),1()1((21),0211(21f c f f b f f f a =--=--+=, ∴ ()()()()()222102121x f x x f x x f x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=. ∴ 当01≤≤-x 时,()()()().4545)21(1)1(2212210212122222222222≤++-=+--=-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+-=-+-++≤-⋅+-⋅-++⋅≤x x x x x x x x x x x x x x f x x f x x f x f当10-≤≤x 时,()()()()222102121x f x x f x x f x f -⋅+-⋅-++⋅≤ 222122x x x x x -+-++≤ )1(22222x x x x x -+⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+= .4545)21(122≤+--=++-=x x x 综上,问题获证.(2)紧扣二次函数的顶点式,44222a b ac a b x a y -+⎪⎭⎫ ⎝⎛+=对称轴、最值、判别式显合力 例2 已知函数xz a x f 22)(-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数综合问题1. 代数推理由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质.1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数.例1 已知f x ax bx ()=+2,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围.分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,.解:由()b a f +=1,()b a f -=-1可解得: ))1()1((21)),1()1((21--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得()()⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=2)1(2122x x f x x f x f ,∴ ()()()1312-+=f f f .又∵214≤≤f (),2)1(1≤-≤f ,∴ ()1025≤≤f .例 2 设()()f x ax bx c a =++≠20,若()f 01≤,()f 11≤,()f -11≤, 试证明:对于任意-≤≤11x ,有()f x ≤54. 分析:同上题,可以用()()()1,1,0-f f f 来表示c b a ,,.解:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1,∴ ()()()()0)),1()1((21),0211(21f c f f b f f f a =--=--+=, ∴ ()()()()()222102121x f x x f x x f x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=.∴ 当01≤≤-x 时,()()()().4545)21(1)1(2212210212122222222222≤++-=+--=-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+-=-+-++≤-⋅+-⋅-++⋅≤x x x x x x x x x x x x x x f x x f x x f x f当10-≤≤x 时,()()()()222102121x f x x f x x f x f -⋅+-⋅-++⋅≤ 222122x x x x x -+-++≤ )1(22222x x x x x -+⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+= .4545)21(122≤+--=++-=x x x 综上,问题获证.1.2 利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --=例3 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<<x x a. 当()x x ∈01,时,证明. 分析:在已知方程()f x x -=0两根的情况下,根据函数与方程根的关系,可以写出函数()x x f -的表达式,从而得到函数)(x f 的表达式.证明:由题意可知))(()(21x x x x a x x f --=-.a x x x 1021<<<< , ∴ 0))((21>--x x x x a ,∴ 当()x x ∈01,时,x x f >)(.又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f ,,011,0221>->+-<-ax ax ax x x 且∴ 1)(x x f <,综上可知,所给问题获证.1.3 紧扣二次函数的顶点式,44222a b ac a b x a y -+⎪⎭⎫ ⎝⎛+=对称轴、最值、判别式显合力 例4 已知函数x z a x f 22)(-=。

(1)将)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求函数)(x g y =的解析式;(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求函数)(x h y =的解析式;(3)设)()(1)(x h x f ax F +=,已知)(x F 的最小值是m 且72+>m ,求实数a 的取值范围。

解:(1)()();22222---=-=x x a x f x g (2)设()x h y =的图像上一点()y x P ,,点()y x P ,关于1=y 的对称点为()y x Q -2,,由点Q 在()x g y =的图像上,所以 y ax x -=---22222, 于是 ,22222--+-=x x a y 即 ();22222--+-=x x a x h (3)22)14(2411)()(1)(+-+⎪⎭⎫ ⎝⎛-=+=x x a a x h x f a x F . 设x t 2=,则21444)(+-+-=ta t a a x F . 问题转化为:7221444+>+-+-ta t a a 对0>t 恒成立. 即 ()0147442>-+--a t t aa 对0>t 恒成立. (*) 故必有044>-a a .(否则,若044<-a a ,则关于t 的二次函数()14744)(2-+--=a t t aa t u 开口向下,当t 充分大时,必有()0<t u ;而当044=-a a 时,显然不能保证(*)成立.),此时,由于二次函数()14744)(2-+--=a t t aa t u 的对称轴0847>-=aa t ,所以,问题等价于0<∆t ,即()⎪⎪⎩⎪⎪⎨⎧<-⋅-⋅->-0144447044a a a a a , 解之得:221<<a . 此时,014,044>->-a a a ,故21444)(+-+-=t a t a a x F 在aa a t --=4)14(4取得最小值()214442+-⋅-=a aa m 满足条件. 2. 数形结合二次函数()0)(2≠++=a c bx ax x f 的图像为抛物线,具有许多优美的性质,如对称性、单调性、凹凸性等. 结合这些图像特征解决有关二次函数的问题,可以化难为易.,形象直观. 2.1 二次函数的图像关于直线a b x 2-=对称, 特别关系a b x x -=+21也反映了二次函数的一种对称性.例 5 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<<x x a . 且函数()f x 的图像关于直线x x =0对称,证明:x x 012<. 解:由题意 ()c x b ax x x f +-+=-)1(2.由方程()f x x -=0的两个根x x 12,满足0112<<<x x a, 可得 ,121021a x a b x <<--<<且ab x x a b 212121---=---, ∴ a b a a b x x a b 211212121---<---=---, 即 1x a b <-,故 x x 012<. 2.2 二次函数)(x f 的图像具有连续性,且由于二次方程至多有两个实数根. 所以存在实数n m ,使得n m <且0)()(<n f m f ⇔在区间()n m ,上,必存在0)(=x f 的唯一的实数根.例 6 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;(2)如果21<x ,212=-x x ,求b 的取值范围.分析:条件4221<<<x x 实际上给出了x x f =)(的两个实数根所在的区间,因此可以考虑利用上述图像特征去等价转化.解:设1)1()()(2+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x .(1)由0>a 及4221<<<x x ,可得 ⎩⎨⎧><0)4(0)2(g g ,即⎩⎨⎧>-+<-+034160124b a b a ,即 ⎪⎪⎩⎪⎪⎨⎧<+⋅--<-⋅+,043224,043233a a b a a b 两式相加得12<ab ,所以,10->x ; (2)由aa b x x 4)1()(2221--=-, 可得 1)1(122+-=+b a . 又0121>=a x x ,所以21,x x 同号. ∴ 21<x ,212=-x x 等价于⎪⎩⎪⎨⎧+-=+<<<1)1(1220221b a x x 或⎪⎩⎪⎨⎧+-=+<<-<1)1(1202212b a x x , 即 ⎪⎪⎩⎪⎪⎨⎧+-=+>>1)1(120)0(0)2(2b a g g 或⎪⎪⎩⎪⎪⎨⎧+-=+>>-1)1(120)0(0)2(2b a g g解之得 41<b 或47>b . 2.3 因为二次函数()0)(2≠++=a c bx ax x f 在区间]2,(a b --∞和区间),2[+∞-ab 上分别单调,所以函数()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或顶点处取得.例7 已知二次函数f x ax bx c ()=++2,当-≤≤11x 时,有-≤≤11f x (),求证:当-≤≤22x 时,有-≤≤77f x ().分析:研究)(x f 的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数c b a ,,. 确定三个参数,只需三个独立条件,本题可以考虑)1(f ,)1(-f ,)0(f ,这样做的好处有两个:一是c b a ,,的表达较为简洁,二是由于01和±正好是所给条件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的.要考虑()x f 在区间[]7,7-上函数值的取值范围,只需考虑其最大值,也即考虑()x f 在区间端点和顶点处的函数值.解:由题意知:c b a f c f c b a f ++==+-=-)1(,)0(,)1(,∴ )0()),1()1((21)),0(2)1()1((21f c f f b f f f a =--=--+=, ∴ f x ax bx c ()=++2()2221)0(2)1(2)1(x f x x f x x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=. 由-≤≤11x 时,有-≤≤11f x (),可得 ,1)1(≤f (),11≤-f ()10≤f .∴ ()()()()7)0(3)1(1303113)2(≤+-+≤--+=f f f f f f f ,()()()()7)0(3)1(3103131)2(≤+-+≤--+=-f f f f f f f .(1)若[]2,22-∉-ab ,则()x f 在[]2,2-上单调,故当[]2,2-∈x 时, ))2(,)2(max()(max f f x f -=∴ 此时问题获证.(2)若[]2,22-∈-a b ,则当[]2,2-∈x 时,)2,)2(,)2(max()(max ⎪⎭⎫ ⎝⎛--=a b f f f x f 又()72411214)1()1(2022422<=+⋅+≤--⋅+=⋅+≤-=⎪⎭⎫ ⎝⎛-f f a b f b a b c a b c a b f , ∴ 此时问题获证.综上可知:当-≤≤22x 时,有-≤≤77f x ().。

相关文档
最新文档