数学二次函数综合(定值)问题与解析
二次函数-定值问题典型例题

二次函数-定值问题【例1】如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.【例2】如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.【猜想与证明】填表:m 1 2 3由上表猜想:对任意m(m>0)均有= .请证明你的猜想.【探究与应用】(1)利用上面的结论,可得△AOB与△CQD面积比为;(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;【联想与拓展】如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为.考点:二次函数综合题分析:猜想与证明:把P点的纵坐标分别代入C1、C2的解析式就可以AB、CD的值,就可以求出结论,从而发现规律得出对任意m(m>0)将y=m2代入两个二次函数的解析式就可以分别表示出AB与CD的值,从而得出均有=;探究与证明:(1)由条件可以得出△AOB与△CQD高相等,就可以得出面积之比等于底之比而得出结论;(2)分两种情况讨论,当△AOB为等腰直角三角形时,可以求出m的值就可以求出△AOB的面积,从而求出△CQD的面积,就可以求出其差,当△CQD为等腰直角三角形时,可以求出m的值就可以求出△CDQ的面积,进而可以求出结论;联想与拓展:由猜想与证明可以得知A、D的坐标,可以求出F、E的纵坐标,从而可以求出AE、DF的值,由三角形的面积公式分别表示出△MAE与△MDF面积,就可以求出其比值.解答:解:猜想与证明:当m=1时,1=x2,1=x2,∴x=±2,x=±3,∴AB=4,CD=6,∴;当m=2时,4=x2,4=x2,∴x=±4,x=±6,∴AB=8,CD=12,∴;当m=3时,9=x2,9=x2,∴x=±6,x=±9,∴AB=12,CD=18,∴;∴填表为m 1 2 3对任意m(m>0)均有=.理由:将y=m2(m>0)代入y=x2,得x=±2m,∴A(﹣2m,m2),B(2m,m2),∴AB=4m.将y=m2(m>0)代入y=x2,得x=±3m,∴C(﹣3m,m2),D(3m,m2),∴CD=6m.∴,∴对任意m(m>0)均有=;探究与运用:(1)∵O、Q关于直线CD对称,∴PQ=OP.∵CD∥x轴,∴∠DPQ=∠DPO=90°.∴△AOB与△CQD的高相等.∵=,∴AB=CD.∵S△AOB=AB•PO,S△CQD=CD•PQ,∴=,(2)当△AOB为等腰直角三角形时,如图3,∴PO=PB=m2,AB=2OP∴m2=m4,∴4m2=m4,∴m1=0,m2=﹣2,m3=2.∵m>0,∴m=2,∴OP=4,AB=8,∴PD=6,CD=12.∴S△AOB==16∴S△CQD==24,∴S△CQD﹣S△AOB=24﹣16=8.当△CQD是等腰直角三角形时,如图4,∴PQ=PO=PD=m2,CD=2QP∴m2=m4,∴9m2=m4,∴m1=0,m2=﹣3,m3=3.∵m>0,∴m=3,∴OP=6,AB=12,∴PQ=9,CD=18.∴S△AOB==54∴S△CQD==81,∴S△CQD﹣S△AOB=81﹣54=27;联想与拓展由猜想与证明可以得知A(﹣2m,m2),D(3m,m2),∵AE∥y轴,DF∥y轴,∴E点的横坐标为﹣2m,F点的横坐标为3m,∴y=(﹣2m)2,y=(3m)2,∴y=m2,y=m2,∴E(﹣2m,m2),F(3m,m2),∴AE=m2﹣m2=m2,DF=m2﹣m2=m2.S△AEM=×m2•2m=m3,S△DFM=m2•3m=m3.∴=.故答案为:;;.点评:本题考出了对称轴为y轴的抛物线的性质的运用,由特殊到一般的数学思想的运用,等腰直角三角形的性质的运用,三角形的面积公式的运用,轴对称的性质的运用,在解答本题时运用两个抛物线上的点的特征不变建立方程求解是关键.【例3】已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).[来(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.考点:二次函数综合题.专题:代数几何综合题.分析:(1)设抛物线C2,(a≠0),然后把点(0,)代入求出a的值,再化1的顶点式形式y=a(x﹣1)为一般形式即可;(2)先根据m的值求出直线AB与x轴的距离,从而得到点B、C的纵坐标,然后利用抛物线解析式求出点C的横坐标,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相同求出点A的坐标,然后根据平移的性质设出抛物线C2的解析式,再把点A的坐标代入求出h的值即可;(3)先把直线AB与x轴的距离是m2代入抛物线C1的解析式求出C的坐标,从而求出CE,再表示出点A的坐标,根据抛物线的对称性表示出ED,根据平移的性质设出抛物线C2的解析式,把点A的坐标代入求出h的值,然后表示出EF,最后根据锐角的正切值等于对边比邻边列式整理即可得证.解答:(1)解:设抛物线C1的顶点式形式y=a(x﹣1)2,(a≠0),∵抛物线过点(0,),∴a(0﹣1)2=,解得a=,∴抛物线C1的解析式为y=(x﹣1)2,一般形式为y=x2﹣x+;(2)解:当m=2时,m2=4,∵BC∥x轴,∴点B、C的纵坐标为4,∴(x﹣1)2=4,解得x1=5,x2=﹣3,∴点B(﹣3,4),C(5,4),∵点A、C关于y轴对称,∴点A的坐标为(﹣5,4),设抛物线C2的解析式为y=(x﹣1)2﹣h,则(﹣5﹣1)2﹣h=4,解得h=5;(3)证明:∵直线AB与x轴的距离是m2,∴点B、C的纵坐标为m2,∴(x﹣1)2=m2,解得x1=1+2m,x2=1﹣2m,∴点C的坐标为(1+2m,m2),又∵抛物线C1的对称轴为直线x=1,∴CE=1+2m﹣1=2m,∵点A、C关于y轴对称,∴点A的坐标为(﹣1﹣2m,m2),∴AE=ED=1﹣(﹣1﹣2m)=2+2m,设抛物线C2的解析式为y=(x﹣1)2﹣h,则(﹣1﹣2m﹣1)2﹣h=m2,解得h=2m+1,∴EF=h+m2=m2+2m+1,∴tan∠EDF﹣tan∠ECP=﹣=﹣=﹣=,∴tan∠EDF﹣tan∠ECP=.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,二次函数图象与结合变换,关于y轴对称的点的坐标特征,抛物线上点的坐标特征,锐角的正切的定义,(3)用m表示出相应的线段是解题的关键,也是本题的难点.【例4】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.3718684专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∴,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2,∴AM=m2﹣1﹣(﹣2)=m2+1,∴AO=AM;(3)解:①k=0时,直线y=kx与x轴重合,点A、B在x轴上,∴AM=BN=0﹣(﹣2)=2,∴+=+=1;②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则+=+==,联立,消掉y得,x2﹣4kx﹣4=0,由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,所以,x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16,∴+===1,∴无论k取何值,+的值都等于同一个常数1.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A、B的坐标,然后用含有k的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.【例5】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB=35,sin ∠OAB=55. (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,35AB =5sin OAB ∠=5sin 3535BD AB OAB ∴=∠==. 又由勾股定理, 得2222(35)36AD AB BD =-=-=.1064OD OA AD ∴=-=-=.点B 在第一象限内,∴点B 的坐标为(43),.y F P 3BEC D A P 2P 1O∴点B 关于x 轴对称的点C 的坐标为(43)-,. ················ 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ········· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-. 对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,. 而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ······················· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =.将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,; 而点(100)A ,,2(612)P ∴-,. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.······················· 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,.而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ······················· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,,22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭.3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ················ 2分②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ····················· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例6】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。
考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。
而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。
当x =–2b a 时,y 最大值=244ac b a-。
最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。
重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学

重难点二次函数中的线段、周长与面积的最值问题及定值问题目录题型01利用二次函数解决单线段的最值问题题型02利用二次函数解决两条线段之和的最值问题题型03利用二次函数解决两条线段之差的最值问题题型04利用二次函数解决三条线段之和的最值问题题型05利用二次函数解决三角形周长的最值问题题型06利用二次函数解决四边形周长的最值问题题型07利用二次函数解决图形面积的最值问题类型一利用割补、拼接法解决面积最值问题类型二利用用铅垂定理巧求斜三角形面积最值问题类型三构建平行线,利用同底等高解决面积最值问题题型08利用二次函数解决定值问题题型01利用二次函数解决单线段的最值问题【解题思路】抛物线中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解.求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确.1(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3,(-3,0)(2)94(3)-3,-32或(-2,1)或0,3-32【分析】(1)将A ,C 两点坐标代入抛物线的解析式求得a ,c 的值,进而得出解析式,当y =0时,求出方程的解,进而求得B 点坐标;(2)由B ,C 两点求出BC 的解析式,进而设出点P 和点Q 坐标,表示出PQ 的长,进一步得出结果;(3)要使以点P ,M ,B ,N 为顶点的四边形是菱形,只需△PMB 是等腰三角形,所以分为PM =BM ,PM =PB 和BP =BM ,结合图象,进一步得出结果.【详解】(1)解:把点A (1,0),C (0,-3)代入y =ax 2+2x +c 得:c =-3a +2×1+c =0 ,解得:c =-3a =1 ,∴抛物线解析式为y =x 2+2x -3;令y =0,则x 2+2x -3=0,解得:x 1=1,x 2=-3,∴点B 的坐标为(-3,0);(2)解:设直线BC 的解析式为y =kx +b k ≠0 ,把点B (-3,0),C (0,-3)代入得:b =-3-3k +b =0 ,解得:k =-1b =-3 ,∴直线BC 的解析式为y =-x -3,设点P m ,-m +3 ,则Q m ,m 2+2m -3 ,∴PQ =-m -3 -m 2+2m -3 =-m 2-3m =-m +322+94,∴当m =-32时,PQ 最大,最大值为94;(3)解:存在,根据题意得:PC =2t ,BM =t ,则PB =32-2t ,如图,当BM =PM 时,∵B (-3,0),C (0,-3),∴OB =OC =3,∴∠OCB =∠OBC =45°,延长NP 交y 轴于点D ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ∥x 轴,BN ∥PM ,即DN ⊥y 轴,∴△CDP 为等腰直角三角形,∴CD =PD =PC ⋅sin ∠OCB =2t ×22=t ,∵BM =PM ,∴∠MPB =∠OBC =45°,∴∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 是矩形,∴OM =PD =t ,MP ⊥x 轴,∴BN ⊥x 轴,∵BM +OM =OB ,∴t +t =3,解得t =32,∴P -32,-32,∴N -3,-32;如图,当PM =PB 时,作PD ⊥y 轴于D ,连接PN ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ⊥BM ,NE =PE ,∴BM =2BE ,∴∠OEP =∠DOE =∠ODP =90°,∴四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3-t ,∴t =2(3-t ),解得:t =2,∴P (-2,-1),∴N (-2,1);如图,当PB =MB 时,32-2t =t ,解得:t =6-32,∴PN =BP =BM =6-32,过点P 作PE ⊥x 轴于点E ,∴PE ⊥PM ,∴∠EON =∠OEP =∠EPN =90°,∴四边形OEPN 为矩形,∴PN =OE ,PN ⊥y 轴,∵∠OBC =45°,∴BE =PE =PB ⋅sin ∠OBC =6-32 ×22=32-3,∴OE =OB -BE =3-32-3 =6-32,∴点N 在y 轴上,∴N 0,3-32 ,综上所述,点N 的坐标为-3,-32或(-2,1)或0,3-32 .【点睛】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.2(2021·西藏·统考中考真题)在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(-1,0),点C 的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;(3)图(乙)中,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5;(2)P 52,354;(3)存在,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【分析】(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c ,即可得抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =-x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =PQ2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),PQ =-m -52 2+254,故当m =52时,PH 最大,即点P 到直线BC的距离最大,此时P 52,354 ;(3)抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组s +22=5+02-s 2+4s +5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得s +52=2+02-s 2+4s +4+02=t +52,解得M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则s +02=2+52-s 2+4s +5+52=t +02,解得M (7,-16).【详解】解:(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c 得:0=-1-b +c 5=c ,解得b =4c =5 ,∴抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =-x 2+4x +5中,令y =0得-x 2+4x +5=0,解得x =5或x =-1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =PQ2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =-1,∴直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),∴PQ =(-m 2+4m +5)-(-m +5)=-m 2+5m =-m -52 2+254,∵a =-1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P 52,354;(3)存在,理由如下:抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴s +22=5+02-s 2+4s +5+t2=0+52,解得s =3t =-3 ,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴s +52=2+02-s 2+4s +4+02=t +52,解得s=-3t =-21 ,∴M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:s +02=2+52-s 2+4s +5+52=t +02,解得s =7t =-11 ,∴M (7,-16);综上所述,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.3(2021·山东泰安·统考中考真题)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)y =-x 2-3x +4;(2)y =-158x +158;(3)PQ QB有最大值为45,P 点坐标为(-2,6)【分析】(1)将A (-4,0),B (1,0)代入y =ax 2+bx +4(a ≠0)中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据PD ⎳y 轴可知,∠DPB =∠OEB ,当∠DPB =2∠BCO ,即∠OEB =2∠BCO ,由此推断△OEB 为等腰三角形,设OE =a ,则CE =4-a ,所以BE =4-a ,由勾股定理得BE 2=OE 2+OB 2,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得M 点坐标,则BM =5,由BM ⎳PN ,可得△PNQ ∽△BMQ ,PQ QB=PN BM =PN5,设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)PQ QB =-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,根据二次函数性质求解即可.【详解】解:(1)由题意可得:a ⋅(-4)2+b ⋅(-4)+4=0a +b +4=0解得:a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)设BP 与y 轴交于点E ,∵PD ⎳y 轴,∴∠DPB =∠OEB ,∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO ,∴∠ECB =∠EBC ,∴BE =CE ,设OE =a ,则CE =4-a ,∴BE =4-a ,在Rt △BOE 中,由勾股定理得BE 2=OE 2+OB 2,∴(4-a )2=a 2+12解得a =158,∴E 0,158,设BE 所在直线表达式为y =kx +e (k ≠0)∴k ⋅0+e =158,k ⋅1+e =0.解得k =-158,e =158. ∴直线BP 的表达式为y =-158x +158.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标分别为(-4,0),(0,4)可得AC 所在直线表达式为y =x +4∴M 点坐标为(1,5),BM =5由BM ⎳PN ,可得△PNQ ∽△BMQ ,∴PQ QB=PN BM =PN 5设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)∴PQ QB=-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,∴当a 0=-2时,PQQB 有最大值0.8,此时P 点坐标为(-2,6).【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.4(2020·辽宁阜新·中考真题)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A -3,0 ,B 1,0 ,交y 轴于点C .点P m ,0 是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3;(2)①94,②存在,Q 1(0,-32-1),Q 2(0,32-1)【分析】(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中求出b ,c 的值即可;(2)①由点P m ,0 得M (m ,-m -3),N m ,m 2+2m -3 ,从而得MN =(-m -3)-m 2+2m -3 ,整理,化为顶点式即可得到结论;②分MN =MC 和MC =2MN 两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中,得0=9-3b +c ,0=1+x +c .解得b =2,c =-3. ∴y =x 2+2x -3.(2)设直线AC 的表达式为y =kx +b ,把A (-3,0),C (0,-3)代入y =kx +b .得,0=-3k +b ,-3=b . 解这个方程组,得k =-1,b =-3. ∴y =-x -3.∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m=-m +32 2+94.∵a =-1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<-32<0∴当m =-32时,MN 有最大值94. ②∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN =MC ,如图,∵C (0,-3)∴MC =(m -0)2+(-m -3+3)2=2m 2∴-m 2-3m =2m 2整理得,m 4+6m 3+7m 2=0∵m 2≠0,∴m 2+6m +7=0,解得,m 1=-3+2,m 2=-3-2∴当m =-3+2时,CQ =MN =32-2,∴OQ =-3-(32-2)=-32-1∴Q (0,-32-1);当m =-3-2时,CQ =MN =-32-2,∴OQ =-3-(-32-2)=32-1∴Q (0,32-1);(ii )若MC =2MN ,如图,则有-m 2-3m =22×2m 2整理得,m 2+4m =0解得,m 1=-4,m 2=0(均不符合实际,舍去)综上所述,点Q 的坐标为Q 1(0,-32-1),Q 2(0,32-1)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.5(2020·天津·中考真题)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(1)当a =1,m =-3时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =22.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是22?【答案】(1)抛物线的顶点坐标为(-1,-4);(2)①点F 的坐标为(0,-2-7)或(0,-2+7);②当m 的值为-32或-12时,MN 的最小值是22.【分析】(1)根据a =1,m =-3,则抛物线的解析式为y =x 2+bx -3,再将点A (1,0)代入y =x 2+bx -3,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出C (0,m ),点E (m +1,m ).过点A 作AH ⊥l 于点H ,在Rt △EAH 中,利用勾股定理求出AE 的值,再根据AE =EF ,EF =22,可求出m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当a =1,m =-3时,抛物线的解析式为y =x 2+bx -3.∵抛物线经过点A (1,0),∴0=1+b-3.解得b=2.∴抛物线的解析式为y=x2+2x-3.∵y=x2+2x-3=(x+1)2-4,∴抛物线的顶点坐标为(-1,-4).(2)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=-m-1.∴抛物线的解析式为y=x2-(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1-(m+1)=-m,HA=0-m=-m,∴AE=EH2+HA2=-2m.∵AE=EF=22,∴-2m=22.解得m=-2.此时,点E(-1,-2),点C(0,-2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=EF2-EC2=7.∴点F的坐标为(0,-2-7)或(0,-2+7).②由N是EF的中点,得CN=12EF=2.根据题意,点N在以点C为圆心、2为半径的圆上.由点M(m,0),点C(0,m),得MO=-m,CO=-m.∴在Rt△MCO中,MC=MO2+CO2=-2m.当MC≥2,即m≤-1时,满足条件的点N落在线段MC上,MN的最小值为MC-NC=-2m-2=22,解得m=-3 2;当MC<2,-1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC-MC=2-(-2m)=22,解得m=-1 2.∴当m的值为-32或-12时,MN的最小值是22.【点睛】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..6(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD ⊥AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的△QEF 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)y =14x 2+14x -3(2)PD 取得最大值为45,P -2,-52 (3)Q 点的坐标为92,-1 或92,5 或92,74.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为y =-34x -3,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,则PD =45PQ ,进而根据二次函数的性质即可求解;(3)根据平移的性质得出y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ,F 0,2 ,勾股定理分别表示出EF 2,QE 2,QF 2,进而分类讨论即可求解.【详解】(1)解:将点B 3,0 ,C 0,-3 .代入y =14x 2+bx +c 得,14×32+3b +c =0c =-3解得:b =14c =-3 ,∴抛物线解析式为:y =14x 2+14x -3,(2)∵y =14x 2+14x -3与x 轴交于点A ,B ,当y =0时,14x 2+14x -3=0解得:x 1=-4,x 2=3,∴A -4,0 ,∵C 0,-3 .设直线AC 的解析式为y =kx -3,∴-4k -3=0解得:k =-34∴直线AC 的解析式为y =-34x -3,如图所示,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,∴PQ =-34t -3-14t 2+14t -3 =-14t 2-t ,∵∠AQE =∠PQD ,∠AEQ =∠QDP =90°,∴∠OAC =∠QPD ,∵OA =4,OC =3,∴AC =5,∴cos ∠QPD =PD PQ =cos ∠OAC =AO AC=45,∴PD =45PQ =45-14t 2-t =-15t 2-45t =-15t +2 2+45,∴当t =-2时,PD 取得最大值为45,14t 2+14t -3=14×-2 2+14×-2 -3=-52,∴P -2,-52 ;(3)∵抛物线y =14x 2+14x -3=14x +12 2-4916将该抛物线向右平移5个单位,得到y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ∵平移后的抛物线与y 轴交于点F ,令x =0,则y =14×92 2-4916=2,∴F 0,2 ,∴EF 2=32+2+52 2=1174∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设Q 92,m ,∴QE 2=92-3 2+m +52 2,QF 2=92 2+m -2 2,当QF =EF 时,92 2+m -2 2=1174,解得:m =-1或m =5,当QE =QF 时,92-3 2+m +522=92 2+m -2 2,解得:m =74综上所述,Q 点的坐标为92,-1 或92,5 或92,74.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.题型02利用二次函数解决两条线段之和的最值问题【解题思路】抛物线中的线段最值问题有三种形式:2. 两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点. 其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
二次函数(定值问题)

二次函数--定值问题解法一:设直线解析式,利用韦达定理进行解题解法二:设点的坐标,利用相似进行解题1、如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.2、如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.3、 如图,在平面直角坐标系xOy 中,一次函数 (为常数)的图象与x 轴交于点A(,0),与y 轴交于点C .以直线x=1为对称轴的抛物线 ( 为常数,且≠0)经过A ,C 两点,并与x 轴的正半轴交于点B .(1)求的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于 ,两点,试探究是否为定值,并写出探究过程.54y x m =+m 3-2y ax bx c =++a b c ,,a m 111M ()x y ,222M ()x y ,2112P P M M M M⋅4.如图,已知A B C ∆为直角三角形,90A C B ∠=︒,A C B C=,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示);(2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结P Q 并延长交B C 于点E ,连结 B Q 并延长交AC 于点F ,试证明:()F C A CE C +为定值.yxQP F EDC BA O5. 如图1所示,在直角坐标系中,O 是坐标原点,点A 在y 轴正半轴上,二次函数y=ax 2+[x/6]+c 的图象F 交x 轴于B 、C 两点,交y 轴于M 点,其中B (-3,0),M (0,-1)。
一道二次函数经典30问解析(全)

01特别说明02针对变式题目03形定问题1、分析:二次函数有三种表达形式:由A、C两点坐标可以求出表达式里b、c两个参数的值,由顶点公式可求出顶点D的坐标。
(也可以采用设一般式或交点式方法求解)2、分析:由点A、C、D的坐标可以求出AD、AC、CD的长度,从而判断出ΔACD的形状。
04线段问题3、分析:因为BE=CE,则点E为BC的垂直平分线与y轴的交点。
根据勾股定理找出直角ΔOBE三边的关系从而求出点E的坐标。
4、分析:设出点P的坐标,然后再求出直线AC的表达式,从而表示出交点N的坐标,从而用x表示PM和MN的长度,根据PM和MN的关系求出点P的坐标。
05线段最值问题5、分析:求线段PH可以转化为求PF的最值,用含有x的表达式表示出PF的长度,根据二次函数求最值的方法从而求出PF的最大值。
根据PH和PF的数量关系求出PH的最大值和P的坐标。
(或者根据面积法求出高PH的函数表达式,同理可求)06线段最值问题6、分析:由(5)知PH=GH,矩形PEGH为正方形。
C矩形PEGH=4PH,当PH最大时成立。
7、分析:△BCP的周长为:BC+BP+PC,BC长度是定值,当PB+PC最小时,△BCP的周长最小。
07面积问题10、分析:四边形ABCD为不规则图形,可以采用隔或者补的方法转化为规则的图形。
解:过点D作DE垂直于x轴于点E。
08特殊图形1直角三角形2等腰三角形09平行四边形存在性10相似三角形11角度问题27、分析:若使直线AC与BM的夹角等于∠ACB的2倍,则∠MCB=∠MBC,则MC=MB,利用勾股定理用点M的坐标表示出MC和MB的长度,从而求出点M的坐标。
28、分析:若使∠BCO+∠BNO=∠BAC,可以在∠BAC上截取∠OAE=∠BCO,过点E作EF垂直AC于点F,则∠BNO=∠EAF,根据∠EAF的正切值求出点ON的长度即可。
12旋转问题29、分析:如图所示,分两种情况,根据旋转前后图形全等,设出抛物线一个点的坐标,根据数量关系表示出另一个抛物线的点的坐标,代入抛物线解析式,从而求出点O’坐标。
专题3-1 二次函数中的10类定值、定点问题(原卷版)

专题3-1 二次函数中的10类定值、定点问题二次函数背景下的定值与定点问题,解析法类似于高中,但并不超纲!因为解题方法比较特殊,同学们要专门学习和练习,才能在考场上应对自如,这些方法包括联立、转化等,对同学们的代数功底与几何功底都有较高的要求.知识点梳理一、定值问题二、定点问题题型一 面积定值2022·山东淄博·中考真题2023·福建厦门三模题型二 线段长为定值2024届湖北天门市九年级月考2024届福建龙岩市统考期中2020·西藏·中考真题题型二 线段和定值2023广州市二中月考2022·四川巴中·中考真题2024届湖北黄石市·九年级统考2023·四川乐山·统考二模2023·海口华侨中学考模2023·江苏徐州·4月模拟2022·湖南张家界·中考真题题型三 加权线段和定值2023·四川广元·中考真题2020·四川德阳·中考真题题型四 线段乘积为定值2023·四川南充·中考真题2024届·武汉市东湖高新区统考2024届福建省福州屏东中学月考2024届福州市晋安区统考2023·福建福州·校考三模题型五 比值为定值2023年广西钦州市一模2023福建厦门一中模拟2023年福州市屏东中学中考模拟武汉·中考真题题型六 横(纵)坐标定值2023·湖北潜江、天门、仙桃、江汉油田·中考真题2024届湖北潜江市初12校联考题型七 角度为定值2023·成都武侯区西川中学三模四川乐山·统考中考真题题型八 其它定值问题2023·浙江湖州·统考一模2024届福建省南平市统考2023年湖北省武汉市新观察中考四调题型九 结合韦达定理求定点2023年湖北省武汉市外国语学校中考模拟2024届武汉市青山区九年级统考2024届武汉市新洲区12月统考2024届·福建厦门市第九中学期中2023·武汉光谷实验中学中考模拟2023广东省梅州市九年级下期中2024届福州市九校联盟期中2023年湖北省武汉市新观察中考四调题型十 已知定值求定点2024届武汉市洪山区九年级统考2024届湖北省武汉市新洲区九年级上期中2023年广州市天河外国语学校中考三模知识点梳理一、定值问题一般来说,二次函数求解几何线段代数式定值问题属于定量问题,方法采用:1.参数计算法:即在图形运动中,选取其中的变量(如线段长,点坐标)作为参数,将要求的定值用参数表示出,然后消去参数即得定值。
二次函数中的定值问题

二次函数中的定值问题二次函数定值问题是中考压轴题常考考点,解决二次函数中的定值问题,可以根据特殊位置,特殊点去探求定值是多少,做到心中有数;其次再证明在一般情况下这个结论也成立,在运动变化过程中,应注意分清哪些量是变量,哪些是常量,其中二次函数定值问题常与一次函数结合一起,利用韦达定理解决二次函数中的定值问题是常用的解题思路!例1.抛物线y=ax2﹣6x+c与x轴的交点分别为点A、点B(点A在点B左边),顶点为点D,△ABD为等边三角形.求ac的值例2.如图,已知二次函数y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(A 点在B点左),与y轴交于C点,连接BC,P为对称轴右侧抛物线上的动点,直线PA交y轴于E点,直线PB交y轴于点D,判断的值是否为定值,若是,求出定值,若不是请说明理由.例3.在平面直角坐标系中,抛物线y=﹣x2+(a+1)x﹣a(a>1)交x轴于A、B两点(点A在点B的左边),交y轴于点C.过点B且与抛物线仅有一个交点的直线y=kx+b交y轴于点D,求的值.例4.已知抛物线C1:y=x2﹣1与x轴于A,B两点,与y轴交于点C,点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.例5.如图,抛物线y=x2﹣2x﹣6与x轴分别相交于A,B两点(点A在点B的左侧),C是AB的中点,平行四边形CDEF的顶点D,E均在抛物线上.点F 在抛物线上,连接DF,求证:直线DF过一定点.解:联立得:,例6.Rt△ABC的三个顶点都在抛物线y=﹣x2+4上,且直角顶点C在该抛物线的顶点处,设直线AB的解析式为y=kx+b,试证明该直线必过一定点.例7.抛物线y=﹣x2+2x+3;与x轴交于点A和点B(点A在原点的左侧),与y 轴交于点C,D为对称轴GT右边抛物线上的任意一点,连接AD,BD分别交GT于M、N两点,试证明MT+NT为定值.例8.如图,抛物线y=﹣x2+3x﹣3;顶点D在x轴上,抛物线与直线l交于A、B两点.∠ADB=90°,求证:直线l经过定点,并求出定点坐标.例10.如图已知抛物线y=x2﹣2x﹣3与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.点N为y轴上一点,AN、BN交抛物线于E、F两点,求•的值.例11.在平面直角坐标系中,已知二次函数y=x2+x+2;的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ 分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.例12.已知y=x2﹣2x﹣3过点A(﹣1,0)和点C(0,﹣3).直线y=kx+k+1与此抛物线交于M、N两点,在抛物线上是否存在定点Q,使得对于任意实数k,都有∠MQN=90°,若存在,求出点Q的坐标,若不存在,请说明理由.例13.如图,抛物线y=x2+x﹣2;与x轴交于A(﹣2,0),B(1,0)两点,与y轴负半轴交于点C.经过定点P作一次函数y=kx+与抛物线交于M,N两点.试探究是否为定值?请说明理由.例14.已知抛物线C1:y=﹣x2+2x+3经过点(2,3),与x轴交于A(﹣1,0)、B两点.平移抛物线C1,使其顶点在y轴上,得到抛物线C2,过定点H(0,2)的直线交抛物线C2于M、N两点,过M、N的直线MR、NR与抛物线C2都只有唯一公共点,求证:R点在定直线上运动.例15.如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.练习1.抛物线y=x2+x﹣2与x轴交于点A、点B(1,0),与y轴交于点C,连接AC,D点为抛物线上第三象限内一动点.过点N(﹣3,0)作y轴的平行线,交AD所在直线于点E,交BD所在直线于点F,在点D的运动过程中,求4NE+NF 的值.2.抛物线与x轴交于点A、B,与y轴交于点C,直线l∥BC,直线l交抛物线于点M、N,直线AM交y轴于点P,直线AN交y轴于点Q,点P、Q的纵坐标为y P,y Q,求证:y P+y Q的值为定值.3.抛物线y=x2﹣2x+1的顶点A在x轴上,与y轴交于点B.P为抛物线对称轴上顶点下方的一点,过点P作直线交抛物线于点E,F,交x轴于点M,求的值.4.抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过点D(0,3)的直线交y=﹣2x于M点,交抛物线于E、F两点,求﹣的值.5.抛物线y=ax2+bx﹣4交x轴于A(﹣2,0),B(4,0)两点交y轴于点C.点P在第四象限的抛物线上,过A,B,P作⊙O1,作PQ⊥x轴于Q,交⊙O于点H,求HQ的值.6.已知抛物线y=x2﹣2x﹣3与x轴正半轴交于点D,M、N为y轴上的两个不同的动点,且OM=ON,射线DM、DN分别与抛物线交于P、Q两点,求的值.7.平面直角坐标系中,已知抛物线y=﹣x2+4x的顶点为A(2,4),且经过坐标原点.若直线y=kx﹣2k+5与抛物线交于M,N两点,点N关于抛物线对称轴的对称点为P,当k<0时,试说明直线MP过一定点Q,并求出点Q的坐标.8.如图,抛物线y=﹣x2+1的顶点C在y轴正半轴上,与x轴交于A、B两点(A 点在B点左边)直线AQ、BP分别交y轴于E、F两点,求OE+OF的值.9.如图,在平面直角坐标系中,抛物线y=x2﹣(m﹣1)x﹣m(其中m>0),交x轴于A、B两点(点A在点B的左侧),交y轴负半轴于点C.平面上一点E(m,2),过点E作任意一条直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM•ON是一个定值.10.已知抛物线y=x2,直线y=kx+2与抛物线交于点E,F,点P是抛物线上的动点,延长PE,PF分别交直线y=﹣2于M,N两点,MN交y轴于Q点,求QM•QN的值.11.如图,过点F(0,2)的直线y=kx+b与抛物线y=x2交于M(x1,y1)和N(x2,y2)两点(M在N的左侧),证明:无论k取何实数,+为定值,并求出该值.12.抛物线y=x2﹣2x﹣3,2,直线y=kx+k+1与抛物线C2交于M、N两点,在抛物线上是否存在定点Q,使得对于任意实数k都有∠MQN=90°?若存在,求点Q的坐标;若不存在,请说明理由.13.抛物线y=﹣x2+2x+3,交x轴于A、B两点,交y轴于点C,F为抛物线顶点,直线EF垂直于x轴于点E,点P是线段BE上的动点(除B、E外),过点P 作x轴的垂线交抛物线于点D.直线AD,BD分别与抛物线对称轴交于M、N 两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.14.抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.15.在平面直角坐标系中,二次函数y=x2﹣x﹣4的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE 的长.16.抛物线y=﹣x2+x+1与x轴交于点A,B.与y轴交于点C.平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.17.如图,在平面直角坐标系xOy中,一次函数y=x+,抛物线y=﹣x2+ x+(a、b、c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B,若P是抛物线对称轴上一动点,且使△ACP周长最小,过点P任意作一条与y 轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请求出结果,如果不是请说明理由.18.已知抛物线y=x2﹣2mx+m2﹣2m(m>2),顶点为点M,抛物线与x轴交于A、B点(点A在点B的左侧),与y轴交于点C.若直线CM交x轴于点N,请求的值.。
中考压轴题二次函数中的最(定)值问题

二次函数中的最(定)值问题【典例1】(2019•宜宾)如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2﹣2x +c 与直线y =kx +b 都经过A (0,﹣3)、B (3,0)两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当△P AB 面积最大时,求点P 的坐标,并求△P AB 面积的最大值.【点拨】(1)将A (0,﹣3)、B (3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则CE =2,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN ,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3),可分别得到方程求出点M 的坐标;(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2﹣2m ﹣3),则G (m ,m ﹣3),可由S △PAB =12PG ⋅OB ,得到m 的表达式,利用二次函数求最值问题配方即可.【解答】解:(1)∵抛物线y =ax 2﹣2x +c 经过A (0,﹣3)、B (3,0)两点, ∴{9a −6+c =0c =−3, ∴{a =1c =−3, ∴抛物线的解析式为y =x 2﹣2x ﹣3,∵直线y =kx +b 经过A (0,﹣3)、B (3,0)两点, ∴{3k +b =0b =−3,解得:{k =1b =−3, ∴直线AB 的解析式为y =x ﹣3, (2)∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的顶点C 的坐标为(1,﹣4), ∵CE ∥y 轴, ∴E (1,﹣2), ∴CE =2,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN , 设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3), ∴MN =a ﹣3﹣(a 2﹣2a ﹣3)=﹣a 2+3a ,∴﹣a 2+3a =2,解得:a =2,a =1(舍去), ∴M (2,﹣1),②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,设M (a ,a ﹣3),则N (a ,a 2﹣2a ﹣3), ∴MN =a 2﹣2a ﹣3﹣(a ﹣3)=a 2﹣3a ,∴a 2﹣3a =2, 解得:a =3+√172,a =3−√172(舍去), ∴M (3+√172,−3+√172), 综合可得M 点的坐标为(2,﹣1)或(3+√172,−3+√172). (3)如图,作PG ∥y 轴交直线AB 于点G , 设P (m ,m 2﹣2m ﹣3),则G (m ,m ﹣3),∴PG =m ﹣3﹣(m 2﹣2m ﹣3)=﹣m 2+3m ,∴S △P AB =S △PGA +S △PGB =12PG ⋅OB =12×(−m 2+3m)×3=−32m 2+92m =−32(m −32)2+278, ∴当m =32时,△P AB 面积的最大值是278,此时P 点坐标为(32,−154).【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.【典例2】(2019•绵阳)在平面直角坐标系中,将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),OA =1,经过点A 的一次函数y =kx +b (k ≠0)的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,△ABD 的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求△ACE 面积的最大值,并求出此时点E 的坐标; (3)若点P 为x 轴上任意一点,在(2)的结论下,求PE +35P A 的最小值.【点拨】(1)先写出平移后的抛物线解析式,经过点A (﹣1,0),可求得a 的值,由△ABD 的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式; (2)作EM ∥y 轴交AD 于M ,如图,利用三角形面积公式,由S △ACE =S △AME ﹣S △CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E 关于x 轴的对称点F ,过点F 作FH ⊥AE 于点H ,交x 轴于点P ,则∠BAE =∠HAP =∠HFE ,利用锐角三角函数的定义可得出EP +35AP =FP +HP ,此时FH 最小,求出最小值即可.【解答】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x ﹣1)2﹣2, ∵OA =1,∴点A 的坐标为(﹣1,0),代入抛物线的解析式得,4a ﹣2=0, ∴a =12,∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32. 令y =0,解得x 1=﹣1,x 2=3, ∴B (3,0), ∴AB =OA +OB =4, ∵△ABD 的面积为5, ∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32,解得x 1=﹣2,x 2=4, ∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4k +b =52−k +b =0,解得:{k =12b =12, ∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2, ∴S △ACE =S △AME ﹣S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516,∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交x 轴于点P ,∵E (32,−158),OA =1,∴AG =1+32=52,EG =158,∴AG EG=52158=43,∵∠AGE =∠AHP =90° ∴sin ∠EAG =PHAP =EGAE =35, ∴PH =35AP , ∵E 、F 关于x 轴对称, ∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小, ∵EF =158×2=154,∠AEG =∠HEF , ∴sin∠AEG =sin∠HEF =AGAE =FHEF =45, ∴FH =45×154=3. ∴PE +35P A 的最小值是3.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.【精练1】(2019秋•河北区期末)在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B ,C ,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一动点,过点P 作y 轴的平行线,交抛物线于点D ,是否存在这样的P 点,使线段PD 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E ,EF ⊥x 轴于点F ,N 是直线EF 上一动点,M (m ,0)是x 轴一个动点,请直接写出CN +MN +12MB 的最小值以及此时点M 、N 的坐标,直接写出结果不必说明理由.【点拨】(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3,即可求解;(2)设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,即可求解;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,即可求解.【解答】解:(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3并解得:b=2,抛物线的表达式为:y=﹣x2+2x+3;(2)存在,理由:令y=0,则x=﹣1或3,故点B(3,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,当x=32时,PD最大值为:94;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,直线BH表达式中的k值为√33,则直线CH的表达式为:y=−√3x+3,当x=1时,y=3−√3,当y=0时,x=√3,故点N、M的坐标分别为:(1,3−√3)、(√3,0),CN+MN+12MB的最小值=CH=CM+FH=3+3√32.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、点的对称性等,其中(3),本题提供对的采取的用点的对称轴确定线段和的方法,是此类题目的一般方法.【精练2】(2020•郑州模拟)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=−12x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求PDOD的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【点拨】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段PDOD =PFOB,则PF取最大值时,求得PDOD的最大值;(3)(i)点F在y轴上时,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH =CO =2,然后利用二次函数解析式求解即可;(ii )点E 在y 轴上时,过点PK ⊥x 轴于K ,作PS ⊥y 轴于S ,同理可证得△EPS ≌△CPK ,可得PS =PK ,则P 点的横纵坐标互为相反数,可求出P 点坐标;点E 在y 轴上时,过点PM ⊥x 轴于M ,作PN ⊥y 轴于N ,同理可证得△PEN ≌△PCM ,可得PN =PM ,则P 点的横纵坐标相等,可求出P 点坐标.由此即可解决问题. 【解答】解:(1)直线y =x +4与坐标轴交于A 、B 两点, 当x =0时,y =4,x =﹣4时,y =0, ∴A (﹣4,0),B (0,4),把A ,B 两点的坐标代入解析式得,{−4b +c =8c =4,解得,{b =−1c =4,∴抛物线的解析式为y =−12x 2−x +4; (2)如图1,作PF ∥BO 交AB 于点F , ∴△PFD ∽△OBD , ∴PD OD=PF OB,∵OB 为定值, ∴当PF 取最大值时,PD OD有最大值,设P (x ,−12x 2−x +4),其中﹣4<x <0,则F (x ,x +4), ∴PF =y P −y F =−12x 2−x +4−(x +4)=−12x 2−2x , ∵−12<0且对称轴是直线x =﹣2, ∴当x =﹣2时,PF 有最大值, 此时PF =2,PD OD=PF OB=12;(3)∵点C (2,0), ∴CO =2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,{∠HPC=∠OCF ∠PHC=∠COF PC=CF,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴−12x2−x+4=2,解得,x=−1±√5,∴P1(−1+√5,2),P2(−1−√5,2),(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴−12x2−x+4=−x,解得x=2√2(舍去),x=﹣2√2,∴P3(−2√2,2√2),如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴−12x2−x+4=x,解得x=−2+2√3,x=−2−2√3(舍去),∴P4(−2+2√3,−2+2√3),综合以上可得P点坐标为(−2+2√3,−2+2√3),(−2√2,2√2),(−1+√5,2),(−1−√5,2).【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,解题的关键是正确进行分类讨论.【精练3】(2020•武汉模拟)如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则EGHF的值是否为定值,证明你的结论.【点拨】(1)先将抛物线M1:y=﹣x2+4x化为顶点式,由平移规律“上加下减,左加右减”可直接写出抛物线M2的解析式;(2)分别求出点A,点B,点C的坐标,求出m的取值范围,再用含m的代数式表示出△CPQ的面积,可用函数的思想求出其最大值;(3)设将直线OB向下平移k个单位长度得到直线EH,分别求出点E,F,G,H的横坐标,分别过G,H作y轴的平行线,过E,F作x轴的平行线,构造相似三角形△GEM与△HFN,可通过相似三角形的性质求出EGHF的值为1.【解答】解:(1)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴将其先向右平移3个单位,再向上平移3个单位的解析式为:y=﹣(x﹣5)2+7=﹣x2+10x﹣18;(2)∵抛物线M1与M2交于点B,∴﹣x2+4x=﹣x2+10x﹣18,解得,x=3,∴B(3,3),将点B(3,3)代入y=kx,得,k=1,∴y OB=x,∵抛物线M2与直线OB交于点C,∴x=﹣x2+10x﹣18,解得,x1=3,x2=6,∴C(6,6),∵点P的横坐标为m,∴点P(m,﹣m2+4m),则Q(m,﹣m2+10m﹣18),∴QP=﹣m2+10m﹣18﹣(﹣m2+4m)=6m﹣18,∴S△PQC=12(6m﹣18)(6﹣m)=﹣3m2+27m﹣54,=﹣3(m−92)2+274,在y=﹣m2+4m中,当y=0时,x1=0,x2=4,∴A(4,0),∵B(3,3),∴3≤m≤4,∴在S=﹣3(m−92)2+274中,根据二次函数的图象及性质可知,当m=4时,△PCQ有最大值,最大值为6;(3)GEHF的值是定值1,理由如下:设将直线OB向下平移k个单位长度得到直线EH,则y EH=x﹣k,∴令x﹣k=﹣x2+4x,解得,x1=3+√9+4k2,x2=3−√9+4k2,∴x F=3+√9+4k2,x E=3−√9+4k2,令x﹣k=﹣x2+10x﹣18,解得,x1=9+√9+4k2,x2=9−√9+4k2,∴x H=9+√9+4k2,x G=9−√9+4k2,∴ME=x G﹣x E=9−√9+4k2−3−√9+4k2=3,FN=x H﹣x F=9+√9+4k2−3+√9+4k2=3,分别过G,H作y轴的平行线,过E,F作x轴的平行线,交点分别为M,N,Q,则∠HFN=∠GEM,∠HNF=∠GME=90°,∴△GEM∽△HFN,∴GEHF =EMFN,∴GEHF =EMFN=33=1,∴GEHF的值是定值1.【点睛】本题考查了二次函数的图象平移规律,二次函数的图象及性质,相似三角形的判定与性质等,解题关键是掌握用函数的思想求极值等.【精练4】(2019秋•南岗区期末)如图,抛物线y=ax2﹣11ax+24a交x轴于C,D两点,交y轴于点B(0,449),过抛物线的顶点A作x轴的垂线AE,垂足为点E,作直线BE.(1)求直线BE的解析式;(2)点H为第一象限内直线AE上的一点,连接CH,取CH的中点K,作射线DK交抛物线于点P,设线段EH的长为m,点P的横坐标为n,求n与m之间的函数关系式.(不要求写出自变量m的取值范围);(3)在(2)的条件下,在线段BE上有一点Q,连接QH,QC,线段QH交线段PD于点F,若∠HFD=2∠FDO,∠HQC=90°+12∠FDO,求n的值.【点拨】(1)根据抛物线可得对称轴,可知点E的坐标,利用待定系数法可得一次函数BE的解析式;(2)如图1,作辅助线,构建直角三角形,根据抛物线过点B (0,449),可得a 的值,计算y =0时,x的值可得C 和D 两点的坐标,从而知CD 的值,根据P 的横坐标可表示其纵坐标,根据tan ∠PDM =PMDM=1154(n−3)(n−8)8−n=1154(3−n),tan ∠KDN =KN DN =m2154=2m 15,相等列方程为1154(3−n)=2m 15,可得结论;(3)如图2,延长HF 交x 轴于T ,先根据已知得∠FDO =∠FTO ,由等角的三角函数相等和(2)中的结论得:tan ∠FDO =tan ∠FTO ,则m ET=2m 15,可得ET 和CT 的长,令∠FDO =∠FTO =2α,表示角可得∠TCQ =∠TQC ,则TQ =CT =5, 设Q 的坐标为(t ,−89t +449),根据定理列方程可得:TS 2+QS 2=TQ 2,(2+t )2+(−89t +449)2=52,解得t 1=4729,t 2=1;根据两个t 的值分别求n 的值即可. 【解答】解:(1)∵抛物线y =ax 2﹣11ax +24a , ∴对称轴是:x =−−11a2a =112, ∴E (112,0),∵B (0,449),设直线BE 的解析式为:y =kx +b ,则{112k +b =0b =449,解得:{k =−89b =449, ∴直线BE 的解析式为:y =−89x +449;(2)如图1,过K 作KN ⊥x 轴于N ,过P 作PM ⊥x 轴于M ,∵抛物线y =ax 2﹣11ax +24a 交y 轴于点B (0,449),∴24a =449, ∴a =1154, ∴y =1154x 2−12154x +449=1154(x ﹣3)(x ﹣8), ∴当y =0时,1154(x ﹣3)(x ﹣8)=0,解得:x =3或8, ∴C (3,0),D (8,0), ∴OC =3,OD =8, ∴CD =5,CE =DE =52, ∴P 点在抛物线上, ∴P [n ,1154(n ﹣3)(n ﹣8)],∴PM =1154(n ﹣3)(n ﹣8),DM =8﹣n ,∴tan ∠PDM =PM DM =1154(n−3)(n−8)8−n =1154(3−n),∵AE ⊥x 轴,∴∠KNC =∠HEC =90°, ∴KN ∥EH , ∴CN EN=CK KH=1,∴CN =EN =12CE =54,∴KN =12HE =12m ,ND =154,在△KDN 中,tan ∠KDN 中,tan ∠KDN =KN DN =m2154=2m 15,∴1154(3−n)=2m 15,n =−3655m +3;(3)如图2,延长HF 交x 轴于T ,∵∠HFD =2∠FDO ,∠HFD =∠FDO +∠FTO , ∴∠FDO =∠FTO , ∴tan ∠FDO =tan ∠FTO , 在Rt △HTE 中,tan ∠FTO =EHET , ∴m ET=2m 15,∴ET =152, ∴CT =5,令∠FDO =∠FTO =2α,∴∠HQC =90°+12∠FDO =90°+α,∴∠TQC =180°﹣∠HQC =90°﹣α,∠TCQ =180°﹣∠HTC ﹣∠TQC =90°﹣α, ∴∠TCQ =∠TQC , ∴TQ =CT =5,∵点Q 在直线y =−89x +449上,∴可设Q 的坐标为(t ,−89t +449), 过Q 作QS ⊥x 轴于S ,则QS =−89t +449,TS =2+t , 在Rt △TQS 中,TS 2+QS 2=TQ 2, ∴(2+t )2+(−89t +449)2=52, 解得t 1=4729,t 2=1;①当t =4729时,QS =10029,TS =10529, 在Rt △QTH 中,tan ∠QTS =1002910529=2021,∴2m 15=2021,m =507, ∴n =−3655×507+3=−12977, ②当t =1时,QS =4,TS =3, 在Rt △QTH 中,tan ∠QTS =QS TS =43, ∴2m 15=43,m =10, ∴n =−3655×10+3=−3911. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角函数、平行线分线段成比例定理、解直角三角形等,其中(3),运用方程的思想,求解t 的值,难度很大.【精练5】(2019秋•大东区期末)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,2√3),连接BC ,位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E ,连接AC ,BC ,P A ,PB ,PC . (1)求抛物线的表达式;(2)如图1,当直线l 运动时,求使得△PEA 和△AOC 相似的点P 点的横坐标; (3)如图1,当直线1运动时,求△PCB 面积的最大值;(4)如图2,抛物线的对称轴交x 轴于点Q ,过点B 作BG ∥AC 交y 轴于点G .点H 、K 分别在对称轴和y 轴上运动,连接PH 、HK ,当△PCB 的面积最大时,请直接写出PH +HK +√32KG 的最小值.【点拨】(1)根据A和B的坐标设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2√3)代入可得:a=−√34,即可求解;(2)只有当∠P AE=∠ACO时,△PEA△∽AOC,可得方程,解方程可得P的横坐标;(3)如图1,先确定△PCB的面积最大时,PD最大,设P(x,−√34x2+√32x+2√3),D(x,−√32x+2√3),表示PD的长,根据二次函数的最值可得PD的最大值,最后利用三角形面积公式可得结论;(4)由(3)知:△PCB的面积最大时,P(2,2√3),则OP=√22+(2√3)2=4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+√32KG=PH+HK+KM′≥PM,求出PM即可解决问题.【解答】解:(1)∵点A(﹣2,0),点B(4,0),∴设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2√3)代入得:a=−√3 4,故抛物线的表达式为:y=−√34(x+2)(x﹣4)=−√34x2+√32x+2√3;(2)设P(x,−√34x2+√32x+2√3),∵动直线l在y轴的右侧,P为抛物线与l的交点,∴0<x<4,∵点A(﹣2,0)、C(0,2√3),∴OA=2,OC=2√3,∵l⊥x轴,∴∠PEA =∠AOC =90°, ∵∠P AE ≠∠CAO ,∴只有当∠P AE =∠ACO 时,△PEA ∽△AOC ,此时PEAE=AO OC,即−√34x 2+√32x+2√3x+2=2√3,3x 2﹣2x ﹣16=0, (x +2)(3x ﹣8)=0, x =﹣2(舍)或83,则点P 的横坐标为83;(3)如图1,△PCB 的面积=12⋅PD ⋅OB ,∵OB =4是定值,∴当PD 的值最大时,△PCB 的面积最大, ∵B (4,0),C (0,2√3), 设直线BC 的解析式为:y =kx +b , 则{4k +b =0b =2√3, 解得:{k =−√32b =2√3,∴直线BC 的解析式为:y =−√32x +2√3,设P (x ,−√34x 2+√32x +2√3),D (x ,−√32x +2√3),∴PD =(−√34x 2+√32x +2√3)﹣(−√32x +2√3)=−√34x 2+√3x =−√34(x ﹣2)2+√3,∵−√34<0,∴当x=2时,PD有最大值是√3,此时△PCB的面积=12⋅PD⋅OB=12×√3×4=2√3;(4)如图2中,△AOC中,OA=2,OC=2√3,∴AC=4,∴∠ACO=30°,∵BG∥AC,∴∠BGO=∠ACO=30°,Rt△BOG中,OB=4,∴OG=4√3,由(3)知:△PCB的面积最大时,P(2,2√3),则OP=√22+(2√3)2=4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+√32KG=PH+HK+KM′≥PM,∵P(2,2√3),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,Rt△OMG中,OG=4√3,MG=2√3,∴OM=6,可得PM=10,∴PH+HK+√32KG的最小值为10.【点睛】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.【精练6】(2016秋•集宁区期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【点拨】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y =x 2+2x ﹣3,当x =0时,y =﹣3,所以点C (0,﹣3),OC =3,令y =0,解得:x =﹣3,或x =1,∴点B (1,0),OB =1,设点P (m ,m 2+2m ﹣3),此时S △POC =12×OC ×|m |=32|m |, S △BOC =12×OB ×OC =32, 由S △POC =4S △BOC 得32|m |=6,解得:m =4或m =﹣4,m 2+2m ﹣3=21,或m 2+2m ﹣3=5,所以点P 的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC 的解析式为:y =kx +b ,把A (﹣3,0),C (0,﹣3)代入得:{0=−3k +b −3=b,解得:{k =−1b =−3, 所以直线AC :y =﹣x ﹣3,设点Q (n ,﹣n ﹣3),点D (n ,n 2+2n ﹣3)所以:DQ =﹣n ﹣3﹣(n 2+2n ﹣3)=﹣n 2﹣3n =﹣(n +32)2+94,所以当n =−32时,DQ 有最大值94. 【点睛】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.【精练7】(2019秋•农安县期末)定义:对于抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),若b 2=ac ,则称该抛物线为黄金抛物线.例如:y =x 2﹣x +1是黄金抛物线(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)将黄金抛物线y =x 2﹣x +1沿对称轴向下平移3个单位①直接写出平移后的新抛物线的解析式;②新抛物线如图所示,与x 轴交于A 、B (A 在B 的左侧),与y 轴交于C ,点P 是直线BC 下方的抛物线上一动点,连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.③当直线BC 下方的抛物线上动点P 运动到什么位置时,四边形 OBPC 的面积最大并求出此时P 点的坐标和四边形OBPC 的最大面积.【点拨】(1)直接根据黄金抛物线的定义写一个解析式即可;(2)①根据平移的知识直接写出新抛物线的解析式;②设P 点坐标为(x ,x 2﹣x ﹣2),PP ′交CO 于E ,若四边形POP ′C 是菱形,则有PC =PO ,连结PP ′则PE ⊥CO 于E ,P 点的横坐标为﹣1,进而解方程求出x 的值;③过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣x ﹣2),先求出BC 的直线解析式,进而设Q 点的坐标为(x ,x ﹣2),根据S 四边形OBPC =S △OBC +S △BPQ +S △CPQ 列出x 的二次函数解析式,根据二次函数的性质求出满足条件的P 点坐标以及面积最大值.【解答】解:(1)不唯一,例如:y =x 2+x +1;(2)①:y =x 2﹣x ﹣2;②存在点P ,如图1,使四边形POP ′C 为菱形.设P 点坐标为(x ,x 2﹣x ﹣2),PP ′交CO 于E若四边形POP ′C 是菱形,则有PC =PO .连结PP ′则PE ⊥CO 于E ,∴OE =EC =1,∴y =﹣1,∴x 2﹣x ﹣2=﹣1解得x 1=1+√52,x 2=1−√52(不合题意,舍去) ∴P 点的坐标为(1+√52,﹣1); ③过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣x ﹣2),易得,直线BC 的解析式:y =x ﹣2则Q 点的坐标为(x ,x ﹣2).S 四边形OBPC =S △OBC +S △BPQ +S △CPQ=12OB •OC +12QP •OF +12QP •FB =12×2×2+12(−x 2+2x)×2=﹣(x ﹣1)2+3,当x =1时,四边形OBPC 的面积最大此时P 点的坐标为(1,﹣2),四边形OBPC 的面积最大值是3.【点睛】本题主要考查了二次函数的综合题,此题涉及黄金抛物线新定义、菱形的判定与性质、四边形面积的求法等知识,解答此题要掌握黄金抛物线的定义,解答(2)问需要掌握菱形的性质以及分割法求四边形的面积,此题难度不大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市中考压轴题(二次函数)精选【例一】.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∴,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l 过点E (0,﹣2)且平行于x 轴, ∴点M 的纵坐标为﹣2, ∴AM=m 2﹣1﹣(﹣2)=m 2+1,∴AO=AM;(3)解:①k=0时,直线y=kx 与x 轴重合,点A 、B 在x 轴上, ∴AM=BN=0﹣(﹣2)=2, ∴+=+=1;②k 取任何值时,设点A (x 1,x 12﹣1),B (x 2,x 22﹣1), 则+=+==, 联立,消掉y 得,x 2﹣4kx ﹣4=0,由根与系数的关系得,x 1+x 2=4k ,x 1•x 2=﹣4, 所以,x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=16k 2+8, x 12•x 22=16,∴+===1,∴无论k 取何值,+的值都等于同一个常数1.点评: 本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A 、B 的坐标,然后用含有k 的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.【例二】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB sin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,35AB =Q 5sin 5OAB ∠=, 5sin 3535BD AB OAB ∴=∠==g . 又由勾股定理, 得2222(35)36AD AB BD =-=-=.1064OD OA AD ∴=-=-=.Q 点B 在第一象限内, ∴点B 的坐标为(43),.∴点B 关于x 轴对称的点C 的坐标为(43)-,. ················ 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为 2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ········· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形.①Q 点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-.y FP 3BEC D A P 2P 1O对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,.而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ······················· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =. 将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=.∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,;而点(100)A ,,2(612)P ∴-,. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.······················· 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,. 而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ······················· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭Q ,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,,22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=g g △.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++-g g g g g 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭. 3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ················ 2分②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ····················· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例三】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式; (2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。