八年级数学上册2.6实数学案新版北师大版69.
北师大版八年级数学上册:2.6实数优秀教学案例

1.生活情境导入:通过利用生活实际情境引出实数的概念,让学生感受到实数与生活的紧密联系,增强了学生的学习兴趣,提高了学生的学习积极性。
2.问题导向:在教学过程中,教师提出引导性问题,鼓励学生提出疑问,引导学生主动发现问题、解决问题,培养学生的批判性思维和问题解决能力。
3.小组合作:教师组织学生进行小组讨论,让学生在合作交流中共同探究实数问题,培养学生的团队合作能力和实践能力。
北师大版八年级数学上册:2.6实数优秀教学案例
一、案例背景
本案例背景以北师大版八年级数学上册第2章第6节“实数”为主题内容。实数作为数学中的基础概念,不仅涉及有理数、无理数等知识,更是学生进一步学习函数、几何等数学分支的基石。对于八年级的学生而言,他们已经具备了有理数的知识基础,但对无理数概念的理解仍较为模糊,特别是对无理数的实际意义和应用认识不足。
2.设计具有探究性的数学活动,如数学实验、数学探究等,让学生在实践中感受实数的形成过程。
3.教师关注学生在小组合作中的表现,及时给予指导和鼓励,提升学生的自信心。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,培养学生自我评价、自我调整的能力。
2.教师通过课堂提问、学生作业等方式,对学生的学习情况进行评价,及时了解学生的知识掌握情况。
1.教师提出引导性问题,引导学生从已知知识出发,逐步探究实数的定义和性质。
2.鼓励学生提出疑问,引导学生主动发现问题、解决问题,培养学生的批判性思维。
3.教师引导学生总结实数的运算规律,帮助学生建立实数知识的体系。
(三)小组合作
1.教师组织学生进行小组讨论,让学生在合作交流中共同探究实数问题,培养学生的团队合作能力。
3.鼓励学生互相评价、互相学习,培养学生的批判性思维和评价能力。
北师大版八年级上册 2.6 实数 教案

<课题>2.6实数教学内容:课后回忆教学目标:知识与技能目标1.了解实数的意义,能对实数按要求进行n加油分类;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
3.了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小。
●过程与方法目标1.通过对实数分类的探究,增强学生的分类意识;2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想。
●情感与态度目标1.通过对实数进行分类的练习、进一步领会分类的思想方法;2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识。
教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
教学难点:建立实数概念及分类教法学法:讲授法,合作交流法 教学准备:多媒体课件教学过程:第一环节:复习引入新课(2分钟,学生主动思考并积极回答)内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗? 第二环节:实数概念(8分钟,学生动手填写,并进行小组交流讨论)内容:把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)32417π25-23205-38-94知识整理:有理数和无理数统称为实数。
第三环节:实数分类(5识)内容:1.你能把上面各数分别填入下面相应的集合内吗?2.0属于正数吗?0知识整理:1实数,即:⎪⎩⎪⎨⎧负实数正实数实数02.另外从实数的概念也可以进行如下分类: 第四环节:实数的相关概念(7分钟,学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义。
)内容1:1.在有理数中,数a 的相反数是什么?绝对值是什么?当a 不为0时,它的倒数是什么?2.的相反数是什么?的倒数是什么?,0,—π的绝对值分别是什么?内容2:想一想:1.3—π的绝对值是 。
北师大版八年级上册数学2.6实数(导学案)

北师大版八年级上册数学2.6实数(导学案)2.6 实数学习目标:1、了解无理数发现的历程,知道无理数是客观存在的;2、知道实数的概念并能对其进行分类;3、知道实数与数轴上的点一一对应,会用数轴上的点表示实数;会判断一个数是有理数还是无理数。
预习案课前导学:1.无理数的概念无理数:2.实数的概念和分类实数实数3.实数与数轴上的点(1)在数轴上描出表示无理数π的点(2总结:(1)实数与数轴上的点是 对应的,即每一个实数都可以用数轴上的 来表示;反过来,数轴上的每一个点都表示 。
(2)平面直角坐标系中的点与有序实数对之间也是 的。
(3)数轴上任意两个点, 的点所表示的实数总比 的点表示的实数大。
尝试练习:1.大于-17而小于11的所有整数的和_______.2.设a是最小的自然数,b是最大负整数,c是绝对值最小的实数,则a+b+c=______.3.已知坐标平面内一点A(-2,3),将点A先向右平移2个单位,再向下平移3个单位,得到A′,则A′的坐标为_____.学习案课内训练:1、把下列各数分别填在相应的集合中: -1112,32,-4,0,-0.4,38.4π,..0.23,3.14有理数集合无理数集合2. 在数轴上离原点距离是5的点表示的数是_________.3.比较大小:(1)325326(2)43-3-π4.3-π的绝对值是。
5.想一想:a是一个实数,它的相反数是,它的绝对值是,当a≠0时,它的倒数是。
反馈案基础训练:1.大于-17而小于11的所有整数的和_______.2.设a是最小的自然数,b是最大负整数,c是绝对值最小的实数,则a+b+c=______.拓展提高:3.已知坐标平面内一点A(-2,3),将点A先向右平移2个单位,再向下平移3个单位,得到A′,则A′的坐标为_____.5.在数轴上离点3距离是3的点表示的数是_______.。
八年级数学上册2.6实数教案 新版北师大版

八年级数学上册2.6实数教案新版北师大版一. 教材分析《八年级数学上册2.6实数》这一节主要让学生了解实数的概念,掌握实数的性质,以及实数与数轴的关系。
教材通过引入实数的概念,让学生认识到实数是整数和分数的统称,包括有理数和无理数。
同时,教材介绍了实数的性质,如实数的大小比较、实数的加减乘除运算等。
最后,教材引导学生理解实数与数轴的关系,掌握数轴上的点与实数的一一对应关系。
二. 学情分析学生在学习这一节之前,已经掌握了有理数的概念和性质,对数轴也有了一定的了解。
但是,学生可能对无理数的概念和性质比较陌生,理解起来可能存在一定的困难。
因此,在教学过程中,需要加强对无理数的解释和引导,帮助学生建立起实数的整体概念。
三. 教学目标1.让学生理解实数的概念,掌握实数的性质。
2.让学生掌握实数与数轴的关系,能够利用数轴表示实数。
3.培养学生运用实数解决问题的能力。
四. 教学重难点1.实数的概念和性质。
2.实数与数轴的关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考和探索实数的性质;通过案例分析,让学生了解实数在实际中的应用;通过小组合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备与实数相关的案例材料。
2.准备数轴的教具。
3.准备实数的性质和运算的练习题。
七. 教学过程1.导入(5分钟)利用问题驱动法,引导学生思考实数的定义和性质。
例如:“实数是什么?实数有哪些性质?”让学生回顾已有知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍实数的概念,包括有理数和无理数。
通过案例教学法,呈现一些与实数相关的实际问题,让学生了解实数的应用。
如:“小明买了一本书,价格是3.14元,这本书的价格可以用实数表示吗?为什么?”3.操练(10分钟)让学生进行实数的性质和运算的练习。
例如:“判断以下两个实数的大小:2和3/4。
”通过练习,让学生掌握实数的性质和运算方法。
八年级数学上册2.6实数教学设计 (新版北师大版)

八年级数学上册2.6实数教学设计(新版北师大版)一. 教材分析本节课的主题是实数,是北师大版八年级数学上册第2.6节的内容。
实数是数学中的基础概念,包括有理数和无理数。
学生在学习实数之前已经掌握了有理数的相关知识,本节课主要是让学生了解无理数的概念,以及实数的分类。
教材内容由浅入深,从实数的定义到实数的分类,再到实数的运算,有助于学生系统地掌握实数的相关知识。
二. 学情分析八年级的学生已经掌握了有理数的相关知识,对数学概念有一定的理解能力。
但是,对于无理数的概念和性质,学生可能比较难理解,需要通过实例和生活中的实际问题来进行解释。
此外,学生可能对实数的分类和运算有一定的困惑,需要通过大量的练习来进行巩固。
三. 教学目标1.了解无理数的概念,知道无理数和有理数的区别。
2.掌握实数的分类,能够正确判断一个数是实数还是非实数。
3.掌握实数的运算规则,能够进行实数的加减乘除运算。
四. 教学重难点1.无理数的概念和性质。
2.实数的分类。
3.实数的运算规则。
五. 教学方法采用讲授法、案例分析法、练习法、小组合作法等教学方法。
通过讲解实数的定义和性质,让学生了解无理数和有理数的区别;通过案例分析,让学生理解实数的分类;通过大量练习,让学生掌握实数的运算规则。
六. 教学准备1.教材、PPT、黑板、粉笔等教学用具。
2.相关的案例和练习题。
七. 教学过程1.导入(5分钟)通过一个生活中的实际问题来引入本节课的主题——实数。
例如:“小明家距离学校2.5公里,他每分钟走50米,问小明需要多少分钟才能到学校?”让学生思考,引出实数的概念。
2.呈现(10分钟)讲解实数的定义和性质,让学生了解实数包括有理数和无理数。
通过PPT展示实数的分类,让学生掌握实数的分类。
3.操练(10分钟)让学生进行实数的运算练习,例如:2+3√2、5-√3等。
让学生在练习中掌握实数的运算规则。
4.巩固(10分钟)通过小组合作,让学生讨论实数的运算规则,以及实数的分类。
八年级数学上册 2.6 实数教案 (新版)北师大版 教案

导学
1、复习旧知,引入新课
2、通过练习,导出实数概念
3、导学小组活动,得出实数分类
4、知识外延,拓展相关概念
5、探究实数与数轴上点的对应关系
6、达标检测
7、归纳总结。
8、布置作业
1、思考问题的引入
2、学生独立完成练习
3、小组讨论
4、探究得出实数分类
5、达标检测完成书P55想一想
6、小组活动探究
2.6 实数
教
学
重点
了解实数的意义并对实数进行分类
会在实数范围内求相反数、倒数、绝对值
难点
建立实数的概念及分类
方法
1、小组合作探究法、2教师指导学习法、
手段
达标检测
必做题
1、书P56随堂练习 1、2
选做题
书P56习题2.8
教 学 过 程
课堂模式
教 师 活 动
学 生 活 动
目标
通过复习引出展示教学目标
7、达标检测完成书P56随堂练习
8、记好作业
检测
1、书P10随堂练习1独立完成Leabharlann 1、书P11知识技能1、2
北师大版八年级上册 2.6 实数 教案

.倒数: 的倒数. 的倒数,2- 的倒数
.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
( >0)- 的绝对值是:
即:∣ ∣=( =0)2- 的绝对值是:
( <0) 的绝对值是:
例2①当 <2时, =;②若|x|= ,则x=
有理数:
无理数:
课
程
讲
授
问题一、实数的分类
1、概念:_有理数_和__无理数___统称为实数
2、实数分类:
(1)按定义分(2)按正、负分
通过上面的填写过程发现,无理数也有正负之分,0既不能填入整数集合,也不能填入负数集合,因此,从正、负方面来考虑,实数可以分为正实数、0、负实数,从定义方面来分,实数分为有理数和。
例4在数轴上离原点距离是 的点表示的数是.
拓展:例5、已知实数 在数轴上的位置如下,
化简
注意:先讨论范围,再去绝对值答案,最后化简。
课堂练习
见导学练
小结
本节课你有哪些收获?
作业布置
《优化设计》
课后
反思
难点
正确求一个实数的相反数,绝对值和非零实数的倒数.
教学环节说明备注来自教学内
容
复
习
回
顾
1、整数和分数统称为有理数;无限不循环小数叫做无理数。
2、把下列各数分别填入相应的集合内: , , , ,- , , ,- ,- ,0 ,0.101001001,0.3737737773…(相邻两个3之间的7的个数逐次加1)
2016-2017学年上学期
八年级数学备课组教案
教师
授课时间
北师大版八年级上册数学教案:2.6实数

2.培养学生的逻辑推理能力:通过实数的运算和数轴的应用,让学生掌握逻辑推理方法,提升解题能力。
-能够运用实数的加减乘除法则进行运算
-能够在数轴上表示实数,并运用数轴解决相关问题
3.培养学生的数学建模能力:将实数应用于实际问题,培养学生建立数学模型,解决实际问题的能力。
-能够将实际问题转化为实数问题,建立数学模型
-能够运用实数知识解决生活中的数学问题,提高实践能力
4.培养学生的数学运算能力:通过练习题的解答,提高学生的数学运算速度和准确性。
-能够熟练进行实数的乘方和开方运算
-能够正确解答实数相关的练习题,提高运算能力
三、教学难点与重点
1.教学重点
-实数的定义及其分类:这是实数概念的核心内容,需要学生深刻理解实数的内涵,掌握有理数和无理数的区别。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解实数的基本概念。实数包括有理数和无理数,是数学中非常重要的数集。实数在解决实际问题中具有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了实数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调实数的定义和分类、实数的运算规则这两个重点。对于难点部分,如无理数的理解,我会通过举例和比较来帮助大家理解。
-重点举例:解释实数包含有理数和无理数的原因,强调无理数是无限不循环小数的特性。
-实数的运算规则:熟练掌握实数的加减乘除、乘方和开方运算是解决实际问题的关键。
-重点举例:通过具体例题,讲解实数运算的优先级和法则,如加减乘除的顺序、乘方的运算规律等。
-实数与数轴的关系:理解实数在数轴上的表示,有助于学生形象地理解实数的相对大小和运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6 实数
学习目标:
1、了解实数的意义,能对实数按要求进行分类。
2、了解实数范围内,相反数、倒数、绝对值的意义。
3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
重点、难点:
重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
学习过程:
一、创设问题情景,引出实数的概念
1、什么叫无理数,什么叫有理数,举例说明。
2、把下列各数分别填入相应的集合内。
32,41,7,π,25-,2,320,5-,38-,9
4,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)
教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number )。
教师点明:实数可分为有理数与无理数。
二、议一议
1、在实数概念基础上对实数进行不同分类。
无理数与有理数一样,也有正负之分,如3是正的,π-是负的。
教师提出以下问题,让学生思考:
(1)你能把32,41,7,π,25-,2,320,5-,38-,9
4,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?
正有理数:
负有理数:
有理数:
无理数:
(2)0属于正数吗?0属于负数吗?
(3)实数除了可以分为有理数与无理数外,实数还可怎样分?
让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。
2、了解实数范围内相反数、倒数、绝对值的意义:
在有理数中,有理数a 的的相反数是什么,不为0的数a 的倒数是什么。
在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
例如,2和2-是互为相反数,35和351互为倒数。
33=,00=,ππ=-,33-=-ππ。
三、想一想
让学生思考以下问题
1、a 是一个实数,它的相反数为 ,绝对值为 ;
2、如果0≠a ,那么它的倒数为 。
让学生回答后,教师归纳并板书:实数a 的相反数为a -,绝对值为a ,若0≠a 它的倒数为a
1(教师指明:0没有倒数) 四、议一议。
探索用数轴上的点来表示无理数 1、复习勾股定理。
如图在Rt△ABC 中AB= a ,BC = b ,AC = c ,其中a 、b 、c 满足什么条件。
当a=1,b=1时,c 的值是多少? 2、出示投影(1)P45页图2—4,让学生探讨以下问题:
(A )如图OA=OB ,数轴上A 点对应的数是多少?
(B )如果将所有有理数都标到数轴上,那么数轴上被填满
了吗?
让学生充分思考交流后,引导学生达成以下共识:
(1)A 点对应的数等于2,它介于1与2之间。
(2)如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数。
(3)每一个褛都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
(4)一样地,在数轴上,右边的点比左边的点表示的数大。
五、随堂练习
1、判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数; (3)带根号的数都是无理数。
2、求下列各数的相反数、倒数和绝对值:
(1)3.8 (2)21- (3)π- (4)3 (5)3
100
27
3、在数轴上作出5对应的点。
六、小结
1、实数的概念
2、实数可以怎样分类 A
C
B 1
3、实数a 的相反数为a -,绝对值a ,若0≠a ,它的倒数为a
1。
4、数轴上的点和实数一一对应。
七、作业
课本P46习题2—8
板书设计:略
学习反思:本节内容并不复杂,大部分同学都能很好的掌握。
很大部分是借助新知识回顾旧内容。