4工程数学
高等工程数学第四版

高等工程数学第四版《高等工程数学第四版》是一本涵盖了高等工程数学基础知识的教材。
工程数学是一门应用数学,它将数学理论与实际工程问题相结合,为工程领域的建模、分析和解决问题提供数学工具和方法。
本教材系统地介绍了高等数学在工程领域的应用,包括微积分、线性代数、常微分方程、概率论与数理统计等内容。
微积分是工程数学的重要基础。
微积分研究的是变化量和变化率,它广泛应用于工程领域中的优化、控制、信号处理等问题。
本教材详细介绍了微积分的基本概念、导数和积分的计算方法,以及微分方程和级数的应用。
线性代数是工程数学中的重要分支。
线性代数研究的是向量空间和线性变换,它在工程领域中广泛应用于矩阵运算、线性方程组的求解、特征值和特征向量的计算等问题。
本教材系统地介绍了线性代数的基本概念、线性方程组的解法、矩阵的特征值和特征向量等内容。
常微分方程是工程数学中的重要工具。
常微分方程研究的是描述变化的函数关系,它在工程领域中广泛应用于系统动力学、电路分析、机械振动等问题。
本教材详细介绍了常微分方程的基本理论、一阶和高阶常微分方程的解法、稳定性和相图等内容。
概率论与数理统计是工程数学中的重要支柱。
概率论研究的是随机事件的概率和规律,数理统计研究的是通过样本数据对总体进行推断和决策。
它们在工程领域中广泛应用于可靠性分析、信号处理、质量控制等问题。
本教材系统地介绍了概率论的基本概念、概率分布、随机变量和随机过程,以及数理统计的基本理论、参数估计和假设检验等内容。
《高等工程数学第四版》全面而深入地介绍了高等数学在工程领域的应用。
它不仅提供了工程数学的基础知识,还通过大量的例题和习题帮助读者巩固理论知识,并培养解决实际工程问题的能力。
这本教材适用于工科专业的大学生和从事工程技术工作的工程师,它不仅可以作为课堂教学的教材,还可以作为工程数学的参考书和工程实践的指导书。
工程数学第四次作业

工程数学第四次作业随着工程的复杂性和综合性日益增长,工程数学成为了工程师必备的重要工具。
本次作业的主题为“线性代数与矩阵运算”。
线性代数是工程数学的一个重要分支,它研究的是向量空间及线性变换。
在工程领域,线性代数被广泛应用于计算机图形学、机器学习、物理建模和经济学等领域。
通过对线性代数的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。
矩阵是线性代数中的一个重要概念,它是向量空间中的一种特殊元素。
矩阵的运算是工程数学中的基本运算之一,它可以表示物体之间的相对位置和运动状态。
在工程中,矩阵被广泛应用于计算机图形学、计算机视觉、机器人学和控制系统等领域。
通过对矩阵的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。
本次作业的任务是完成一份关于线性代数与矩阵运算的试卷。
试卷包括了填空题、选择题和计算题等多种题型,涵盖了线性代数与矩阵运算的基本概念和基本运算。
完成本次作业需要学生掌握线性代数与矩阵运算的基本概念和基本运算,能够灵活运用所学知识解决实际问题。
通过本次作业,学生可以更好地理解和掌握线性代数与矩阵运算的基本概念和基本运算,提高解决实际问题的能力。
本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。
工程数学第四次作业是关于线性代数与矩阵运算的一次重要实践。
通过本次作业,学生可以更好地理解和掌握工程数学的基本概念和基本方法,提高解决实际问题的能力。
本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。
第四次中东战争中东战争是指在中东地区发生的多次军事冲突和战争,其中第四次中东战争是指1973年埃及和叙利亚等国家与以色列之间爆发的一场大规模战争。
这场战争的爆发原因和战场情况以及战争的影响和后果都值得我们深入探讨。
在第四次中东战争爆发前,中东地区已经存在着紧张的政治和军事局势。
以色列和埃及、叙利亚等国家之间长期存在着领土争端和民族矛盾,这是导致战争爆发的重要原因之一。
工程数学(本)形考作业4

工程数学(本)形考作业4工程数学涉及多个数学领域的应用,包括微积分、线性代数、概率统计等。
在工程领域中,数学的应用非常广泛,可以帮助工程师解决实际问题。
在工程数学的形考作业4中,主要涉及了微积分中的极限、导数和积分等概念。
首先,极限是微积分的基础概念之一、在形考作业4中,我们需要求解一些函数的极限,通过分析函数的性质和极限定义,可以求得极限的值。
例如,在求解函数$lim\frac{某^2-1}{某-1}$的极限时,我们可以将其化简成$\frac{(某-1)(某+1)}{某-1}$,然后消去(某-1),得到极限的值为2、通过这样的练习,我们可以加深对极限概念的理解,并掌握求解极限的技巧。
其次,导数也是工程数学中常用的概念。
在形考作业4中,我们需要求解一些函数的导数。
通过求解函数的导数,我们可以求得函数的变化率,并且可以确定函数的最大值、最小值等信息。
例如,在求解函数$f(某)=某^2+某$的导数时,我们可以使用求导法则,得到导数为$f'(某)=2某+1$。
掌握导数的计算方法,可以帮助我们更好地理解函数的变化规律,并且可以在工程实践中进行更精确的分析和计算。
最后,积分也是工程数学中重要的概念之一、在形考作业4中,我们需要求解一些函数的不定积分和定积分。
通过求解函数的积分,我们可以得到函数的原函数,并且可以计算函数所代表的面积或者体积。
例如,在求解函数$f(某)=2某$的不定积分时,我们可以得到原函数为$F(某)=某^2$,并且可以计算函数在某一区间上的定积分。
掌握积分的方法,可以帮助我们求解实际问题中的面积、体积等参数,并且可以进一步推导和分析函数的性质。
综上所述,工程数学形考作业4涉及的概念包括极限、导数和积分等,通过求解函数的极限、导数和积分,我们可以加深对这些概念的理解,并且可以掌握求解极限、导数和积分的方法和技巧。
这对于工程师来说,是非常重要的,因为数学在工程领域中的应用非常广泛,可以帮助我们解决各种实际问题。
高等工程数学4近世代数

高等工程数学多元一次方程组的解法近世代数仝辉*******************一元二次方程的解法一元三次,四次方程的解法三次和四次方程把数学家们难住了一千多年,直到塔塔利亚和卡抽象代数的萌芽阿贝尔伽罗华代数结构部分(1811.10-1832.5)第4章知识准备二元运算的定义及其实例二元运算的实例(续)二元运算的表示5) 设M(R) 表示所有n 阶(n≥2) 实矩阵的集二元运算的表示(续)运算表的形式运算表的实例(续)二元运算的性质消去律二元运算的性质(续)实例分析二元运算的特异元素单位元二元运算的特异元素(续)二元运算的特异元素(续)实例分析例题分析∘例题分析(续)代数系统定义与实例实例同态映射的定义例:设有两个代数系统(Z,+ )(A,⋅),这里A={1,−1}, 运算⋅为数定义: (1)如果集合S 到T 的同态映射f 是S →T 的单上述例子说明(0,+∞)与(-∞,+∞)中点的个数“一样多”例:给定两个代数系统(R,+)和(R+,⋅),这里“⋅,+”分类似的,[0,1]中与[0,2]中的点的个数“一样多”有一一映射。
直观上:同态的性质第5章群5.1 群的定义及性质群的定义定义1 设G是非空集合,∘为G上的二元运算. 如果Klein四元群二、群中的相关概念实例二、群中的相关概念二、群中的相关概念三、群的性质---幂运算规则三、群的性质---群方程存在唯一解三、群的性质---消去律三、群的性质---运算表排列规则第5章群子群子群的定义子群判定定理重要子群实例重要子群(续)第5章群循环群循环群的定义循环群的分类循环群的生成元生成元的实例循环群的子群子群的实例第5章群置换群n元置换的定义定义设S = { 1, 2, …, n }, S上的双射函数σ:S→S n元置换的表示k 阶轮换与对换n元置换分解为轮换分解实例例设S = { 1, 2, …, 8 },n元置换的乘法与求逆n元置换群及其实例考虑所有的n 元置换构成的集合S 的运算表S3的子群S3陪集陪集的性质Lagrange定理的引理Lagrange定理及其推论Lagrange定理的应用共轭关系与共轭类例1 6阶群必含3阶元.正规子群商群定义商群的性质群的同态与同构同态映射的性质第6章环与域环的定义环的实例环中的相关概念特殊的环零因子的定义与存在条件特殊环的实例例题判断下列集合和给定运算是否构成环、整环和域.。
《工程数学》课程标准

《工程数学》课程标准一、课程说明《工程数学》课程标准课程编码〔35213〕承担单位〔建筑工程学院〕制定〔〕制定日期〔2022.10.08〕审核〔建筑工程学院专业指导委员会〕审核日期〔2022.10.23〕批准〔〕批准日期〔2022.10.23〕(1)课程性质:本门课程是建筑工程技术专业的专业基础课程(必修课)。
(2)课程任务:主要针对建筑工程技术的施工员、测量员、线路工等岗位开设,主要任务是培养学生在建筑工程技术岗位的逻辑思维和精准运算能力,要求学生掌握工程数学方面的基本技能。
(3)课程衔接:在课程设置上,后续课程有应用力学、工程测量等。
二、学习目标工程数学是高职高专理工综合类各专业学生必修的基础理论课程。
通过对这门课程的学习,使学生对工程数学的基本概念、理论和方法有深入的了解,不断提升逻辑思维能力。
学好这门课程不仅对学习后继课程是必不可少的,而且对掌握现代科学理论并应用于实际也是非常必要的。
通过工程数学的教学,我们要达到两个目标,一是使学生获得工程数学的基本概念、基本理论、基本方法和基本运算技能,为今后学习各类后续课程和进一步扩大数学知识面奠定必要的和坚实的数学基础;二是努力培养学生的数学素养,即通过各个教学环节,逐步培养学生的辩证唯物主义思想,进行抽象思维和逻辑思维的思维能力,综合运用所学知识分析和解决实际问题的能力,初步抽象概括问题的能力,较强的自主学习能力,并逐步培养学生的创新精神和创新能力三、课程设计本课程在课程设计上,以提高高职高专“工程数学”课程的教育教学质量为指导思想,以高职高专教育的总目标“培养高素质应用型人才”为出发点,遵循“加强基础、培养能力、突出应用”的原则,力求实现基础性、实用性、前瞻性的和谐统一。
在教学中,既注重从实际问题引入基本概念,揭示概念的实质,又注重基本概念的几何意义。
物理背景、经济意义以及实际应用价值。
针对工程数学的特点,本课程以“研究式学习”理念为指导,以具体的每一阶段学习目标为载体,在学习的各个阶段提出适当的研究问题,在学习过程中为学生提供研究性学习的平台,为学生创造能亲临体验学习情境。
工程数知识点总结

工程数知识点总结工程数学是工程领域中的一门基础学科,它是数学的一个分支,旨在为工程问题建立数学模型,并使用数学方法解决工程中的问题。
工程数学的研究内容非常广泛,包括微积分、线性代数、概率统计、离散数学等多个方面的知识。
本文将从工程数学的基本概念和基本原理出发,系统地介绍工程数学的各个知识点。
一、微积分微积分是工程数学中最重要的一个分支,它是研究函数的极限、导数、积分和级数的数学方法。
在工程领域中,微积分被广泛应用于求解各种问题,包括曲线的长度、曲线下面积、物体的体积和表面积、动力学分析、电路分析等。
因此,对微积分的学习是工程学生的必修课程。
1.1 函数的极限与连续性几乎所有的微积分知识都是建立在函数的极限和连续性基础上的。
函数的极限是描述函数在某一点附近的变化趋势,它是微积分的基本概念。
函数在某一点处的极限存在的充分必要条件是函数在该点处连续。
因此,函数的连续性也是微积分中的重要内容。
1.2 导数与微分导数是描述函数在某一点处的变化率,它是微积分的重要概念。
在工程中,导数被广泛应用于求解问题的最优解,如最小化成本、最大化收益等。
微分是导数的一种近似表达,它被应用在函数近似和微分方程的求解中。
1.3 积分与不定积分积分是描述函数下方的面积,它是微积分的另一重要概念。
在工程领域中,积分被广泛应用于求解曲线下的面积、物体的体积和表面积等。
不定积分是积分的一种形式,它是积分的反运算,常用于求解不定积分方程。
1.4 微分方程微分方程是描述自变量和因变量及其导数之间关系的方程,它是微积分在实际问题中的应用。
在工程领域中,微分方程被广泛应用于描述动力学系统、电路系统、热传导系统、弹性系统等,因此它是工程数学中非常重要的知识点。
二、线性代数线性代数是研究向量空间和线性变换的数学方法,它是工程数学中的另一个重要分支。
在工程问题中,线性代数被广泛应用于解决线性方程组、矩阵运算、特征值和特征向量等问题,因此对线性代数的学习也是工程学生的必修课程。
工程数学-积分变换-第四版-课后习题答案精选全文
可编辑修改精选全文完整版工程数学 积分变换(第四版 张元林 编)课后习题答案编辑者:余小龙第一章:Fourier 变换习题一解答1、证:利用Fourier 积分变换的复数形式,有⎰⎰+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)( ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=ωτωτωττπωd e d j f t j )sin )(cos (121[]⎰+∞∞-+-=ωωωωωd t j t jb a )sin (cos )()(21 由于)()(ωω-=a a , )()(ωω--=b b , 所以⎰⎰+∞∞-+∞∞-+=ωωωωωωtd b td a t f sin )(21cos )(21)(⎰⎰+∞+∞+=ωωωωωωtd b td a sin )(cos )(0。
注:本题也可以由Fourier 积分公式的三角形式得到证明。
2、解:(1)此题亦可写成⎩⎨⎧-=.0,1)(2t t f .1;1>≤t t 它是一个连续的偶函数,利用Euler 公式和分部积分法,由Fourier 积分公式的复数形式,有 ⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-⎥⎦⎤⎢⎣⎡-=ωτωττπωd e d t j 102cos )1(1ωωωττωωτωωττωωτπωd e tj 1232sin sin 2cos 2sin 1⎰∞+∞-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--==ωωωωωπωd e t j ⎰+∞∞--3)cos (sin 21=⎰+∞∞-+-ωωωωωωωπd t j t )sin (cos cos sin 23ωωωωωωπtd cos cos sin 403⎰+∞-= (2)函数)(t f 为一连续函数,用类似于(1)的方法,有⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-+∞--⎥⎦⎤⎢⎣⎡=ωττπωωττd e d e e t j j 02sin 21 ⎰⎰+∞∞-+∞+-⎥⎦⎤⎢⎣⎡=ωττπωτωd e d e t j j 0)1(2sin 21 {}()()⎰∞+∞-+∞+-⎥⎥⎦⎤⎢⎢⎣⎡++--+-=ωωττωπωτωd e j j e tj j 02)1(412cos 22sin )1(21 ⎰+∞∞-+-=ωωωπωd e j tj 252212[][]⎰∞+∞-+--+---=ωωωωωωωωωπd t j t j j j )sin (cos 2)5(2)5(2)5(1222⎰∞+∞-+---++-=ωωωωωωωωωωωπd tj t j t t 222224)5(cos 2sin )5(sin 2cos )5(1⎰∞+∞-+-+-=ωωωωωωωπd tt 432625sin 2cos )5(2(3)可以看出)(t f 为奇函数,且-1,0,1为其间断点。
工程数学复变函数第四版完整答案.pdf
!第一章复数与复变函数内容提要!一!复数及其代数运算和几何表示!"复数的概念定义!设!!"都是实数!我们把形如##!$$"的表达式称为复数%其中$称为虚数单位!且具有性质$&#’!!!和"分别称为复数#的实部和虚部!记为!#()"##!"#*+"##%"!#当!#,!"",时!##$"称为纯虚数%"&#当"#,时!##!$,$$视为实数!%"-#设#!#!!$$"!!#&#!&$$"&!则#!##&!当且仅当!!#!&!"!#"&%".#当!#"#,时!称##,%&"复数的运算"!#加"减#法两个复数的加"减#法!定义为实部与实部相加"减#及虚部与虚部相加"减#!即$!$!!复变函数同步辅导及习题全解"!!$$"!#/"!&$$"&##"!!/!&#$$""!/"&#%"&#乘法两个复数相乘按多项式乘法法则相乘并注意$&#’!!即"!!$$"!#$"!&$$"&##"!!!&’"!"&#$$"!!"&$!&"!#%"-#除法若#&",!将满足#&$###!的复数#定义为#!除以#&的商!记为###!#&!即#!#&#!!$$"!!&$$"&#!!!&$"!"&!&&$"&&$$!&"!’!!"&!&&$"&&%".#复数的共轭及性质设##!$$"!称!’$"为复数#的共轭复数!记为#或##!即##!’$"!它有如下性质%!#!/#&##!/#&!#!#&##!!#&!#!#"#&##!#&"#&",#&"###!###’()"##(&$’*+"##(&&#()"###!&"#$##!*+"###!&$"#’##%-"复数的几种表示方法"!#复数的坐标表示每一个复数##!$$"确定平面上一个坐标为"!!"#的点!反之亦然!这意味着复数集与平面上的点之间存在一一对应%由于这个特殊的一一对应存在!我们常把以!为实轴!"为虚轴的平面称之为复平面%"!!"#为复数##!$$"的坐标表示形式!称为点#%"&#复数的向量表示记复数##!$$"在平面上确定的点为&!原点为’%设复数#对应向量$%’&%这也是一个特别的一一对应%为此我们称向量$%’&为复数#的向量表示式%$"$第一章!复数与复变函数向量$%’&的长度称为复数#的模或绝对值!记为&#&!我们有结论%!!###&#&&#&#&&%当#",时!以正实轴为始边!向量$%’&为终边所确定的角!称为复数#的辐角!记为!!012##!%当##,时!辐角不确定%012#是一个多值函数%称满足条件’$’!($的!为幅角的主值!记为312#%从而有!!012##312#$&($!!"(#,!/!!/&!)#利用复数的向量表示法对任意复数#!!#&!三角不等式!!&#!$#&&(&#!&$&#&&的意义为三角形的一边不大于两边之和!不等式!!&#!’#&&)&&#!&’&#&&&表示三角形的一边不小于两边之差的绝对值% "-#复数的三角表示设#",!)是#的模!!是#的任意一个辐角%则##)"456!$$678!#%".#复数的指数表示在三角表式示中!利用欧拉公式%)$!#456!$$678!可得##))$!!称为复数#的指数表示式%以上复数的不同表示法仅是形式上的差异!它们各有其特点%复数及其运算的几何解释可以从向量表示法得到!复数运算中模与幅角的变化规律可以由三角或指数表示法得到%."复数的乘幂与方根"!#积与商设#!#)!)$!!!#&#)&)$!&则$#$!!复变函数同步辅导及习题全解#!#&#)!)&)$"!!$!&#!#!#&#)!)&)$"!!’!&#!")&",#%即!&#!#&&#&#!&&#&&!#!#&#&#!&&#&&!"#&",#&"012"#!#&##012#!$012#&!012#!#"##!’012#&%注意%"%#正确理解等式"的含义&"&#乘积与商的几何解释%"&#乘幂设##))$!!则#*#)*)7*!#)*"456*!$$678*!#%棣莫弗"9):;5$+1)#公式%"456!$$678!#*#456*!$$678*!及其应用%"-#方根设##))$!!则*!##*!))$!$&($*#*!)"456!$&($*$$678!$&($*#!"(#,!!!&!)!*’!#%注意%*!#的*值性及几何解释%二!复变函数及其极限与连续!%复变函数的概念复变函数是高等数学中一元实变函数概念的推广!二者定义的表述形式几乎完全一样!只要将定义中的*实数"或实数集#+换为*复数"或复数集#+就行了%但对下面几点应多加注意%"!#实变函数是单值函数!而复变函数有单值函数和多值函数之分%"&#复变函数,#-"##是从#平面上的点集.到,平面上的点集.#的一个映射!因此!它不但可以把#平面上的点映射"或变换#为,平面上的点!而且可以把#平面上的曲线或图形映射为,平面上的曲线或图形!实现两个不同复平面上的图形之间的有趣的变换!为简化或研究某些问题提$$$第一章!复数与复变函数供了可能%"-#由于一个复变函数,#-"##对应着两个二元实变函数%/#/"!!"#!!+#+"!!"#!所以!可以将对复变函数的研究转化为对两个二元实变函数的研究%这是研究复变函数的常用思想方式之一%&"平面点集"!##,的"’邻域%满足关系&#’#,&’"的点#的全体称为点#,的一个"’邻域!而满足,’&#’#,&’"的点#的全体称为点#,的一个去心"’邻域%"&#内点%设.是一平面点集!#,*.!若存在#,的某个邻域也包含于.!则称#,为.的内点%"-#开集%若.的每个点都是内点!则称.为开集%".#连通集%对.+!"即复平面#!.非空!若存在一对,中不交的开集.!!.&!满足.!-."#!.&-."#!且.+".!..&#则称.为连通集%"<#区域%连通的开集叫区域%应该注意的是!可以证明!对于开集!连通性等价于另一种更直观的属性!即道路连通!也即.内任意两点都可以用一条.中的折线连接%"=#边界%若#,点的任意一个邻域内既有区域.中的点!又有不属于.中的点!则#,称为区域.的一个边界点%由.的全体边界点组成的集合称为.的边界%">#闭区域%区域.及其边界一起构成闭区域!记为/.%"#简单闭曲线%设曲线0%###"1##!"1#$$""1#!2(1(3%当!"1#与""1#连续时!称0为连续曲线%对1!!1&*’2!3#!当1!"1&而有#"1!###"1&#时!点#"1!#称为曲线0的重点%没有重点的连续曲线0!称为简单"或@51A 38#曲线%如果简单曲线0的两个端点重合!则0称为简单闭曲线%由以上定义知!简单曲线自身不相交!简单闭曲线则只有起点与终点重合%"B #光滑曲线%曲线###"1##!"1#$$""1#!2(1(3!当!4"1#$%$!!复变函数同步辅导及习题全解与"4"1#连续且’!4"1#(&$’"4"1#(&",时!称为光滑曲线!由几条光滑曲线依次连接而成的曲线!称为按段光滑曲线%"!,#单连通域%若属于区域.的任何简单闭曲线0的内部也属于.!则称.为单连通域%否则称为多连通域%-"复变函数的极限与连续性"!#定义%设函数,#-"##在#,点的去心领域,’&#’#,&’$内有定义!若任给%0,!存在"0,",’"($#!当,’&#’#,&’"时!有&-"##’5&’%成立!则称常数5为-"##当#趋于#,时的极限!记为%C 7+#$#,-"###5%若-"##在#,点有定义!且-"#,##5!则称-"##在点#,连续%若-"##在区域.内每一点都连续!我们称-"##在.内连续%"&#设-"###/"!!"#$$+"!!"#!5#/,$$+,!#,#!,$$",!那么C 7+#$#,-"###51C 7+!$!,"$",/"!!"##/,C 7+!$!,"$",+"!!"##+234,!由此可见!复变函数极限的定义虽在形式上与一元实函数的极限定义相似!但实质上却相当于二元实函数的极限%这导致了第二章用极限定义的复变函数的导数的概念!较之一元实变函数的导数概念!其要求要苛刻得多%"-#如果C 7+#$#,-"###5!C 7+#$#,6"###7!那么C 7+#$#,’-"##/6"##(#5/7!C 7+#$#,’-"##$6"##(#57!C 7+#$#,-"##6"###57!"7",#%$&$第一章!复数与复变函数".#由定义及式!易得连续的充要条件%C 7+#$#,-"###-"#,#1C 7+!$!,"$",/"!!"##/"!,!",#C 7+!$!,"$",+"!!"##+"!,!",234#两个连续函数8#6"##!,#-"8#复合所得的函数,#-’6"##(仍是连续函数%典型例题与解题技巧"例!#!将复数##"!-$$#"&’&$#"!-’$#"&$&$#化为三角形式与指数形式%解题分析!将一个复数#化为三角形式与指数形式的关键在于求出该复数的模与辐角的主值%通常的方式是先将#化成代数形式##!$$"!再利用&#&#!&$"!&与反正切公式分别求出它的模与主辐角%本题中由于#的分子与分母互为共轭复数!而复数与其共轭复数的模相等!因此!容易利用复数商的模公式求出&#&%至于主辐角除可反正切公式求得外%也可以利用关于乘积与商的辐角公式来求%下面给出两种解法!便于读者比较%解题过程!将#的分子与分母同乘以"!-$$#"&’&$#!得##"!-$$#&&!-$$&&$"&’&$#&&&’&$&&#"!&$!-&$#"’$##!-&’!&$!所以&#&#!!312##314D 2"’!--##’$=%从而得到#的三角形式与指数形式%##456$=’$678$=#)’$=$%另一种解法是!由于分子与分母恰为一对共轭复数!故其模相同!于是$’$!!复变函数同步辅导及习题全解&#&#&"!-$$#"&’&$#&&"!-’$#"&’&$#&#!012##&’012"!-$7#$012"&’&$#(#’$=$&E $%"例&#!设#!!#&为复平面上任意两点!证明不等式!!&#!’#&&)&#!&’&#&&%分析!这个不等式的几何意义为以#!!#&!#!’#&为边的三角形!一边的长度"&#!’#&&#不小于两边的长度之差的绝对值"&&#!&’&#&&&#%证明这个不等式可利用书中已证的三角不等式%证明!&#!$#&&(&#!&$&#&&F &#!&#&#!’#&$#&&(&#!’#&&$&#&&G &#!&’&#&&(&#!’#&&!F &#&&#&#&’#!$#!&(&#&’#!&$&#!&G &#&&’&#!&(&#&’#!&#&#!’#&&"利用!与"得&#!’#&&)&&#!&’&#&&&%"例-#!设复数’满足&’&’!!试证#’&!’5&##!!当&#&#!’!!当&#&’!0!!当&#&0234!分析!比较复数#!#&的模#!#&与!的大小等价于比较#!#&&与!的大小!也相当于比较&#!&&与&#&&&的大小%此时常用公式#&###!#!/#&&##!&$#&&/&()"#!#&#以及三角不等式%证明!由等式#’&&##&$&&’&()"5&##!’5&#&#!$&&#&’&()"5&##可知#’&&’!’5&#&#"#&’!#"!’&&#$($第一章!复数与复变函数注意到&’!!便有#’&&’!’5&#&#,!当##!’,!当#’!0,!当#0234!从而#’&!’5&#&##’&&!’5&#&#!!当##!’!!当#’!0!!当#0234!由此即得要证明的结论%"例.#!函数,#!#$!将#平面上的下列曲线变成,平面上的什么曲线,"!#!&$"&#!&!"&#"#!$!&!"-#"#!%解题分析!解此题的要点是利用公式!#!&"#$##!!!"#!&$"#’##及题中映射!!,#!#$!!!##!,’!%解题过程!令,#/$$+"!#由!&$"&#!有!!!."#$##&’!."#’##&#!即!!###!!!!,"#’!!’"#’!#!!!"!’,#$"!’’#’’#!!!"!’,#"!’’##,’!!,$’#!$)$!!复变函数同步辅导及习题全解即!!/#!&即圆!&$"&#!映成了直线/#!&%"&#由"#!$!知!!!&$"#’###!&"#$##$!代入##!,’!得!&$!,’!,3467’#!&!,$!,"#’&$!两边乘以&7,,得,’,#$",$,#由前设,/#’7+知,’,#’&$+,$,#&/代入上式则有/#’+即直线"#!$!被映成了直线/#’+%"-#由"#!知!!!&$"#’###!!!#’##&$!!!,’!’!,"#’!#&$!!!,’!,#&$!!,’,#&7,,即!!&$"/&$+&##’&$+$*!$!!/&$+&$+#,所以直线"#!映成了圆/&$+&$+#,%"例<#!判断下列函数在给定点处的极限是否存在%若存在!试求出极限的值%"!#-"####()"###!!#$,&"&#-"###()"#&##&!!#$,&"-#-"####’$#"#&$!#!!#$$%解题分析!判断一个复变函数在给定点处的极限是否存在有三种方法%一是用函数极限的定义!类似于实变函数!定义多用于验证某函数的极限等式!本书对这处方法不作更多的要求%但是!读者应当会用极限定义来判定某函数的极限不存在&第二种方法是利用教材第&=页中的定理一!讨论函数的实部/#/"!!"#与+#+"!!"#的极限是否存在!这是判断极限是否存在的常用方法&第三种方法是利用教材中第&>页的定理二!直接利用极限的有理运算法则求函数的极限%与实变函数一样!应用时必须满足这些法则成立的条件%下面给出的解法都基于以上三种方法!其中有的小题给出了多种解法%解题过程!"!#由于-"####()"###(#!所以!对于任给的%0,!取9#%!则当,’&#&’9时!恒有!!-"##’,#-"##(#’%根据极限定义!当#$,时!-"##的极限存在!并且其值为,%"&#令##!$$"!则-"###!&’"&!&$"&!从而有/"!!"##!&’"&!&$"&!!+"!!"##,%$!!$令#沿直线"#(!趋于,!则C 7+"!!"#$",!,#/"!!"##C 7+"!$,!&’(&!&!&$(&!&#!’(&!$(&%由于它随(的不同而不同!因此!当"!!"#$",!,#时/"!!"#的极限不存在!故#$,时!-"##的极限不存在%"-#由于-"##的分子与分母中含有极限为零的因子!消去后得-"####’$#"#&$!##!#"#$$#"#"$#!所以C 7+#$7-"###C 7+#$7!#"#$$##’!&%历年考研真题评析!"题!#!把复数##!$678&$$456&!’$’&’’$&化为三角表示式与指数表示式!并求#的辐角的主值%"山东大学&,,<年#解题分析!本题主要考察复数的三角表示法和指数表示法!以及辐角和主值的求法%解题过程!##!$678&$$456&#!$456$&’"#&$$678$&’"#&#&456&$.’&"#&$$&678$.’&"#&456$.’&"#&#&456$.’&"#&456$.’&"#&$$678$.’&"#’(&所以’$’&’’$&!所以$&’$.’&&’-$.%因此456$.’&"#&’,故$"!$)#&#&#’&456$.’&"#&%由于!!’456$.’&"#Lj$$$.’&"#Lj<$.’&"#&!!!’678$.’&"#ʦ$$$.’&"#ʦ<$.’&"#&!从而得#的三角表示式%##’&456$.’&"#&456<$.’’"#&$$678<$.’&"#’(&!及指数表示式%##’&456$.’&"#&)$"<$.’&&#%注意!这里的辐角!#<$.’’&不是主值!因为-$&’<$.’&&’>.$!但它只能与主值相差一个&$的整数倍!从上式容易看出!如果不等式的每项各加"’&$#!得’$&’’-$.’&&’’$.%这个’-$.’&&就符合关于主值的要求了%因此312##’-$.$’"#&%如果!取主值!那么#的三角表示式与指数表示式分别为##’&456$.’&"#&456-$.$&"#&’$678-$.$&"#’(&!##’&456$.’&"#&)’$"-$.$&&#%"题&#!设*为自然数!证明等式!$678!$$456!!$678!’$456"#!*#456*$&’"#!$$678*$&’"#!%$#!$"北京大学&,,<年#分析!上面涉及到复数*次幂的等式!通常需要先将复数化为三角形式!然后再用9):5$H 1)公式"456($$678(#*#456*($$678*(证明%证明!令!#$&’(!可知!$678!$$456!!$678!’$456!#!$456($$678(!$456(’$678(#&456&(&$&$678(&456(&&456&(&’&$678(&456(Lj(&$$678(&456(&’$678(Lj(&$$678("#&Lj($$678(!故!!!$678!$$456!!$678!’$456"#!*#456*($$678*(#456*$&’"#!$$678*$&’"#!%"题-#!求满足关系式456!’)’-456!"’$&’!’$&#的点##)"456!$$678!#的集合.%若.为一区域!则指明它是单连通域还是多连通域%"中山大学&,,=年#解题分析!此题考察知识点*单连通域+和*多连通域+%解题过程!由##)"456!$$678!#!’$&’!’$&!可知)#!&$"!&!456!#!!&$"!&于是所给的关系式456!’)’-456!变为$$!$!!&$"!&’!&$"!&’-!!&$"!&或!’!&$"&’-!于是可见此区域是单连通的%"题.#!在映射’##&下!求下列平面点集在’平面上的象%"!#线段,’)’&!!#$.&"&#双曲线!&’"&#.&"-#扇形区域,’!’$.!,’)’&%"山东大学&,,<年#解题分析!此题是关于映射的复习%解题过程!"!#设##))$(!,#$)$(!则$#)&!(#&!!故线段,’)’&!!#$.映射为,’$’.!(#$&!也是线段’见图!’!"3#(%图!’!"3#"&#设##!$$"!,#/$$+!则#&#!&’"&$$&!"故/#!&’"&!+#&!"所以!&’"&#.1/#.!为平行于+轴的直线’见图!’!"I #(%"-#设##))$!!,#$)$(!则$#)&!(#&!$%!$图!’!"I#故扇形域,’!’$.!,’)’&映射为,’(’$&!,’$’.!也是扇形域’见图!’!"4#(%图!’!"4#"题<#!试证函数-"###!&$##’#"##当#$,时的极限不存在%"天津大学&,,<年#分析!这又是一道关于复变函数的极限问题%证明!-"###!&$$#&’#’&###"#$##"#’##&$#&#&()"##$&$*+"##&$#&#&()"##*+"###&令##!$$"!则有-"###&!"!&$"&%由此得/"!!"##&!"!&$"&!!+"!!"##,$&!$让#沿直线"#:!趋于零!我们有C 7+!$,"#:!$,/"!!"##C 7+!$,"#:!$,&!"!&$"&#C 7+!$,&:!&!&$:&!&#&:!$:&%可见沿不同斜率的直线!/"!!"#趋于不同的值!所以C 7+!$,"$,/"!!"#不存在%虽然C 7+!$,"$,+"!!"##,!但根据前述结论!C 7+!$#,-"##不存在%课后习题全解8!"求下列复数#的实部和虚部-共轭复数-模与辐角%!#!-$&$&&#!$’-$!’$&-#"-$.$#"&’<$#&$&.#$’.$&!$$%解!!#!-$&$#-’&$"-$&$#"-’&$##-’&$!-#-!-’&!-$()"###-!-&*+"###’&!-&##-!-$&!-$&&#&#-"#!-&$’&"#!-!&#!!!-&312##’314D 2&-&012##’314D 2&-$&($"(#,!/!!/&!)#%&#!$’-$!’$#’$’-$"!$$#"!’$#"!$$##’$’-$’-&#-&’<&$()"###-&&*+"###’<&&##-&$<&7&&#&#"#-&&$’<"#&!&#!-.&&312##’314D 2<-&012##’314D 2<-$&($"(#,!/!!/&!)#%-#"-$.$#"&’<$#&$#&=’>$&$#’>&’!-$$’!$()"###’>&&*+"###’!-&##’>&$!-$&&#&#’"#>&&$!-!&#<&!&B &312##314D 2&=>’$&012##314D 2&=>’$$&($"(#,!/!!/&!)#%.#$’.$&!$$#$.$.’.$.J <$!$$#!’.$$$#!’-$()"###!&*+"###’-&##!$-$&&#&#!&$"’-#!&#!!,&312##’314D 2-&012##’314D 2-$&($"(#,!/!!/&!)#%8&"当!!"等于什么实数时!等式!$!$$""’-#<$-$#!$$成立,解!由所给等式可得!$!$$""’-##"!$$#"<$-$##&$?$利用复数相等的概念!$!#&".’-#?9!#!"#!!.!即!#!!"#!!时等式成立%8-"证明虚单位$有这样的性质%’$#$’!#$%证明!因’$#’$$$$#’’$&$#!$#$’!!$#’$!所以’$#$’!#$%8."证明%!#&#&&###&&##!/#&##!/#&&-##!#&##!!#&&.##!#"#&##!#&!"#&",#&<####&=#()"###!&"#$##!*+"###!&$"#’##%证明!!#设##!$$"!则&#&&#!&$"&!###"!$$"#"!’$"##!&$"&!从而有&#&&###%$(!$&#设#!#!!$$"!!#&#!&$$"&!则#!/#&#"!!$$"!#/"!&$$"&##"!!/!&#$""!/"&#$#"!!/!&#’""!/"&#$#!/#&#"!!$$"!#/"!&$$"&##"!!’$"!#/"!&’$"&##"!!/!&#’""!/"&#$从而有!#!/#&##!/#&%-#设#!#!!$$"!!#&#!&$$"&!则#!#&#"!!$$"!#"!&$$"&##"!!!&’"!"&#$$"!!"&$!&"!##"!!!&’"!"&#’$"!!"&$!&"!##!!#&#!!$$"!!&$$"&#"!!’$"!#"!&’$"&##"!!!&’"!"&#’$"!!"&$!&"!#从而有!#!#&##!!#&%.#由#!#"#&#!!$$"!!&$$""#&#"!!!&$"!"&#$"!&"!’!!"&#$!&&$"&&#"!!!&$"!"&#’"!&"!’!!"&#$!&&$"&&#!#&#!!’$"!!&’$"&#"!!’$"!#"!&$$"&#!&&$"&&#"!!!&$"!"&#’"!&"!’!!"&#$!&&$"&&可知!#!#"#&##!#&!"#&",#%<#设##!$$"!则##!’$"!##"###!$$"##%即!###%=#设##!$$"!则##!’$"!从而!!&"#$###!&"!$$"$!’$"##!#()"##!!&$"#’###!&$"!$$"’!$$"##!&$"&$"##"#*+"##$)!$结论得证%:<"对任何#!#&#&#&&是否成立,如果是!就给出证明!如果不是!对哪些#值才成立,分析!考查复数性质%解!对于任何复数##!$$"!易知#&#!&’"&$&!"$!&#&&#!&$"&%于是!由#&#&#&&可得!&’"&$&!"$#!&$"&比较两边的实虚部!等价地有&!"#,!!&’"&#!&$"&9"&#,即"#,%故对任何虚数#!#&#&#&&不成立!只有当#为实数"虚部为零#时!等式#&#&#&&才成立%:="当&#&(!时!求&#*$2&的最大值!其中*为正整数!2为复数%分析!主要考查最大值问题%解!由三角不等式及&#&(!可知&#*$2&(&#&*$&2&(!$&2&而且当#,#)73)62*时!&#*,$2&#&)73)62$&2&)73)62&#!$&2&!故其最大值为!$&2&%:>"判定下列命题的真假%!#若;为实常数!则;#;&&#若#为纯虚数!则#"#&-#7/&7&.#零的辐角是零&<#仅存在一个数#!使得!##’#&=#&#!$#&&#&#!&$&#&&&>#!$##$#%分析!一些命题的真假!要求有比较好的掌握基础知识%解!!#真&&#真&-#假"复数不能比较大小#&.#假"复数零的辐角是$*"$不确定的#&<#假"由!##’#得#&#’!!从而#可取/$两个值#&=#一般不真"由三角不等式&#!$#&&(&#!&$&#&&!等号仅当312#!’312#&#&()"(#,!/!!/&!)#时成立#&>#真%8"将下列复数化为三角表示式和指数表示式%!#$&&#’!&-#!$$!-&.#!’456($$678(!",((($#&<#&$’!$$&=#"456<($$678<(#&"456-(’$678-(#-%解!!#$#456$&$$678$&!"三角表示式#$#)$$&!"指数表示式#&#’!#456$$$678$#)$$-#&!$$!-&#!$"!-#!&#&!312"!!$-$##314D 2!-!#$-!故!$$!-#&"456$-$$678$-#"三角表示式#!$$!-#&)$-$!"指数表示式#.#&!’456($$678(&#"!’456(#&$678&!(#&’&456!(#&678(&"注意,((($#!312"!’456($$678(##314D 2678(!’456(#314D 2&678(&456(&&678&(ĺD 2"45D (&##314D 2"D 2$’(&##$’(&!故!’456($$678(#&678(&"456$’(&$$678$’(&#!"三角表示$!"$式#!’456($$678(#&678(&)$$’(&!"指数表示式#<#&$’!$$#&$"’!’$#"’!$$#"’!’$##&’&$&#!’$!其模为!&!其辐角312&$’!$$#312"!’$##314D 2’!"#!#’$.!故&$’!$$!#&456"’$.#$$678"’$.’(#!&"456$.’$678$.#"三角表示式#!&$’!$$!#&)"’$.#$"指数表示式#=#"456<($$678<(#&"456-(’$678-(#-#")$<(#&")’-$(#-#)$!,()’$B (#)$!B ("指数式##456"!B (#$$678"!B (#!"三角式#8B"将下列坐标变换公式写成复数形式%!#平移公式%!#!!$2!!"#"!$3!.&&#旋转公式%!#!!456&’"!678&!"#!!678&$"!456&.%解!!#令##!$$"!#!#!!$$"!!;!#2!$$3!!则平移公式的复数形式为###!$;!%&#令##!$$"!#!#!!$$"!!;#456&$7678&!;又可写成;#)$’!从而旋转公式!#!!456&’"!678&"#!!678&$"!456.&可写成!!##"!!456&’"!678&#$$"!!678&$"!456&##"!!$$"!#"456&$7678&###!)$&8!,"一个复数乘以’7!它的模与辐角有何改变,解!由于复数##&#&)7312#!’7#)’$&7!所以复数#乘以’7为’7##$""$&#&)7312#%)’$&7#&#&)7"312#’$&#!即模不变!辐角减小$&%8!!"证明%&#!$#&&&$&#!’#&&&#&"&#!&&$&#&&&#!并说明其几何意义%证明!&#!$#&&&$&#!’#&&&#"#!$#&#"#!$#&#$"#!’#&#"#!’#&##"#!$#&#"#!$#&#$"#!’#&#"#!’#&##&#!&&$#!#&$#&#!$&#&&&!$&#!&&’#!#&’#&#!$&#&&&#&"&#!&&$&#&&&#几何意义为%以#!!#&为边构成的平行四边形的两条对角线长度的平方和等于四边长的平方和%;!&"证明下列各题%!#任何有理分式函数<"###&"##="##可以化为>$$?的形式!其中>与?为具有实系数的!与"的有理分式函数&&#如果<"##为!#中的有理函数!但具有实系数!那么<"###>’$?&-#如果复数2$$3是实系数方程2,#*$2!#*’!$)$2*’!#$2*#,的根!那么2’$3也是它的根%分析!要明确有理分式的形式%证明!!#设##!$$"!&"###&!"!!"#$$&&"!!"#!="###=!"!!"#$$=&"!!"#则&$"!!"#!=$"!!"#"$#!!&#是!!"的实多项式!而且<"###!=&!$=&&’"&!=!$&&=&#$$"’&!=&$&&=!#(令!!>#&!=!$&&=&=&!$=&&!?#’&!=&$&&=!=&!$=&&易知>与?都为具有实系数的!与"的有理分式函数!并$#"$且<"###>$$?%&#如果&"##!="##是实系数多项式!则有关系式&"###&"##!="###="##%事实上!对任一实系数多项式&"###2,#*$2!#*’!$)$2*’!#$2*"2,!2!!)!2*为实数!即2@#2@!"@#,!!!&!)!*##&"###2,#*$2!#*’!$)$2*’!#$2*#2,#*$2!#*’!$)$2*’!#$2*#2,#*$2!#*’!$)$2*’!#$2*#&"##从而<"###&"##="###&"##="###&"##="#"###">$$?##>’$?-#令&"###2,#*$2!#*’!$2!#*’!$)$2*’!#$2*!由&#中的事实有&"###&"##%如果2$$3是所给实系数方程的根!则&"2$$3##,%于是&"2’$3##&"2$$3##&"2$$3##,!这说明2’$3也是它的根%小结!有理分式函数可以化为复数形式!其中虚-实部全为实系数有理分式函数&实系数方程的根的共轭也是根%:!-"如果##)71!证明%!##*$!#*#&456*1&!!&##*’!#*#&$678*1%分析!复数的幂性质要掌握%证明!由##)$1易知#*#")$1#*#)$*1#456*1$$678*1!!#*#)’$*1#456*1’7678*1!所以!##*$!#*#456*1$7678*1$456*1’7678*1#&456*1&##*’!#*#456*1$$678*1’"456*1’$678*1##&$678*18!."求下列各式的值%!#"!-’$#<&&#"!$$#=&$$"$-#=!’!&.#"!’$#!-%解!!#"!-’$#<#&!-&’!&"#’($<#&456’$"#=$$678’$"#’(.0=<#&<456’<$=$$678’<$"#=#-&’!-&’!&"#$!#’!=-’!=$&#"!$$#=!#&456$.$$678$"#’(.=#?456-$&$$678-$"#&#’?$-#由’!#)$$#456$$$678$得=!’!#)$$&($=$#456$$&($=$$678$$&($=!"(#,!!!&!-!.!<#%即=个值分别为!-&$!&$!$!’!-&$!&$!’!-&’!&$!’$!!-&’!&$%.#由!’$!#&456’$"#.$$678’$"#’(.得"!’$#!-#=!&456’$.$&($-$$678’$.$&($3467-"(#,!!!&#即-个值分别为=!&456$!&’$678$"#!&!=!&456>!&$$$678>!&"#$!!=!&456<.$$$678<."#$%:!<"若"!$$#*#"!’$#*!试求*的值%分析!化为三角表示式计算%$%"$解!由"!$$#*#"!’$#*可得!&456$.$$678$"#’(.*!#&456’$.$$678’$"#’(.*&*&456*$.$$678*$"#.#&*&456*$.$$678’*$"#.即有!678*$.#678’*$.#’678*$.!9678*$.#,!*$.#($!*#.(!"(#,!/!!/&!)#%8!="!#求方程#-$?#,的所有根&&#求微分方程"*$?"#,的一般解%解!!#方程#-$?#,等价于#-#’?!其根为##-!’?#-!?"456$$&($-$$678$$&($-#!"(#,!!!&#即!#,!#!$-$!#!#’&!#-!#!’-$为所求的根%&#因微分方程"*$?"#,的特征方程为)-$?#,由!#得其特征值为’&!!!/-$!故方程的通解为"#0!)’&!$)!"0&!456-!$0-!678-!#其中0!!0&!0-为任意常数%:!>"在平面上任意选一点#!然后在复平面上画出下列各点的位置%’#!#!’#!!#!’!#分析!考查复数的基本知识%解!取##!’$得’##’!$$!##!$$!’##’!’$!!##!&$!&$!!##!&’!&$!’!##’!&$!&$各点位置如图!A &"3#所示%一般地!如图!A &"I #所示!’#与#关于原点对称&#与#关于$&"$图!!A &实轴对称&’#与#关于虚轴对称%又由!#######&#&&得!#与#的辐角相同!且!##!&#&!即!#与#是关于单位圆周的对称点%如图!A !"I #中!设&#&’!!则!#在单位圆外!且使,!#和!#共一条射线!而且&#&$!##!%’!#是!#关于原点的对称点%:!?"已知两点#!与#&"或已知三点#!!#&!#-#!问下列各点#位于何处,!###!&"#!$#&#&&###+#!$"!’+##&!其中+为实数&-###!-"#!$#&$#-#%分析!做好图!就能看出来%解!!#设#!#!!$$"!!#&#!&$$"&则##!&"#!$#&##!!$!&&$$"!$"&&位于#!与#&连线的中点%&###+#!$"!’+##&#’+!!$"!’+#!&($$’+"!$"!’+#$’"$"&(!当+为实数时!#位于#!与#&的连线上!其中+#&#’#&&&#!’#&&%特别地!若,(+(!!则#是在以#!!#&为端点的线段上的点%-#再设#-#!-$$"-!则当#!!#&!#-不共线时##!-"#!$#&$#-##!!$!&$!--$$"!$"&$"--位于三角形#!#&#-的重心&若#!!#&!#-共线时!则#在此直线上!物理意义仍是重心所在点%:!B "设#!!#&!#-三点适合条件%#!$#&$#-#,!&#!&#&#&&#&#-&#!%证明%#!!#&!#-是内接于单位圆周&#&#!的一个正三角形的顶点%分析!要掌握三角形的性质%证明!由!!题的结论及题设条件可知&#!$#&&&$&#!’#&&&#&"&#!&&$&#&&&##&"!$!##.&’#-&&$&#!’#&&&#.9&#!’#&&&#-!&#!’#&&!#-类似地&#&’#-&&#&"&#&&&$&#-&&#’&#&$#-&&#.’&’#!&&#-&#!’#-&&#&"&#!&&$&#-&&#’&#!$#-&&#.’&’#&&&#-即&#!’#&&#&#&’#-&#&#!’#-&!#-%#!!#&!#-是内接于单位圆周&#&#!的一个正三角形的顶点%;&,"如果复数#!!#&!#-满足等式#&’#!#-’#!##!’#-#&’#-!证明&#&’#!&#&#-’#!&#&#&’#-&!并说明这些等式的几何意义%分析!思维灵活!掌握各种三角形的性质%$("$。
工程数学形考4
工程数学形考4概述工程数学是工程专业中重要的一门基础课程,通过数学方法来解决工程实际问题。
形考是对学生在一定时间内所学知识进行综合评价的考试形式之一。
本文将介绍工程数学形考4的内容和要求。
考试内容工程数学形考4主要涵盖以下内容:1.偏微分方程:包括一阶和二阶偏微分方程的求解方法,如分离变量法、特征线法等。
2.无穷级数:包括数项级数的概念与性质,收敛判别法等。
3.泰勒级数:包括泰勒级数的定义、常用函数的泰勒展开等。
4.矩阵与线性方程组:包括矩阵的基本概念、矩阵的运算、矩阵的秩等。
5.多元函数极值与条件极值:包括多元函数的极值判定条件、条件极值求解等。
考试要求工程数学形考4对学生有以下要求:1.理解和掌握偏微分方程的求解方法,能够运用分离变量法、特征线法等解决简单的偏微分方程问题。
2.理解和掌握无穷级数的概念与性质,能够应用收敛判别法判断级数的收敛性。
3.理解和掌握泰勒级数的定义及常用函数的泰勒展开,能够计算泰勒级数的收敛域。
4.理解和掌握矩阵的基本概念、矩阵的运算、矩阵的秩等,能够求解线性方程组。
5.理解和掌握多元函数极值与条件极值的判定条件,能够求解多元函数的极值问题。
学习建议为了顺利通过工程数学形考4,学生可以采取以下学习建议:1.阅读教材和课堂笔记,理解课程中的知识点并牢固掌握。
2.完成课后习题,加深对知识点的理解和应用能力。
3.多做一些练习题和模拟题,积累解题经验和技巧。
4.注重理论与实际应用的结合,能够将数学方法应用到实际工程问题中。
考试准备为了更好地准备工程数学形考4,建议学生采取以下步骤:1.复习前几次形考的知识点,确保基础知识掌握扎实。
2.针对本次形考的内容,进行系统的复习和总结。
3.制定学习计划,合理安排学习时间,保证每个知识点都能进行深入理解。
4.找一些相关的练习题进行答题,检查自己的理解程度和解题能力。
5.参加形考前的模拟考试,模拟真实考试环境,提高应试能力。
结语工程数学形考4涵盖了偏微分方程、无穷级数、泰勒级数、矩阵与线性方程组以及多元函数极值与条件极值等内容。
工程数学《复变函数》(第四版)课件 4-4 西安交大
1 1 1 f z 3 z z 1 z 4
在1 z 4内 :
1 1 1, z 4
1 1 z 1 z 1 1 z
1 1 1 1 2 z z z
例3 把 f z z 3e 在 0 z 内展成洛朗级数。
2 3 n z z z z 解 e 1 z 2! 3! n!
1 z
1 1 1 z 1 1 3 2 f z z 3 1 z z 2 3 z 2! z 2! 3! 4! z 3! z 12
1 1 z z 4 dz z 1
解法2(柯西积分公式)
1 z 1z 4 dz dz z z 1z 4 z z 3 C1
C2
1 1 2i 2i z 1 z 4 z z 4 z 0 z 1
(2) 洛朗级数
(3)
1
其中 z 0 及 cn n 0,1,2, 为常数。
规定 当且仅当2、 3收敛, 1收敛.
设2收敛域为: z z0 R2 ;
即为前面讨论的级数;
n
对于(3),
c 1 z z 0 c n z z 0
n
称为 f z 在以 z 0为中心的圆环域 R1 z z0 R2内的洛朗展
开式。 右端级数(洛朗级数)中,正整数次幂部分称为洛朗级数的 解析部分;负整数次幂部分称为洛朗级数的主要部分。
⑵ 洛朗级数是泰勒级数的推广。
当 f z 在 z 0 不解析但在 z 0 的去心邻域内解析时可用洛朗级数 展开,展开式是唯一的,展开时尽量用间接展开法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X) 二、填空题(每空3分,共15分)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。
10.设二维连续型随机变量),(Y X 的联合概率密度函数为其它当0,00),()43(>>⎩⎨⎧=+-y x ke y x f y x ,则系数=k 。
11.求函数tet f β-=)(的傅氏变换 (这里0>β),并由此证明:te d t ββπωωβω-+∞=+⎰2cos 022 12.发报台分别以概率0.6和0.4发出信号“1”和“0”。
由于通讯系统受到干扰,当发出信号“1”时,收报台未必收到信号“1”,而是分别以概率0.8和0.2收到信号“1”和“0”;同时,当发出信号“0”时,收报台分别以概率0.9和0.1收到信号“0”和“1”。
求(1)收报台收到信号“1”的概率;(2)当收报台收到信号“1”时,发报台确是发出信号“1”的概率。
13.设二维随机变量),(Y X 的联合概率函数是三、计算题(每小题10分,共50分)其它0,00),()42(>>⎩⎨⎧=+-y x ce y x f y x 求:(1)常数c ;(2)概率P (X ≥Y );(3)X 与Y 相互独立吗?请说出理由。
14.将n 个球随机的放入N 个盒子中去,设每个球放入各个盒子是等可能的,求有球盒子数X 的数学期望。
15.设一口袋中依此标有1,2,2,2,3,3数字的六个球。
从中任取一球,记随机变量X 为取得的球上标有的数字,求(2)EX 16.设a=(a 1,a 2,…,a n ),a 1≠0,其长度为║a ║,又A=aa T,(1) 证明A 2=║a ║2A ;(2) 证明a 是A 的一个特征向量,而0是A 的n-1重特征值; (3) A 能相似于对角阵Λ吗?若能,写出对角阵Λ.17.设在国际市场上每年对我国某种出口商品的需求量X 是随机变量,它在[2000,4000]( 单位:吨 )上服从均匀分布,又设每售出这种商品一吨,可为国家挣得外汇3万元,但假如销售不出而囤积在仓库,则每吨需保养费1万元。
问需要组织多少货源,才能使国家收益最大。
参考答案及评分标准一、 选择题(每小题3分,共15分)1.B 2.C 3.D 4.A 5.A二、 填空题(每小题3分,共15分)6. 97. 18. 1–(1–P)39. 3/4 10. 12 三、计算题(每题10分,共50分) 11.解答:函数f(t)的付氏变换为:F (w )=dt e dt edt eeet j tj tj t t ⎰⎰⎰+∞--+∞+--+∞∞---+==ℜ0)(0)(||||][ϖβϖβϖββ (3分)四、证明题(共10分)五、应用题(共10分)=22211ϖββϖβϖβ+=-++j j (2分) 由付氏积分公式有f(t)=[1-ℜF(w )]=ϖϖπϖd e F tj ⎰+∞∞-)(21(2分) =ϖϖϖϖββπd t j t ⎰+∞∞-++)sin (cos 22122 ==ϖϖβϖπβϖϖϖββπd td t ⎰⎰+∞+∞∞-+=+02222cos 2cos 221(2分) 所以te d t ββπωωβω-+∞=+⎰2cos 022 (1分)12.解答:设 A1=“发出信号1”,A0=“发出信号0”,A=“收到信号1” (2分) (1)由全概率公式 (1分) 有 P(A)=P(A|A1)P(A1)+P(A|A0)P(A0) (2分) =0.8x 0.6+0.1 x0.4=0.52 (1分) (2)由贝叶斯公式 (1分) 有 P(A1|A)=P(A|A1)P(A1)/ P(A) (2分) =0.8x 0.6/0.52=12/13 (1分) 13.解答:(1) 由联合概率密度的性质有⎰⎰+∞∞-+∞∞-=1),(dy y x f dx即⎰⎰+∞+-+∞=0)42(01dy cedx y x (2分)从而 c =8 (2分)(2)⎰⎰≥==≥yx dxdy y x f Y X P ),()(⎰⎰=+-+∞xy x dy e dx 0)42(0328 (2分)(3) 当x >0时, ⎰⎰∞∞-∞-+-===2)42(28),()(x y x X e dy e dy y x f x f (2分)当x <=0时, 0)(=x f X同理有 其它04)(4>⎩⎨⎧=-y e y f y Y (1分)因 y x y f x f y x f Y X ,)()(),(∀=故X 与Y 相互独立 (1分)14.解答:设 否则个盒子有球第i X i ⎩⎨⎧=01i =1,2,…,N (2分)则 ∑==Ni iXX 1(1分)因 nni NN X P )1()0(-== (2分) nni i N N X P X P )1(1)0(1)1(--==-== (2分)因而 nni i i NN X P X P EX )1(1)1(1)0(0--==⋅+=⋅= (2分) 所以 ))11(1(1nNi iNN EXEX --==∑= (2分) 15.解答:(1)随机变量X 的取值为1,2,3。
(1分)依题意有:62)3(;63}2{;61}1{======X P X P X P (3分) X 的分布函数}{)(x X P x F ≤= (1分)由条件知:当1<x 时,;0(=)x F (1分)当21<≤x 时,;61)1((===X P x F )(1分) 当32<≤x 时,;32)2()1((==+==X P X P x F )(1分) 当3≥x 时,;1(=)x F (1分)(2)EX=1 x 1/6+2 x 3/6+3 x 2/6= 13/6 (1分)四、证明题(共10分)(1) A 2=aa T ·aa T =a T a ·aa T =║a ║2A (2分)(2)因 Aa= aa T ·a=a T a ·a= ║a ║2a (2分) 故a 是A 的一个特征向量。
又A 对称,故A 必相似于对角阵 (1分) 设A ∽ diag(λ1,λ2,…,λn )=B, 其中λ1,λ2,…,λn 是A 的特征值 (1分) 因rank(A)=1, 所以 rank(B)=1 (1分) 从而λ1,λ2,…,λn 中必有n-1个为0, 即0是A 的n-1重特征值 (1分) (3) A 对称,故A 必相似于对角阵Λ,Λ=diag(║a ║2, 0,…,0) (2分) 五、应用题(共10分) 解答:设y 为预备出口的该商品的数量,这个数量可只介于2000与4000之间,用Z 表示国家的收益(万元), (1分)则有 yX yX X y X y X g Z <≥⎩⎨⎧--==)(33)( (4分) 因 X 服从R(2000,4000), 故有其它4000200002000/1)(<<⎩⎨⎧=x x f X (1分)所以dx ydx x y x dx x f x g EZ yyX ⎰⎰⎰+--==∞∞-40002000200032000)(3)()( =–( y 2 –7000y + 4•106 ) /1000 (3分) 求极值得 y=3500 (吨) (1分)。