2018届中考数学一轮复习:4.4-等腰三角形讲解本课件(含答案)

合集下载

数学中考一轮复习学案 第19节 等腰三角形(含解析)

数学中考一轮复习学案  第19节 等腰三角形(含解析)

第四章图形的性质第19节等腰三角形■知识点一:等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.注意:三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为 .■知识点二:等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=12AB. ■知识点三:角平分线21P COBA(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上. ■知识点四:垂直平分线PC OBA(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.■考点1.等腰三角形 ◇典例:1. (2018年黑龙江省绥化市)已知等腰三角形的一个外角为130°,则它的顶角的度数为 .【考点】等腰三角形的性质【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.【点评】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.2.(2017年北京市)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.【考点】等腰三角形的判定与性质.【分析】根据等腰三角形的性质得到∠ABC=C=72°,根据角平分线的定义得到∠ABD=∠DBC=36°,∠BDC=72°,根据等腰三角形的判定即可得到结论.证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC=36°,∴∠A=∠ABD,∴AD=BD,∵∠C=72°,∴∠BDC=72°,∴∠C=∠BDC,∴BC=BD,∴AD=BC.【点评】本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.◆变式训练1.(2018年内蒙古包头)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5° B.12.5°C.12° D.10°2.( 2017年湖北武汉市)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7■考点2.等边三角形◇典例(2018年辽宁省葫芦岛市)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为.(用含正整数n的代数式表示)【考点】规律型:图形的变化类;等边三角形的性质【分析】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,一次看到△A n B n+1C n的边长为()n﹣1×即可解决问题;解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n A n+1C n的边长为()n﹣1×,∴△A n A n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.【点评】本题考查等边三角形的性质、三角形的面积等知识,解题的关键是学会探究规律的方法,属于中考常考题型.◆变式训练(2018年内蒙古通辽市)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为.■考点3.角平分线◇典例:(2018年山东省德州)如图,为的平分线.,..则点到射线的距离为__________.【考点】角平分线的性质【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.解:过C作CF⊥AO.∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF.∵OC=5,OM=4,∴CM=3,∴CF=3.故答案为:3.【点睛】本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.◆变式训练(2018年山东省东营)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.■考点4.垂直平分线◇典例:(2018年贵州省安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.【考点】作图—复杂作图,线段垂直平分线【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.◆变式训练(2018年山东省青岛)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.一、选择题1.(2018 年广西梧州市)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是()A.2 B.3 C.4 D.62.(2018年浙江省湖州市)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°3.(2018年四川省攀枝花市)如图,等腰直角三角形的顶点A.C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°4.(2018年甘肃省兰州市(a卷))如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°5.(2018年福建省(A卷))如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°二、填空题6.(2018年湖南省湘潭市)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= .7.(2018年贵州省遵义市)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.8.(2018年江苏省南京市)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= cm.9.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.三、解答题10.(2018年浙江省嘉兴市)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.一、选择题1.(2018 年广西梧州市)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是()A.30° B.35° C.40° D.45°2.(2018年青海省)如图,把直角三角形ABO放置在平面直角坐标系中,已知∠OAB=300,B点的坐标为(0,2),将∆ABO沿着斜边AB翻折后得到∆ABC,则点C的坐标是()A. B. C. D.3.(2018年黑龙江省大庆市)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°4.(2018年湖北省襄阳市)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD 的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm5.(2018年江苏省扬州市)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC6.(2018年广西玉林市)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交 C.垂直 D.平行、相交或垂直7.(2018年四川省巴中市)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB 于点G.下列结论正确的是()A.CF=FG B.AF=AG C.AF=CF D.AG=FG二、填空题8.(2018年黑龙江省哈尔滨市)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.9.(2018年广西桂林市)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________10.(2018年四川省南充市)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.11.(2018年湖南省娄底市)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= cm.三、解答题12.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.13.(2018年湖北省孝感市)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.14.(2018年江苏省镇江市)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.15.(2018年黑龙江省哈尔滨市)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.。

2024年中考数学一轮复习基础知识过关课件+第17讲 等腰三角形与直角三角形

2024年中考数学一轮复习基础知识过关课件+第17讲 等腰三角形与直角三角形

等腰三角形的性质和判定
[例1] 如图所示,在△ABC中,AB=AC,AD⊥BC于点D.
(1)若∠C=42°,求∠BAD的度数;
(1)解:∵AB=AC,AD⊥BC于点D,
∴∠BAD=∠CAD,∠ADC=90°.
又∵∠C=42°,
∴∠BAD=∠CAD=90°-∠C=48°.
(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.
最短路径问题
[例 5] (2021 眉山)如图所示,在菱形 ABCD 中,AB=AC=10,对角线 AC,BD 相交于

点 O,点 M 在线段 AC 上,且 AM=3,点 P 为线段 BD 上的一个动点,则 MP+ PB 的最


小值是
.
过点 P 作 PE⊥BC 于点 E,过点 M 作 MN⊥BC 于点 N,交 BD 于点
有两边相等的三角形是等腰三角形
判定
有两个角相等的三角形是等腰三角形(简写成“等角对等边”)
等边三角形的性质及判定
定义 三条边都相等的三角形是等边三角形
等边三角形的三条边都 相等
性质
三个内角都相等,并且每个角都等于
60°
等边三角形是轴对称图形,它有三条对称轴
等边三角形的内心、外心、重心和垂心重合
ห้องสมุดไป่ตู้三条边都相等的三角形是等边三角形
直角三角形来解决;
(2)有些问题需要根据三角形三边的长度验证它是否为直角三角形,然
后利用直角三角形的性质解决实际问题.
[变式 2] 如图所示,在 Rt△ABC 中,∠ACB=90°,AB=2BC,AC= ,若 CD 是 AB 边
的中线,则 CD= 1 .
线段的垂直平分线

中考一轮复习第18讲《等腰三角形》讲学案

中考一轮复习第18讲《等腰三角形》讲学案

中考数学一轮复习第18讲《等腰三角形》【考点解析】知识点一、等腰三角形的性质【例1(·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.【变式】(·黑龙江哈尔滨·3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.知识点二、等腰三角形的内角的计算【例2】(新疆乌鲁木齐)等腰三角形的一个外角是60°,则它的顶角的度数是.【答案】120°.【分析】本题主要考虑与这个外角相邻的内角是顶角或是底角,利用内角和定理即可得解. 【解析】等腰三角形一个外角为60°,那相邻的内角为120°,三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以120°只可能是顶角.故答案为:120°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.【变式】如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= °.【答案】15.【解析】∵AB=AC,∠A=50°,∴∠ACB=∠ABC=12(180°﹣50°)=65°.∵将△ABC折叠,使点A落在点B处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°.∴∠CBE=∠ABC﹣∠ABE=65°﹣50°=15°.知识点三、等腰三角形的多解问题【例3】(·湖北武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。

中考一轮复习数学第24讲等腰三角形PPT课件

中考一轮复习数学第24讲等腰三角形PPT课件
角相等,那么这两个角所对的边也相等
考点1:等腰三角形的性质
1.(202X•江苏)如图,在△ABC中,AB=AC,D为 BC中点,∠BAD=35°,则∠C的度数为 .
2.如图,在△ABC中,AB=AD=DC, ∠B=70°,则
∠C的度数为
.
3.若等腰三角形的一底个角角等为于303°0°,则这个等腰三 角形的顶角的大小为________.
4.如图已知,△ABC中,AB=5,BC=3,AC=4, PQ∥AB,P点在AC上(与点A、C不重合),Q点在BC上. (1)当△PQC的面积与四边形 PABQ的面积相等时,求CP的长; (2)当△PQC的周长与四边形 PABQ的周长相等时,求CP的长; (3)试问:在AB上是否存在点M, 使得△PQM为等腰直角三角形? 若不存在,请简要说明理由; 若存在,要求出PQ的长.
则EP+BP=
.
13CE时,
H
2.如图,△ABC中,AB=10,AC=7,AD是角平分 线,CM⊥AD于M,且N是BC的中点,则MN= .
三线中出现两线
构造等腰三角形 E
变式:在△ABC中,AD平分∠BAC,BD⊥AD,垂足
为D,过D作DE∥AC,交AB于E,若AB=5,则线段
DE的长为
.
E
考点3:分类讨论思想的应用(等腰三角形) 1.如图正方形网格中,网格线的交点称为格点.已 知A、B是两格点,如果C也是图中的格点,且使 得△ABC为等腰三角形,则点C的个数是( )
.
自学检测4:(8分钟) 1.如图,一个等边三角形纸片,剪去一个角后得到 一个四边形,则图中∠α+∠β的度数是 .
2.如图,等边△ABC的边长为1cm,D、E分别是 AB、AC上的点,将△ADE沿着直线DE折叠,点 A落在点A′处,且点A′在△ABC外部,则阴影部分 图形的周长为_______cm.

2024年中考数学一轮复习考点课件:等腰三角形与直角三角形

2024年中考数学一轮复习考点课件:等腰三角形与直角三角形

9,12,15 ).
(2) 研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如
果n表示大于1的整数,x=2n,y=n2-1,z=n2+1,那么以x,y,z为三
边的三角形为直角三角形[即(x,y,z)为勾股数],请你加以证明.
解:∵ x2+y2=(2n)2+(n2-1)2=4n2+n4-2n2+1=n4+2n2+1=
B. 15°
C. 20°
D. 25°
考点二
等腰三角形的判定
典例4 如图,下列说法中,正确的是( B )
A. ①是等腰三角形
B. ②是等腰三角形
C. ①和②均是等腰三角形
D. ①和②都不是等腰三角形
典例4图
典例5 (2023·蚌埠模拟)在如图所示的网格中找到格点C,使△ABC为
等腰三角形,则这样的点有( C )
开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形
模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的
高是( B )
第4题
A. 4m
B. 6m
1
2
3
C. 10m
4
5
6
7
8
D. 12m
9
10
11
12
13
14
15
5. 如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使
三边相等,即==(如图1)
三个内角相等,每一个角都等于60°,
性质 即∠=∠=∠ = 60° 如图1
等边三角形
等边三角形是轴对称图形,有⑤
三 条对称轴
三条边相等的三角形是等边三角形(定义)
判定 三个角都相等的三角形是等边三角形

2018中考数学第一轮复习三角形

2018中考数学第一轮复习三角形

相交线1.(2017甘肃庆阳)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为( ) A .115° B .120°C .135°D .145°2. (2017贵州遵义第6题)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为( )A .45°B .30°C .20°D .15°3.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.4. (2017郴州第8题)小明把一副的直角三角板如图摆放,其中,则等于 ( )A .B .C .D .三角形的概念1. (2017甘肃庆阳第8题) 已知a ,b ,c 是△ABC 的三条边长,化简|a+b-c|-|c-a-b|的结果为( ) A .2a+2b-2c B .2a+2bC .2cD .013.(2017浙江嘉兴第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4B .5C .6D .92. (2017河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是() A .中线 B .角平分线 C.高 D .中位线3.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =4.(2017四川泸州第16题)在△ABC 中,已知BD 和CE 分别是边AC 、AB上的中线,且BD ⊥CE ,垂足为O .若OD=2cm ,OE=4cm ,则线段AO 的长度为 cm .45,3000090,45,30C F A D ∠=∠=∠=∠=αβ∠+∠01800210036002705.(2017新疆建设兵团第15题)如图,在四边形ABCD 中,AB=AD ,CB=CD ,对角线AC ,BD 相交于点O ,下列结论中: ①∠ABC=∠ADC ; ②AC 与BD 相互平分;③AC ,BD 分别平分四边形ABCD 的两组对角; ④四边形ABCD 的面积S=12AC•BD. 正确的是 (填写所有正确结论的序号)6. (2017湖北咸宁第16题)如图,在中,,斜边的两个端点分别在相互垂直的射线上滑动,下列结论: ①若两点关于对称,则; ②两点距离的最大值为; ③若平分,则; ④斜边的中点运动路径的长为. 其中正确的是 .7.(2017山东省枣庄市)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .60 全等三角形1.(2017湖北武汉第15题)如图△ABC 中,AB=AC ,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE 的长为 .2. (2017湖北咸宁第18题) 如图,点在一条直线上,⑴求证:;ACB Rt ∆30,2=∠=BAC BC AB ON OM ,O C 、AB 32=OA O C 、4AB CO CO AB ⊥AB D 2π12F C E B ,,,FC BE DE AC DF AB ===,,DFE ABC ∆≅∆⑵连接,求证:四边形是平行四边形.3.(2017湖北武汉第18题)如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.4.(2017重庆A 卷)在△ABC 中,∠ABM=45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC . (1)如图1,若BC=5,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD=MC ,点E 是△ABC 外一点,EC=AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF=∠CEF .5. (2017山东滨州第11题)如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .16.(2017四川省绵阳市)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =AEO =120°,则FC的长度为()A .1B .2 CD 7.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③,其中正确结论是 (填序号)BD AF ,ABDF 222222DE BG a b +=+PA ONBM直角三角形1. (2017江苏宿迁第12题)如图,在C ∆AB 中,C 90∠A B =,点D 、E 、F 分别是AB 、C B 、C A 的中点.若CD 2=,则线段FE 的长是 .2.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠= ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1 3.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( ) A .2B .C .D . 4.(2017甘肃庆阳第16题)如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .5.(2017贵州安顺第13题)三角形三边长分别为3,4,5,那么最长边上的中线长等于 .6.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .87.(2017浙江省绍兴市)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )54537512A .0.7米B .1.5米C .2.2米D .2.4米8.(2017湖北省襄阳市)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .69. (2017辽宁大连第8题)如图,在中,,,垂足为,点是的中点,,则的长为( ) A . B . C. D .●10. (2017黑龙江绥化第20题)在等腰中,交直线于点,若,则的顶角的度数为 .11.(2017年贵州省毕节地区第15题)如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE+EF 的最小值为( ) A .B .C .D .6等腰三角形1.(2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .72. (2017年湖北省荆州市第6题)如图,在△ABC 中,AB=AC , ∠A =30°,AB的垂直平分()221a b +=ABC ∆090=∠ACB AB CD ⊥D E AB a DE CD ==AB a 2a 22a 3a 334ABC ∆AD BC ⊥BC D 12AD BC =ABC ∆403154245线交AC 于点D ,则∠CBD 的度数为( )A.30°B.45°C.50°D.75°3.(2017山东滨州第8题)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .80°D .25°4.(2017北京第19题)如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.5. (2017浙江台州第8题)如图,已知等腰三角形,若以点为圆心,长为半径画弧,交腰于点,则下列结论一定正确的是( )A .B . C. D .6.(2017浙江省绍兴市)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF =∠AFC ,∠FAE =∠FEA .若∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .24°7. (2017海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3 B .4 C .5 D .68. (2017福建第19题)如图,中,,垂足为.求作的平分线,分别交于,两点;并证明.(要求:尺规作图,保留作图痕迹,不写作法)9.(2017山东省枣庄市)在矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,l ,ABC AB AC =B BC AC E AE EC =AE BE =EBC BAC ∠=∠EBC ABE ∠=∠ABC ∆90,BAC AD BC ∠=⊥oD ABC ∠,AD AD P Q AP AQ= AB CD∠BED 的角平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC = .(结果保留根号)10. (2017江苏苏州第24题)(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=,求D ∠B E 的度数.11.(2017四川省达州市)如图,在△ABC 中,点O 是边AC 上一个动点,过点O 作直线EF ∥BC 分别交∠ACB 、外角∠ACD 的平分线于点E 、F .(1)若CE =8,CF =6,求OC 的长;(2)连接AE 、AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.12.(2017浙江省绍兴市)已知△ABC ,AB =AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD =AE ,设∠BAD =α,∠CDE =β.(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果∠ABC =60°,∠ADE =70°, 那么α=_______,β=_______. ②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.13. (2017贵州遵义第12题)如图,△ABC 中,E 是BC 中点,AD 是∠BAC 的平分线,EF∥AD 交AC 于F .若AB=11,AC=15,则FC 的长为( ) A .11 B .12 C .13 D .14等边三角形1. (2017河池第12题)已知等边的边长为,是上的动点,过作于点,ABC ∆12D AB D AC DE ⊥E过作于点,过作于点.当与重合时,的长是() A . B . C. D .2.(2017广西贵港第16题)如图,点P 在等边ABC ∆的内部,且6,8,10PC PA PB ===,将线段PC 绕点C 顺时针旋转60得到'P C ,连接'AP ,则sin 'PAP ∠的值为 .3.(2017江苏徐州第25题)如图,已知,垂足为,将线段绕点按逆时针方向旋转,得到线段,连接. (1)线段 ; (2)求线段的长度.4. (2017湖南常德第14题)如图,已知Rt △ABE 中∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是 .5. (2017年山东省威海市第18题)如图,为等边三角形,,若为内一动点,且满足,则线段长度的最小值为 .6.(2017山东烟台第23题)【操作发现】(1)如图1,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接,. ①求的度数;②与相等吗?请说明理由; 【类比探究】(2)如图2,为等腰直角三角形,,先将三角板的角与重合,再将三角板绕点按顺时针E BC EF ⊥F F AB FG ⊥G G D AD 3489AC BC⊥,4,C AC BC ==AC A 60AD ,DC DB DC =DB ABC ∆2=AB P ABC ∆ACP PAB ∠=∠PB ABC ∆060ACB ∠C 00030AB D F CD CF =AB E 030=∠DCE AF EF EAF ∠DE EF ABC ∆090=∠ACB 090ACB ∠C方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接,.请直接写出探究结果:①的度数;②线段之间的数量关系.等腰直角三角形1. (2017江苏徐州第18题)如图,已知,以为直角边作等腰直角三角形.再以为直角边作等腰直角三角形,如此下去,则线段的长度为 .2. (2017黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形的直角边在轴的正半轴上,且,以为直角边作第二个等腰直角三角形,以为直角边作第三个等腰直角三角形,则点的坐标为 .3. (2017黑龙江绥化第21题)如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第个小三角形的面积为 .4. (2017浙江湖州第9题)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )●5. (2017北京第28题)在等腰直角ABC ∆中,090ACB ∠=,P00045AB D F CD CF =AB E 045=∠DCE AF EF EAF ∠DB ED AE ,,1OB =OB 1A BO 1OA 21A AO n OA 12OA A 1OA y 1121OA A A ==2OA 23OA A 3OA 20172018OA A 2017An是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.6. (2017湖南株洲第22题)如图示,正方形ABCD 的顶点A 在等腰直角三角形DEF 的斜边EF 上,EF 与BC 相交于点G ,连接CF . ①求证:△DAE ≌△DCF ; ②求证:△ABG ∽△CFG .7. (2017黑龙江齐齐哈尔第23题)如图,在中,于,,,,分别是,的中点.(1)求证:,; (2)连接,若,求的长. 相似三角形1.(2017四川自贡第14题)在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N ;若AM=1,MB=2,BC=3,则MN 的长为 .12.(2017年浙江省杭州市第3题)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD=2AD ,则( )A .B .C .D .3.(2017山东临沂第16题)已知AB CD ∥,AD 与BC 相交于点O .若23BO OC =,10AD =,则AO = .ABC ∆AD BC ⊥D BD AD =DG DC =E F BG AC DE DF =DE DF ⊥EF 10AC =EF 12AD AB =12AE EC =12AD EC =12DE BC=4. (2017哈尔滨第9题)如图,在中,分别为边上的点,,点为边上一点,连接交于点,则下列结论中一定正确的是( )A.B. C. D.5.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .C .D . 6.(2017甘肃兰州第17题)如图,四边形ABCD 与四边形EFGH相似,位似中心点是O ,35OE OA =,则FG BC = .7. (2017黑龙江绥化第6题)如图, 是在点为位似中心经过位似变换得到的,若的面积与的面积比是,则为( )A .B .C .D . 8. (2017浙江湖州第6题)如图,已知在中,,,,点是的重心,则点到所在直线的距离等于( )A . BC. D .9.(2017四川省绵阳市)如图,直角△ABC 中,∠B =30°,点O 是△ABC的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连ABC △,D E ,AB AC DE BC ∥F BC AF DE E AD AE AB EC =AC AE GF BD =BD CE AD AE =AG AC AF EC =545375A B C '''∆ABC ∆O A B C '''∆ABC ∆4:9:OB OB '2:33:24:54:9Rt C ∆AB C 90∠=C C A =B 6AB =P Rt C ∆AB P AB 1322接AF 交CE 于点M ,则的值为( ) A . BC .D 10. (2017年山东省泰安市第14题)如图,正方形中,为上一点,,交的延长线于点.若,,则的长为( )A .18B . C. D . 11. (2017年山东省潍坊市第15题)如图,在中,,分别为边、AC 上的点,,,点为边上一点,添加一个条件:,可以使得与相似.(只需写出一个)12.(2017年浙江省杭州市第15题)如图,在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE ⊥BC 于点E ,连结AE ,则△ABE 的面积等于 .13.(2017山东省枣庄市)如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .14.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,点D ,E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.若AC =8,AB =10,则CD 的长为 .15. (2017黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三MO MF1223ABCD M BC ME AM ⊥ME AD E 12AB =5BM =DE 1095965253ABC ∆AC AB ≠E D 、AB AD AC 3=AE AB 3=F BC FDB ∆ADE ∆角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段是的“和谐分割线”,为等腰三角形,和相似,,则的度数为 .16. (2017江苏宿迁第24题)(本题满分8分)如图,在C ∆AB 中,C AB =A ,点E 在边C B 上移动(点E 不与点B 、C 重合),满足D F ∠E =∠B ,且点D 、F 分别在边AB 、C A 上.(1)求证:D C F ∆B E ∆E ∽;(2)当点E 移动到C B 的中点时,求证:F E 平分DFC ∠.●17.(2017重庆市B 卷)如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE .(1)如图1,若AB =,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF ,当AF =DF 时,求证:DC =BC .18. (2017湖南株洲第10题)如图示,若△ABC 内一点P 满足∠PAC=∠PBA=∠PCB ,则点P 为△ABC 的布洛卡点.三角形的布洛卡点(Brocard point )是法国数学家和数学教育家克洛尔(A .L .Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF 的布洛卡点,DQ=1,则EQ+FQ=( )A .5B .4C ..●19.(2017湖南常德第26题)如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;CD ABC ∆ACD ∆CBD ∆ABC ∆46A ∠=︒ACB ∠(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .20.(2017年山东省东营市第24题)如图,在等腰三角形ABC 中,∠BAC=120°,AB=AC=2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=30°.(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 的函数关系式并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.21. (2017年山东省泰安市第27题)如图,四边形中, ,平分,点是延长线上一点,且.(1)证明:;(2)若与相交于点,,,求的长.22.(2017年浙江省杭州市第19题)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF=∠GAC .(1)求证:△ADE ∽△ABC ;(2)若AD=3,AB=5,求的值.综合探究1.(2017浙江衢州第23题)问题背景如图1,在正方形A BCD 的内部,作∠DAE=∠ABF=∠BCG=∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形。

中考数学第一轮复习 三角形

正整数,则这样的三角形个数为( B ) A.2 B.3 C.5 D.13
类型之二 三角形的重要线段的应用 命题角度: 1.三角形的中线、角平分线、高 2.三角形的中位线
[2011·成都] 如图 19-1,在△ABC 中,D、E 分别是边 AC、 BC 的中点,若 DE=4,则 AB=___8_____.
1.三条边对应相等的两个三角形全等(简记为________)S.SS 2.两个角和它们的夹边对应相等的两个三角形全等(简记为________). ASA3.两个角和其中一个角的对边对应相等的两个三角形全等(简记为
________).
4.两条边和它们的夹角对应相等的两个三角形全等(简记为________).
命题角度: 1.等腰三角形的性质 2.等腰三角形“三线合一”的性质 3.等腰三角形两腰上的高(中线)、两底角的平分线的性质
[2011·株洲] 如图 21-1,△ABC 中,AB=AC,∠A=36°, AC 的垂直平分线交 AB 于 E,D 为垂足,连接 EC.
__5_0_°____.
图 19-2
全等三角形
考点1 全等图形及全等三角形
1.能够完全_____重__合_的两个图形称为全等形,全等图形的形状和 ______大__小都相同.
2.能够完全______重_合_的两个三角形叫全等三角形. [注意] 完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等
大于
[总结] 任意三角形中,最多有三个锐角,最少有两个锐角,最多有一个钝
角,最多有一个直角.
互余
类型之一 三角形三边的关系
命题角度: 1.利用三角形三边的关系判断三条线段能否组成三角形 2.利用三角形三边的关系求字母的取值范围 3.三角形的稳定性

中考数学一轮复习 第四单元 三角形 第18讲 等腰三角形课件


2021/12/9
第十九页,共二十三页。
变式 等腰三角形ABC中,∠A=80°,求∠B的度数. (1)请你解答(jiědá)以上的变式题; (2)解答(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如 果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的
2021/12/9
第十八页,共二十三页。
(2018·绍兴(shào xīnɡ))数学课上,张老师举了下面的例题:
例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°) 例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)
张老师启发同学们进行变式,小敏编了如下一题:
综上所述,当0<x<90且x≠60时,∠B有三个不同的度数.
2021/12/9
第二十二页,共二十三页。
内容 总结 (nèiróng)
第18讲 等腰三角形。以学生熟悉的一副三角板为背景结合中点和垂线求线段的长度,看似简单实 则不易(bù yì),是考查能力的一道好题.。①当点C在线段OB上时,如图1,。②当点C在线段OB的延长线上时,如图2,。错误鉴定
或5
25
2

试真题·练易
命题(mìng tí)点 等腰三角形的性质
1.(2016·山西,15,3分)如图,已知点C为线段(xiànduàn)AB的中点,CD⊥AB且CD=AB=4,连 接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD 于点H,则HG的长为3- .5
A.2 cm2 B.3 cm2 C.4 cm2 D.5 cm2
2021/12/9
第十一页,共二十三页。

等腰三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(解析版)

专题17等腰三角形的核心知识点精讲1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段垂直平分线的性质及判定.考点1:等腰三角形的性质与判定考点2:等边三角形的性质与判定性质 1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形,有2条对称轴判定 1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式,其中a 是底边常,hs 是底边上的高性质 1.三条边相等2.三个内角相等,且每个内角都等于60°3.等边三角形是轴对称图形,有3条对称轴判定 1.三条边都相等的三角形是等边三角形2.三个角相等的三角形是等边三角形3.有一个角的是60°的等腰三角形是等边三角形面积公式是等边三角形的边长,h 是任意边上的高考点3:线段垂直平分线(1)线段垂直平分线的作图1.分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C 、D 两点;2.作直线CD ,CD 为所求直线(2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(3)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上【题型1:等腰三角形的性质和判定】【典例1】(2022•宜昌)如图,在△ABC 中,分别以点B 和点C 为圆心,大于BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为()A .25B .22C .19D .18【答案】C 【解答】解:由题意可得,MN 垂直平分BC ,∴DB =DC ,∵△ABD 的周长是AB +BD +AD ,∴AB +BD +AD =AB +DC +AD =AB +AC ,∵AB =7,AC =12,∴AB +AC =19,∴△ABD 的周长是19,故选:C .1.(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是()A.70°B.45°C.35°D.50°【答案】C【解答】解:当等腰三角形的顶角为110°时,则它的底角==35°,故选:C.2.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2++|c﹣3|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D【解答】解:由题意得,解得,∵a2+b2=c2,且a=b,∴△ABC为等腰直角三角形,故选:D.3.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.【答案】(1)见解析;(2)CD=ED,理由见解析.【解答】(1)证明:∵BD是△ABC的角平分线,∴∠CBD=∠EBD,∵DE∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB.(2)解:CD=ED,理由如下:∵AB=AC,∴∠C=∠ABC,∵DE∥BC,∴∠ADE=∠C,∠AED=∠ABC,∴∠ADE=∠AED,∴AD=AE,∴CD=BE,由(1)得,∠EBD=∠EDB,∴BE=DE,∴CD=ED.【题型2:等边三角形的性质和判定】【典例2】(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交B C的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°【答案】C【解答】解:在等边△ABC中,∠ABC=60°,∵BD是AC边上的高,∴BD平分∠ABC,∴∠CBD=∠ABC=30°,∵BD=ED,∴∠DEC=∠CBD=30°,故选:C1.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°【答案】A【解答】解:∵△ABC为等边三角形,∴∠A=60°,∵∠A+∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.2.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△B OC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,+S△BCD=S△BOD+S△COD=×12+=,∴△AOB与△BOC的面积之和为S△BOC故选:C.3.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是1+.【答案】1+.【解答】解:取AB中点D,连OD,DC,∴OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为AB中点,∴BD=1,BC=2,∴CD==,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=1,∴OD+CD=1+,即OC的最大值为1+.故答案为:1+.【题型3:线段的垂直平分线】【典例3】(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是13.【答案】13.【解答】解:∵DE是BC的垂直平分线.∴BD=CD,∴AC=AD+CD=AD+BD,∴△ABD的周长=AB+AD+BD=AB+AC=5+8=13,故答案为:13.1.(2023•吉林)如图,在△ABC中,AB=AC.分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.若∠BAC=110°,则∠BAE的大小为55度.【答案】55.【解答】解:∵AB=AC.∴△ABC是等腰三角形,∵分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.∴AE垂直平分BC,∴AE是∠BAC的平分线,∴∠BAE=∠BAC=55°.故答案为:55.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若A B=4,则DC的长是4.【答案】4.【解答】解:∵∠B=∠ADB,AB=4,∴AD=AB=4,∵DE是AC的垂直平分线,∴DC=AD=4,故答案为:4.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=10°,则∠C的度数是40°.【答案】40°.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.一.选择题(共9小题)1.若等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或12【答案】C【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.2.如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°【答案】D【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,∵AD是等边△ABC的一条中线,∴AD⊥BC,∠CAD=∠BAC=30°,∵AE=AD,∴∠ADE=∠AED,∵∠ADE+∠AED+∠CAD=180°,∴∠ADE=75°,∴∠EDC=90°﹣75°=15°,故选:D.3.如图,A、B、C表示三个居民小区,为了居民生活的方便,现准备建一个生活超市,使它到这三个居民小区的距离相等,那么生活超市应建在()A.AB,AC两边中线的交点处B.AB,AC两边高线的交点处C.∠B与∠C这两个角的角平分线的交点处D.AB,AC两边的垂直平分线的交点处【答案】D【解答】解:∵生活超市到这三个居民小区的距离相等,∴生活超市应建在△ABC的三边的垂直平分线的交点处.故选:D.4.在△ABC中,若AB=AC=3,∠B=60°,则BC的值为()A.2B.3C.4D.5【答案】B【解答】解:∵AB=AC,∠B=60°,∴△ABC为等边三角形,∴BC=AB=3.故选:B.5.如图,在△ABC中,∠ABC,∠ACB的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.若AB=12,AC=8,BC=13,则△AEF的周长是()A.15B.18C.20D.22【答案】C【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠EBD=∠EDB,∴ED=EB,同理可证得DF=FC,∴AE+AF+EF=AE+EB+AF+FC=AB+AC=20,即△AEF的周长为20,故选:C.6.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.10【答案】C【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴BD+CD=AC=10.∴BC=△BDC的周长﹣(BD+CD)=18﹣10=8,故选:C.7.如图,在△ABC中,∠A=90°,边AB的垂直平分线交AB于点D,交BC于点E,已知BE=3,则B C长为()A.5B.6C.7D.8【答案】B【解答】解:如图所示,连接AE,∵DE是AB的垂直平分线,∴EA=EB,∴∠B=∠EAB,∵∠A=90°,∴∠B+∠C=90°,∠BAE+∠CAE=90°,∴∠CAE=∠C,∴EA=EC,∴EC=EB,∴BC=BE+CE=2BE=6,故选:B.8.如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点F,若∠BAC=140°,则∠EAF的度数为()A.95°B.100°C.105°D.110°【答案】B【解答】解:∵∠BAC=140°,∴∠B+∠C=180°﹣∠BAC=40°,∵AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,∴EA=EB,FA=FC,∴∠B=∠BAE,∠C=∠FAC,∴∠BAE+∠FAC=40°,∴∠EAF=∠BAC﹣(∠BAE+∠FAC)=100°,故选:B.9.如图,P是等边△ABC的边AC的中点,E为BC边延长线上一点,PE=PB,则∠CPE的度数为()A.20°B.25°C.30°D.35°【答案】C【解答】解:∵P是等边△ABC的边AC的中点,∴BP平分∠ABC,∠ABC=60°=∠ACB,∴∠PBC=30°,∵PE=PB,∴∠PBC=∠E=30°,∴∠CPE=∠ACB﹣∠E=30°,故选:C.二.填空题(共6小题)10.如图所示,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交A C于点E,则∠EBC的度数是18度.【答案】见试题解答内容【解答】解:∵DE是线段AB的垂直平分线∴AE=BE∵∠C=90°,∠A=36°∴∠EBA=∠A=36°∴∠EBC=90°﹣36°﹣36°=18°.11.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC与点E,∠A=∠ABE.若AC=7,BC=4,则BD的长为.【答案】.【解答】解:∵CD平分∠ACB,∴∠BCD=∠ECD,∵BE⊥CD,∴∠BDC=∠EDC=90°,∵CD=CD,∴△BDC≌△EDC(ASA),∴BC=CE=4,BD=DE,又∵∠A=∠ABE,∴AE=BE,∵AC=7,BC=4,∴AE=AC﹣CE=3,∴BE=AE=3,∴BD=BE=,故答案为:.12.如图,在等边三角形ABC中,AD⊥BC,垂足为D,则∠BAD=30°.【答案】30.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=∠ADB﹣∠B=30°;故答案为30.13.如图,在边长为4的等边△ABC中,点P为BC边上任意一点,PE⊥AB于点,PF⊥AC于点F,则PE+PF的长度和为2.【答案】2.【解答】解:如图所示,连接AP,作CD⊥AB交AB于点D,=S△ABP+S△ACP,则S△ABC即AB•CD=AB•PE+AC•PF,∵△ABC为等边三角形,∴AB=AC,∴CD=PE+PF,∵AB=AC=BC=4,CD⊥AB,∴,∴,∴,故答案为:.14.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于点D.若BC=9,AD=5,则△ABD的面积为.【答案】.【解答】解:∵AB的垂直平分线交BC于点D,∴DB=DA=5,∴CD=BC﹣BD=9﹣5=4,在Rt△ACD中,∵∠C=90°,∴AC===3,=×5×3=.∴S△ABD故答案为:.15.如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为2.【答案】见试题解答内容【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=4,∴DE=.故答案为:2.三.解答题(共3小题)16.已知,如图,△ABC是等边三角形,D是边AC的中点,E是BC延长线上的一点,DB=DE.求∠CD E的度数.【答案】30°.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵D是边AC的中点,∴,∵DB=DE,∴∠E=∠DBC,∴∠E=30°,∵∠BCD=60°,∴∠CDE=∠BCD﹣∠E=30°.17.图①中所示的遮阳伞,伞柄垂直于地面,其示意图如图②.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN,CM=CN.(1)求证:PC垂直平分MN;(2)若CN=PN=60cm,当∠CPN=60°时,求AP的值.【答案】(1)见解析;(2)60cm.【解答】(1)证明:在△CMP和△CNP中,,∴△CMP≌△CNP(SSS),∴∠MPB=∠NPB,∵PM=PN,∴△PMN是等腰三角形,∴PB⊥MN,BM=BN,∴PC垂直平分MN;(2)解:∵CN=PN=60cm,∴当伞收紧时,点P与点A重合,∴AC=CN+PN=120cm,当∠CPN=60°时,∵CN=PN,∴△CPN是等边三角形,∴PC=PN=60cm,∴AP=AC﹣PC=60cm.18.如图,△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,垂足为D,且BD=DE,连接AE.(1)求证:AB=EC;(2)若△ABC的周长为20cm,AC=7cm,则DC的长为多少?【答案】(1)见解析;(2).【解答】(1)证明:∵EF垂直平分AC,∴AE=EC,∵AD⊥BC,BD=DE,∴AB=AE,∴AB=EC;(2)解:∵△ABC的周长为20cm,∴AB+BC+AC=20cm,∵AC=7cm,∴AB+BC=13cm,∵AB=EC,BD=DE,∴AB+BD=DE+EC=DC,∵AB+BC=AB+BD+DC=2DC=13cm∴.一.选择题(共5小题)1.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E的度数为()A.25°B.20°C.15°D.7.5°【答案】C【解答】解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CGD+∠CDG,∴∠CGD+∠CDG=60°.∵CG=CD,∴∠CGD=∠CDG=30°.∵∠CDG=∠DFE+∠E,∴∠DFE+∠E=30°.∵DF=DE,∴∠E=∠DFE=15°.故选:C.2.如图,用一张矩形纸片DEFG覆盖等边△ABC,且DG∥BC,若边AB被DG、EF三等分,则△ABC被覆盖(阴影部分)的面积是未被覆盖的面积的()A.B.C.D.【答案】A【解答】解:如图:DG交AB于M,交AC于L,EF交AB于N,AC于K,∵DG∥BC,边AB被DG、EF三等分,∴△AML∽△ANK,△ABC∽△ANK,∴BP=,,∴,,=9a,设S△ABC=a,S△ANK=4a,则S△AML=4a﹣a=3a,∴S四边形MNKL∴未被覆盖的面积为:9a﹣3a=6a,△A B C被覆盖(阴影部分)的面积是未被覆盖的面积,故选:A.3.如图,在等边三角形ABC中,AB=AC=BC=10cm,DC=4cm.如果点M,N都以2cm/s的速度运动,点M在线段CB上由点C向点B运动,点N在线段BA上由点B向点A运动.它们同时出发,当两点运动时间为t秒时,△BMN是一个直角三角形,则t的值为()A.B.C.D.【答案】D【解答】解:∵点M、N都以2cm/s的速度运动则CM=2t,BM=10﹣2t,BN=2t,当∠BMN=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BNM=30°,∴BN=2BM,即2t=2×(10﹣2t),解得:,当∠BNM=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BMN=30°,∴BM=2BN,即2×2t=(10﹣2t),解得:,综上所述,t的值为或时,△BMN是一个直角三角形.故选:D.4.如图,在等边△ABC中,AB=5,点D在AB上,且BD=1,点E、F分别是BC、AC上的点,连接DE,EF,如果∠DEF=60°,DE=EF,那么BE的长是()A.3B.3.5C.4D.4.5【答案】C【解答】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC=5,∵∠BEF=∠C+∠EFC=∠DEF+∠BED,∠DEF=∠C=60°,∴∠BED=∠EFC,在△DBE和△ECF中,,∴△DBE≌△ECF(AAS),∴DB=EC=1,∴BE=BC﹣EC=5﹣1=4.故选:C.5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为2cm2,则△PBC的面积为()A.0.8cm2B.1cm2C.1.2cm2D.不能确定【答案】B【解答】解:如图,延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,∴△ABP≌△EBP(ASA),∴AP=PE,=S△EBP,S△ACP=S△ECP,∴S△ABP=S△ABC=×2=1(cm2),∴S△PBC故选:B.二.填空题(共4小题)6.如图,边长为5cm的正三角形ABC向右平移1cm,得到正三角形A'B'C',此时阴影部分的周长为12 cm.【答案】见试题解答内容【解答】解:由题意得,△ABC为等边三角形,BC=5cm,BB'=1cm,∴B'C=BC﹣BB'=5﹣1=4cm,且阴影部分为等边三角形,∴阴影部分的周长为3×4=12cm,故答案为12.7.如图,在等边△ABC中,点D、E分别在边AB、AC上,DE∥BC,点F在BC延长线上,且EB=EF,若BD=4,BF=8,则线段DE的长为2.【答案】2.【解答】解:过E点作EH⊥BF,设DE=x,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等边三角形,∵BD=4,∴EC=BD=4,AB=BC=AC=4+x,∠ACB=60°,在Rt△CHE中,∵∠ACB=60°,EC=BD=4,∴∠HEC=180°﹣∠ACB﹣∠EHC=180°﹣60°﹣90°=30°,∴,∴BH=BC﹣CH=4+x﹣2=2+x,∵EB=EF,∴△EBF是等腰三角形,∵EH⊥BF,BF=8,∴BH=FH=4,∴2+x=4,∴x=2,∴DE=2.故答案为:2.8.如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD于M,BD交CE于N,交AB于O,则:①DB=AE;②∠AMC=∠DNC;③△MCE是等腰三角形;④△MCN是等边三角形;⑤∠AOD=60°.其中,正确的有①②④⑤.【答案】①②④⑤.【解答】解:△ACD和△BCE都是等边三角形,∴AC=AD=CD,CE=CB=BE,∠ACD=∠DAC=∠ADC=60°=∠BCE=∠CBE=∠CEB,∴∠DCE=60°,∴∠ACE=∠DCB=120°,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=BD,∠EAC=∠BDC,故①符合题意;∴∠AOD=∠ACD=60°,故⑤符合题意;在△ACM和△DCN中,,△ACM≌△DCN(ASA),∴AM=DN,CM=CN,∠AMC=∠DNC,∴△MCN是等腰三角形;△MCN是等边三角形;故②④符合题意,综上:①②④⑤都符合题意.故答案为:①②④⑤.9.如图,四边形ABCD,AD=1,,BC=3,点E为AB的中点,连接DE、CE,使得∠DEA+∠CEB=60°,则DC的最大值为.【答案】##.【解答】【详解】解:将△ADE沿DE翻折得到△MDE,将△BCE沿CE翻折得到△NCE,连接MN,由翻折可知:∠AED=∠MED,∠BEC=∠NEC,AD=MD=1,BC=NC=3,∵E是AB中点,,∴,∵∠DEA+∠CEB=60°,∴∠AEM+∠BEN=120°,∴∠MEN=60°,∴△EMN是等边三角形,∴,∴CD≤DM+MN+CN,当D,M,N,C共线时,CD取得最大值为,故答案为:.三.解答题(共2小题)10.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE=DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).【答案】见试题解答内容【解答】解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.故答案为:(1)=;(2)=11.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?【答案】(1)△BPQ是等边三角形;(2)当t=2s或t=4s时,△PBQ是直角三角形.【解答】解:(1)如图,根据题意得:AP=tcm,BQ=2tcm,当t=2时,AP=2cm,BQ=4cm,∵△ABC是边长为6cm的等边三角形,∴AB=6cm,∠B=60°,∴BP=4cm,∴BP=BQ,∴△BPQ是等边三角形;(2)△PBQ中,BP=6﹣t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,①当∠BQP=90°时,∠B=60°,∴∠BPQ=30°,∴BQ=BP,即t=,解得:t=2;②当∠BPQ=90°时,同理得:BP=BQ,即6﹣t=t,解得:t=4,答:当t=2s或t=4s时,△PBQ是直角三角形.1.(2022•大连)如图,在△ABC中,∠ACB=90°.分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若AB=3,则CD的长是()A.6B.3C.1.5D.1【答案】C【解答】解:由已知可得,MN是线段AC的垂直平分线,设AC与MN的交点为E,∵∠ACB=90°,MN垂直平分AC,∴∠AED=∠ACB=90°,AE=CE,∴ED∥CB,∴△AED∽△ACB,∴,∴,∴AD=AB,∴点D为AB的中点,∵AB=3,∠ACB=90°,∴CD=AB=1.5,故选:C.2.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是6.【答案】见试题解答内容【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.3.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交A C于点E,则∠EBC=10°.【答案】10°.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.。

重庆市中考数学一轮复习(课件)4.第2节 三角形及其性质


面积计算公式:S=⑪ 1 ah ,其中a是底边长,
h是底边上的高
2
未完继续
温馨提示 ①对于等腰三角形的边、角、周长的计算,顶 点位置的探索,往往由于腰、底的不确定,需分类讨论解 决,防止漏解;②等腰三角形的“三线合一”是一条重要性 质,在计算和证明中,往往作为辅助线,需灵活添加解决
返回
1.三边相等
(2)如图①,若D在BC的延长线上,∠ACD=110°, 求∠BAC的度数;
(3)如图②,若D在BC的延长线上,AC=DC, ∠BAC=40°,求∠D的度数;
(4)如图③,若D是AC上一点,且AD=BD=BC,求∠A的度数;
(5)如图④,若E是AC上的点,且BE是△ABC的中线,BE把 △ABC的周长分为12和15两部分,求△ABC的三边长;
等 腰 三 角 形(如 图⑤)
对称图形,有一条对称轴,即AD

4.顶角的⑩ 角平分线 重合(三线合一)
,底边上的高和底边的中线互相
判定
1.有两边相等的三角形是等腰三角形

2.有两角相等的三角形是等腰三角形
作垂线,顶点和垂足之间的线段
高 线

图形及性质:如图③,在△ABC中,AD为BC边上的 高线,则有AD⊥⑧ BC ,即∠ADB=∠ADC=90°


垂心:三角形的三条高线的交点,该点称为三角 形的垂心
返回
定义:连接三角形两边中点的线段
中 位

图形及性质:如图④,在△ABC中,D、E分别为AB、
第四章 三角形
第2节 三角形及其性质
考点特训营
三角形及其边角关系

三角形的分类 三角形边角关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档