2020年广东省广州市海珠区南武中学中考数学模拟试卷

合集下载

2020年广东省中考数学模拟试卷含解析

2020年广东省中考数学模拟试卷含解析

2020年广东省中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根2.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.3.(3分)据统计,2019年杭州市区初中毕业生为25000余人,25000用科学记数法表示为()A.25×103B.2.5×103C.2.5×104D.0.25×1054.(3分)在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()金额(元)20303550100学生数(人)20105105A.20元B.30元C.35元D.100元5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.6.(3分)如图,是一张长方形纸片(其中AB∥CD),点E,F分别在边AB,AD上.把这张长方形纸片沿着EF折叠,点A落在点G处,EG交CD于点H.若∠BEH=4∠AEF,则∠CHG的度数为()A.108°B.120°C.136°D.144°7.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+68.(3分)若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1B.1或﹣1C.1D.29.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2二.填空题(共7小题,满分28分,每小题4分)11.(4分)分解因式:6xy2﹣9x2y﹣y3=.12.(4分)函数y=中,自变量x的取值范围是.13.(4分)小明从P点出发,沿直线前进10米后向右转a,接着沿直线前进10米,再向右转a,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则a的度数是.14.(4分)小明上学经过两个路口,如果每个路口可直接通过或需等待的可能性相等,那么小明上学时在这两个路口都直接通过的概率为.15.(4分)如图,已知⊙O的半径为2,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为.16.(4分)如图,点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.17.(4分)如图,A是正比例函数y=x图象上的点,且在第一象限,过点A作AB⊥y轴于点B,以AB为斜边向上作等腰直角三角形ABC,若AB=2,则点C的坐标为.三.解答题(一)(共3小题,满分18分)18.(6分)计算:2cos30°+()﹣1﹣+2019019.(6分)先化简,再求值:,其中x满足x2+3x﹣1=0.20.(6分)如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.四.解答题(二)(共3小题,满分24分)21.(8分)我市正在努力创建“全国文明城市”,2018年梅州已入选“全国文明城市提名城市”.为进一步营造“创文”氛围,我市某学校组织了一次全校2000名学生都参加的“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=;n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调査结果,估算出该校答对不少于8题的学生人数.22.(8分)我市大力发展乡村旅游产业,全力打造客都美丽乡村”,其中“客家美景、客家文化、客家美食”享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的收入各为多少万元?(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?23.(8分)如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.求证:四边形ABDF是平行四边形.五.解答题(三)(共2小题,满分20分)24.(10分)如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)求证:AF是⊙O的切线;(2)求证:△ABE∽△DBA;(3)若BD=8,BE=6,求AB的长.25.(10分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.2020年广东省中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.无限小数都是无理数B.没有立方根C.正数的两个平方根互为相反数D.﹣(﹣13)没有平方根【分析】根据无理数、立方根、平方根的定义解答即可.【解答】解:A、无限循环小数是有理数,故不符合题意;B、﹣有立方根是﹣,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.2.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出各选项图形的对称轴的条数,然后选择即可.【解答】解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.3.(3分)据统计,2019年杭州市区初中毕业生为25000余人,25000用科学记数法表示为A.25×103B.2.5×103C.2.5×104D.0.25×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于25000有5位,所以可以确定n=5﹣1=4.【解答】解:25000=2.5×104.故选:C.4.(3分)在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()金额(元)20303550100学生数(人)20105105A.20元B.30元C.35元D.100元【分析】直接根据众数的概念求解可得.【解答】在这次活动中,该班同学捐款金额的众数是20元,故选:A.5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该几何体的主视图为:俯视图为:左视图为:6.(3分)如图,是一张长方形纸片(其中AB∥CD),点E,F分别在边AB,AD上.把这张长方形纸片沿着EF折叠,点A落在点G处,EG交CD于点H.若∠BEH=4∠AEF,则∠CHG的度数为()A.108°B.120°C.136°D.144°【分析】由折叠的性质及平角等于180°可求出∠BEH的度数,由AB∥CD,利用“两直线平行,内错角相等”可求出∠DHE的度数,再利用对顶角相等可求出∠CHG的度数.【解答】解:由折叠的性质,可知:∠AEF=∠FEH.∵∠BEH=4∠AEF,∠AEF+∠FEH+∠BEH=180°,∴∠AEF=×180°=30°,∠BEH=4∠AEF=120°.∵AB∥CD,∴∠DHE=∠BEH=120°,∴∠CHG=∠DHE=120°.故选:B.7.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+6【分析】分别根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵x>y,∴x﹣6>y﹣6,故本选项错误;B、∵x>y,∴3x>3y,故本选项错误;C、∵x>y,∴﹣x<﹣y,∴﹣2x<﹣2y,故选项错误;D、∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,故本选项正确.故选:D.8.(3分)若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1B.1或﹣1C.1D.2【分析】根据根的判别式以及根与系数的关系即可求出答案.【解答】解:由题意可知:△=(m+1)2﹣4m2=﹣3m2+2m+1,由题意可知:m2=1,∴m=±1,当m=1时,△=﹣3+2+1=0,当m=﹣1时,△=﹣3﹣2+1=﹣4<0,不满足题意,故选:C.9.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm【分析】根据菱形的性质可以判定O为BD的中点,结合E是AB的中点可知OM是△ABD的中位线,根据三角形中位线定理可知AD的长,于是可求出四边形ABCD的周长.【解答】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵M是AB的中点,∴MO是△ABD的中位线,∴AD=2MO=2×5=10cm,∴菱形ABCD的周长=4AD=4×10=40cm,故选:D.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE===1∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.二.填空题(共7小题,满分28分,每小题4分)11.(4分)分解因式:6xy2﹣9x2y﹣y3=﹣y(3x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)212.(4分)函数y=中,自变量x的取值范围是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(4分)小明从P点出发,沿直线前进10米后向右转a,接着沿直线前进10米,再向右转a,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则a的度数是30°.【分析】根据多边形的外角和与外角的关系,可得答案.【解答】解:由题意,得120÷10=12,图形是十二边形,α=360°÷12=30°,故答案为:30°.14.(4分)小明上学经过两个路口,如果每个路口可直接通过或需等待的可能性相等,那么小明上学时在这两个路口都直接通过的概率为.【分析】根据题意先画出树状图得出所有等可能的结果数和在这两个路口都直接通过的结果数,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有4种等可能结果,其中小明上学时在这三个路口都直接通过的只有1种结果,所以小明上学时在这两个路口都直接通过的概率为;故答案为:.15.(4分)如图,已知⊙O的半径为2,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为2.【分析】运用转化的数学思想把∠AOB和∠COD转化为一个平角,再利用勾股定理可求AB的长.【解答】解:把∠COD饶点O顺时针旋转,使点C与D重合,∵∠AOB与∠COD互补,∴∠AOD=180°∵⊙O的半径为2,∴AD=4,∵弦CD=6,∠ABD=90°,∴AB==2.故答案是:2.16.(4分)如图,点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为y=﹣.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(﹣,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,∵在△COD和△OAE中∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(﹣,a),∵﹣•a=﹣4,∴点C在反比例函数y=﹣图象上.故答案为y=﹣.17.(4分)如图,A是正比例函数y=x图象上的点,且在第一象限,过点A作AB⊥y轴于点B,以AB为斜边向上作等腰直角三角形ABC,若AB=2,则点C的坐标为(1,4).【分析】根据正比例函数的性质可以求得点A的坐标,再根据题意和等腰三角形的形即可求得点C的坐标.【解答】解:∵A是正比例函数y=x图象上的点,且在第一象限,AB=2,∴点A的横坐标是2,当x=2时,y=3,∴点A的坐标为(2,3),∵过点A作AB⊥y轴于点B,以AB为斜边向上作等腰直角三角形ABC,∴点C到AB的距离为1,AB的一半是1,∴点C的坐标是(1,4)故答案为:(1,4).三.解答题(一)(共3小题,满分18分)18.(6分)计算:2cos30°+()﹣1﹣+20190【分析】直接利用特殊角的三角函数值以及负指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2×+2﹣2+1=+1.19.(6分)先化简,再求值:,其中x满足x2+3x﹣1=0.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x2+3x﹣1=0即可解答本题.【解答】解:====3x2+9x,∵x2+3x﹣1=0,∴x2+3x=1,∴原式=3x2+9x=3(x2+3x)=3×1=3.20.(6分)如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.【分析】(1)作线段AB的垂直平分线MN交AB于点E,点E即为所求.(2)求出△ADE的面积即可.【解答】解:(1)作线段AB的垂直平分线MN交AB于点E,点E即为所求.(2)∵四边形ABCD是平行四边形的面积为8,AE=EB,∴S△ADE=S四边形ABCD=2,∴S四边形EBCD=8﹣2=6.四.解答题(二)(共3小题,满分24分)21.(8分)我市正在努力创建“全国文明城市”,2018年梅州已入选“全国文明城市提名城市”.为进一步营造“创文”氛围,我市某学校组织了一次全校2000名学生都参加的“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=16;n=30,“答对8题”所对应扇形的圆心角为86.4度;(2)将条形统计图补充完整;(3)请根据以上调査结果,估算出该校答对不少于8题的学生人数.【分析】(1)5÷10%=50(人),,即m=16,1﹣10%﹣16%﹣24%﹣20%=30%,即n=30,360°×24%=86.4°,即“答对8题”所对应扇形的圆心角为86.4度;(2)答对9题的人数:50×30%=15(人),答对10题的人数:50×20%=10(人),据此补充条形统计图;(3)2000×(24%+30%+20%)=1480(人),所以该校答对不少于8题的学生人数是1480人.【解答】解:(1)5÷10%=50(人),,即m=16,1﹣10%﹣16%﹣24%﹣20%=30%,即n=30,360°×24%=86.4°,即“答对8题”所对应扇形的圆心角为86.4度,故答案为16,30,86.4;(2)答对9题的人数:50×30%=15(人),答对10题的人数:50×20%=10(人),所以条形统计图补充如下:(3)2000×(24%+30%+20%)=1480(人),答:该校答对不少于8题的学生人数是1480人.22.(8分)我市大力发展乡村旅游产业,全力打造客都美丽乡村”,其中“客家美景、客家文化、客家美食”享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的收入各为多少万元?(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?【分析】(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设去年餐饮收入x万元,住宿收入y万元,依题意得:,解得:,答:去年餐饮收入11万元,住宿收入5万元;(2)设今年土特产m万元,依题意得:16+16×(1+10%)+m﹣20﹣10≥10,解之得,m≥6.4,答:今年土特产销售至少有6.4万元的收入.23.(8分)如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.求证:四边形ABDF是平行四边形.【分析】根据已知条件可以判定△ABC、△DCE均为等边三角形,由等边三角形的三个内角相等、三条边相等,进而得到三个三角形△ABC、△AEF、△DCE是等边三角形,可以推知同位角∠CDE=∠ABC,内错角∠CDE=∠EF A.所以利用平行的线的判定定理可以证得四边形ABDF的对边相互平行.【解答】证明:∵△ABC是等边三角形,∴AC=BC=AB,∠ACB=60°;∵将AC绕点E旋转∴ED=CE,EF=AE∴△EDC是等边三角形,∴DE=CD=CE,∠DCE=∠EDC=60°,∴FD=AC=BC,∴△ABC、△AEF、△DCE均为等边三角形,∴∠CDE=∠ABC=∠EF A=60°,∴AB∥FD,BD∥AF,∴四边形ABDF是平行四边形.五.解答题(三)(共2小题,满分20分)24.(10分)如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)求证:AF是⊙O的切线;(2)求证:△ABE∽△DBA;(3)若BD=8,BE=6,求AB的长.【分析】(1)由圆周角定理得出∠ABD=90°,∠C=∠D,证出∠BAD+∠BAF=90°,得出AF⊥AD,即可得出结论;(2)由圆周角定理得出∠BAC=∠C,∠C=∠D,得出∠BAC=∠D,再由公共角∠ABE =∠DBA,即可得出△ABE∽△DBA;(3)由相似三角形的性质得出=,代入计算即可得出结果.【解答】(1)证明:∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD+∠D=90°,∵∠BAF=∠C,∠C=∠D,∴∠BAF=∠D,∴∠BAD+∠BAF=90°,即∠F AD=90°,∴AF⊥AD,∴AF是⊙O的切线;(2)证明:∵,∴∠BAC=∠C,∵∠C=∠D,∴∠BAC=∠D,即∠BAE=∠D,又∵∠ABE=∠DBA,∴△ABE∽△DBA;(3)解:由(2)得:△ABE∽△DBA,∴=,即=,解得:AB=4.25.(10分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A (﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2即可求解;(2)由S△BCD=2S△AOC得:,即可求解;(3)分BC是平行四边形的边、BC为对角线两种情况,分别求解即可.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线解析式为;(2)过点D作y轴平行线交BC于点E,把x=0代入中,得:y=2,∴C点坐标是(0,2),又B(3,0)∴直线BC的解析式为,∵∴∴=,由S△BCD=2S△AOC得:∴,整理得:m2﹣3m+2=0解得:m1=1,m2=2∵0<m<3∴m的值为1或2;(3)存在,理由:设:点M的坐标为:(m,n),n=﹣x2+x+2,点N(1,s),点B(3,0)、C(0,2),①当BC是平行四边形的边时,当点C向右平移3个单位,向下平移2个单位得到B,同样点M(N)向右平移3个单位,向下平移2个单位N(M),故:m+3=1,n﹣2=s或m﹣3=1,n+2=s,解得:m=﹣2或4,故点M坐标为:(﹣2,﹣)或(4,﹣);②当BC为对角线时,由中点公式得:m+1=3,n+3=2,解得:m=2,故点M(2,2);综上,M的坐标为:(2,2)或(﹣2,)或(4,).。

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。

2020年广东省广州市中考数学模拟试卷 (含答案解析)

2020年广东省广州市中考数学模拟试卷 (含答案解析)

2020年广东省广州市中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.用科学记数法表示660000的结果是()A. 66×104B. 6.6×105C. 0.66×106D. 6.6×1062.某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A. 12名B. 13名C. 15名D. 50名3.下列运算正确的是()A. a2·a2=2a4B. 3√2−2√2=1C. (−a2)3=a6D. (−2ab2)3=−8a3b64.如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A. 2B. 43C. 3 D. 325.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.一次函数y=kx+m的图象如图所示,若点(0,a),(−2,b),(1,c)都在函数的图象上,则下列判断正确的是()A. a<b<cB. c<a<bC. a<c<bD. b<a<c7.在△ABC中,AB=13cm,AC=12cm,BC=5cm,以点B为圆心,5cm为半径作⊙B,则边AC所在的直线和⊙B的位置关系()A. 相切B. 相交C. 相离D. 都有可能8.据史料记载,绵阳市安州区雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为()A. 15mB. 17mC. 18mD. 20m9.若一元二次方程x2−2x−m=0无实数根,则一次函数y=(m+1)x+m−1的图象不经过第()象限.A. 四B. 三C. 二D. 一10.如图,在矩形ABCD中,AB=3,BC=5,OE⊥AC交AD于E,则AE的长为()A. 4B. 3.4C. 2.5D. 2二、填空题(本大题共6小题,共18.0分)11.已知∠A的度数为30°30′30″,则∠A的补角的度数为______ .12.化简:√50−√72=______ .13.方程xx−1=x−1x+2的解是______.14.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(4,0),点C在第一象限内,∠CAB=90°,且BC=6.将△ABC沿x轴向右平移,当点C落在直线y=√3x−2√3上时,线段BC扫过的面积为________________.15.如图,将正方形ABCD绕点A按逆时针方向旋转到正方形ABˈCˈDˈ,旋转角为α(0°<α<180°),连接BˈD、CˈD,若BˈD=CˈD,则∠α=_________.16.从地面竖直向上抛出一个小球.小球的高度ℎ(单位:m)与小球运动时间t(单位:s)之间的关系式是ℎ=24t−4t2.小球运动的高度最大为____m.三、解答题(本大题共9小题,共102.0分)17.解不等式组:{3x−4≤xx+3>12x−118.如图,点B、D、C、F在同一直线,已知AB=DE,∠B=∠EDF,BD=CF(1)求证:△ABC≌△EDF(2)若∠ACB=40°,求∠F的度数.19.如图所示,是反比例函数y=1−2k的图象的一支.根据图象回答下x列问题:(1)图象的另一支在哪个象限?常数k的取值范围是什么?(2)在这个函数图象的某一支上任意取两点A(x1,y1)和B(x2,y2).如果x1<x2,那么y1和y2有怎样的大小关系?(3)在函数y=1−2k的图象上任意取两点A(x1,y1)和B(x2,y2),且xx1<0<x2,那么y1和y2的大小关系又如何?20.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分10099众数a98中位数96b平均数c94.8(1)统计表中,a=______,b=______,c=______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.(k≠0)的图21.如图,已如平行四边形OABC中,点O为坐标顶点,点A(3,0),C(1,2),函数y=kx 象经过点C.(1)求k的值及直线OB的函数表达式:(2)求四边形OABC的周长.22.某地出租车的收费标准是:起步价7元(即行驶路程不超过3km都需付费7元车费);超过3km以后,以每增加1km,加收2.4元(不足1km按1km计),某人乘坐这种出租车从甲地到乙地地共付车费19元,试求此人从甲地到乙地的路程的最大值.23.如图,在△ABC中,AC=BC,点D,E,F分别为AB,AC,BC的中点,连接DE,DF.(1)求证:四边形DFCE是菱形;(2)若∠A=75°,AC=4,求菱形DFCE的面积.24.如图,点D是等边三角形ABC外接圆的BC⏜上一点(与点B,C不重合),BE//DC交AD于点E,BC与AD相交于P.(1)求证:△BDE是等边三角形;(2)如果BD=2,CD=1,求△ABC的边长.(3)求证:CDDB =CPPB.25.在平面直角坐标系xOy中,已知抛物线y=−14x2−x+2,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且cot∠ABC=2,求点B坐标.-------- 答案与解析 --------1.答案:B解析:解:660 000=6.6×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.答案:A解析:解:选书法课的人数有50−13−15−10=12,故选:A.根据总人数减去其它三门的人数解答即可.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3.答案:D解析:【分析】本题考查了同底数幂的乘法运算,同底数幂的乘方,二次根式的运算等知识,根据同底数幂的乘法,同底数幂的乘方,二次根式的运算性质,依次进行计算判断.【解答】解:A、a2·a2=a4,故本选项错误;B、3√2−2√2=√2,故本选项错误;C、(−a2)3=−a6,故本选项错误;D、(−2ab2)3=−8a3b6,故本选项正确.故选D.4.答案:D解析:解:∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE=1AC=1.5.2故选:D.直接利用中位线的定义得出DE是△ABC的中位线,进而利用中位线的性质得出答案.此题主要考查了三角形中位线定理,正确得出DE是△ABC的中位线是解题关键.5.答案:B解析:【分析】本题主要考查的是中心对称图形与轴对称图形的有关知识,根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A.不是轴对称图形,也不是中心对称图形,故错误;B.是轴对称图形,也是中心对称图形,故正确;C.是轴对称图形,不是中心对称图形,故错误;D.不是轴对称图形,也不是中心对称图形,故错误.故选B.6.答案:B解析:【分析】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.由一次函数y=kx+m的图象,可得y随x的增大而减小,进而得出a,b,c的大小关系.【解答】解:由图可得,y随x的增大而减小,∵−2<0<1,∴c<a<b.故选B.7.答案:A解析:【分析】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.先利用勾股定理的逆定理得到∠ACB=90°,则点B到直线AC的距离等于5cm,然后根据直线与圆的位置关系判断边AC所在的直线和⊙B的位置关系.【解答】解:∵AB=13cm,BC=5cm,AC=12cm,∴BC2+AC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴点B到直线AC的距离等于5cm,而⊙B的半径为5cm,∴边AC所在的直线与⊙B相切.故答案为A.8.答案:C解析:【分析】本题考查了垂径定理及勾股定理,连接OA,根据垂径定理求出OD,与OC相加即为CD.【解答】解:连接OA,∵OD⊥AB,∴AD=1AB=12,2在Rt△OAD中,OD=√OA2−AD2=√132−122=5,∴CD=OD+OC=13+5=18(m)故选C.9.答案:D解析:【分析】根据判别式的意义得到△=(−2)2+4m<0,解得m<−1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m−1图象经过的象限.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.【解答】解:∵一元二次方程x2−2x−m=0无实数根,∴△<0,∴△=4−4(−m)=4+4m<0,∴m<−1,∴m+1<1−1,即m+1<0,m−1<−1−1,即m−1<−2,∴一次函数y=(m+1)x+m−1的图象不经过第一象限,故选:D.10.答案:B解析:【分析】连接CE,根据矩形的对边相等可得AD=BC=5,CD=AB=3,根据矩形的对角线互相平分可得OA=OC,然后判断出OE垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AE=CE,设AE=CE=x,表示出DE,然后在Rt△CDE中,利用勾股定理列出方程求解即可.本题考查了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.【解答】如图,连接CE∵矩形ABCD中,AB=3,BC=5,∴AD=BC=5,CD=AB=3,OA=OC,∵OE⊥AC,∴OE垂直平分AC,∴AE=CE,设AE=CE=x,则DE=5−x,在Rt△CDE中,CD2+DE2=CE2,即32+(5−x)2=x2,解得x=3.4,即AE的长为3.4.故选B.11.答案:149°29′30′′解析:【分析】此题主要考查了补角,关键是掌握两角互补,和为180°.根据如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角进行计算.【解答】解:180°−30°30′30″=149°29′30″,故答案为149°29′30″.12.答案:−√2解析:【分析】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.首先化简二次根式,进而合并即可.【解答】解:√50−√72=5√2−6√2=−√2.故答案为:−√2.13.答案:x=14解析:解:方程xx−1=x−1x+2,去分母得:x2+2x=x2−2x+1,解得:x=14,经检验x=14是分式方程的解.故答案为:x=14.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.答案:12√3解析:【分析】本题考查了一次函数的性质、平移的性质、勾股定理以及平行四边形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.首先根据题意作出图形,则可得线段BC扫过的面积应为平行四边形BCC′B′的面积,其高是AC的长,底是点C平移的路程.则可由勾股定理求得AC的长,由点与一次函数的关系,求得A′的坐标,即可求得BB′的值,继而求得答案.【解答】解:如图所示:∵点A、B的坐标分别为(1,0)、(4,0),∴OA=1,OB=4,∴AB=3,∵∠CAB=90°,BC=6,∴AC=√BC2−AB2=3√3,∵将△ABC沿x轴向右平移,点C平移到点C′处,∴A′C′=AC=3√3,∴当y=3√3时,√3x−2√3=3√3,解得:x=5,∴OA′=5,∴BB′=AA′=OA′−OA=5−1=4,∴S▱BCC′B′=4×3√3=12√3,∴线段BC扫过的面积为12√3.故答案为12√3.15.答案:60°解析:【分析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.作DH⊥B′C′于H,交AD′于G,如图,根据旋转的性质得AD′=AD,∠DAD′=α,再根据等腰三角形的性质由B′D=C′D得到B′H=C′H,则AG=DG′,从而在Rt△ADG′中可计算出∠ADG=30°,于是得到∠DAG=60°,从而得到α的度数.【解答】解:作DH⊥B′C′于H,交AD′于G,如图,∵正方形ABCD绕点A按逆时针方向旋转到正方形AB′C′D′,旋转角为α,∴AD′=AD,∠DAD′=α,∵B′D=C′D,∴B′H=C′H,∵四边形AB′C′D′为正方形,∴AG=D′G′,在Rt△ADG′中,AG=12AD′=12AD,∴∠ADG=30°,∴∠DAG=60°,即α=60°.故答案为60°.16.答案:36解析:[分析]小球的高度ℎ(m)与小球运动时间t(s)的函数关系式是二次函数关系式,所以可根据求二次函数最值的方法求解.[详解]解:∵ℎ=24t −4t 2,∴当t =−b 2a =−24−4×2=3时,h 有最大值.即:ℎ=24×3−4×32=36(m).那么小球运动中的最大高度为36m .故答案为:36.[点睛]解本题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果,二次函数y =ax 2+bx +c 的顶点坐标是(−b 2a ,4ac−b 24a )当x 等于−b 2a 时,y 的最大值(或最小值)是4ac−b 24a .17.答案:解:{3x −4≤x①x +3>12x −1②解①得x ≤2,解②得x >−8,所以不等式组的解集为−8<x ≤2.解析:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.分别解两个不等式得到x ≤2和x >−8,然后根据大小小大中间找确定不等式组的解集. 18.答案:证明:(1)∵BD =CF ,∴BD+CD=CF+CD即BC=DF,在△ABC和△EDF中,{AB=DE∠B=∠EDF BC=DF,∴△ABC≌△EDF(SAS);(2)∵△ABC≌△EDF,∠ACB=40°,∴∠F=40°.解析:本题主要考查全等三角形的判定与性质.(1)根据ASA可证明△ABE≌△DCF;(2)根据全等三角形的性质可得∠F=∠ACB=40°.19.答案:解:(1)由反比例函数的对称性,知图象的另一支在第二象限;根据反比例函数的性质,知1−2k<0,解得,k>12;(2)由该函数图象的性质知,当反比例函数y=1−2kx经过第二、四象限时,该函数是减函数,即y随x的增大而增大,∴当x1<x2时,y1<y2;(3)由(1)知1−2k<0.∵x1<0<x2,∴y1=1−2kx1>0,y2=1−2kx2<0,∴y1>y2.解析:(1)根据反比例函数y=kx(k≠0)的性质知,当k<0,该函数的图象经过第二、四象限;(2)根据反比例函数的单调性解答;(3)根据反比例函数图象上点的坐标特征,将A(x1,y1)和B(x2,y2)代入函数y=1−2kx,求得y1和y2的符号,然后比较它们的大小即可.本题主要考查反比例函数图象上点的坐标特征、反比例函数的性质.本题充分利用了反比例函数的图象的单调性.20.答案:96 96 94.5解析:解:(1)八(1)班的成绩为:88、89、92、92、96、96、96、98、98、100,八(2)班成绩为89、90、91、93、95、97、98、98、98、99,所以a=96、c=110×(88+89+92+92+96+96+96+98+98+100)=94.5,b=95+972=96,故答案为:96、96、94.5;(2)设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,一共有20种等可能结果,其中2人来自不同班级共有12种,所以这两个人来自不同班级的概率是1220=35.(1)根据平均数和众数、中位数的定义分别求解可得;(2)先设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,根据题意画出树形图,再根据概率公式列式计算即可.本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.答案:解:(1)依题意有:点C(1,2)在反比例函数y=kx(k≠0)的图象上,∴k=xy=2,∵A(3,0)∴CB=OA=3,又CB//x轴,∴B(4,2),设直线OB的函数表达式为y=ax,∴2=4a,∴a=12,∴直线OB的函数表达式为y=12x;(2)作CD⊥OA于点D,∵C(1,2),∴OC=√12+22=√5,在平行四边形OABC中,CB=OA=3,AB=OC=√5,∴四边形OABC的周长为:3+3+√5+√5=6+2√5,即四边形OABC的周长为6+2√5.解析:(1)根据函数y=kx(k≠0)的图象经过点C,可以求得k的值,再根据平行四边形的性质即可求得点B的坐标,从而可以求得直线OB的函数解析式;(2)根据题目中各点的坐标,可以求得平行四边形各边的长,从而可以求得平行四边形的周长.本题考查待定系数法求反比例函数解析式和一次函数解析式,反比例函数图象上点的坐标特征、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.答案:解:设此人从甲地到乙地的路程的最大值为xkm,由题意得:(x−3)×2.4+7=19,整理得:x−3=5,解得:x=8,答:此人从甲地到乙地的路程的最大值为8km.解析:本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.根据题意找出等量关系:某人乘坐这种出租车从甲地到乙地共付车费=19元.设此人从甲地到乙地的路程的最大值为xkm,由于19>7,所以x>3,即:某人乘坐这种出租车从甲地到乙地需付车费:7+2.4×(x−3),根据等量关系列出方程求解即可,由于不足1km按1km收费,所以此时求出的x 的值即为最大值.23.答案:(1)证明:∵点D,E,F分别是AB,AC,BC的中点,∴DE//CF,DE=12BC,DF//CE,DF=12AC,∴四边形DECF是平行四边形,∵AC=BC,∴DE=DF,∴四边形DFCE是菱形;(2)过E作EG⊥BC于G,∵AC=BC,∠A=75°,∴∠B=∠A=75°,∴∠C=30°,∴EG=12CE=14AC=1,∴菱形DFCE的面积=2×1=2.解析:(1)根据三角形的中位线的性质和菱形的判定定理即可得到结论;(2)过E作EG⊥BC于G,根据等腰三角形和直角三角形的性质即可得到结论.本题考查了菱形的判定和性质,等腰三角形的性质,三角形的中位线的性质,菱形的面积,熟练掌握菱形的判定定理是解题的关键.24.答案:解:(1)∵△ABC是等边三角形,∴∠CBA=∠ACB=60°,∴∠ADB=∠ACB=60°、∠ADC=∠ABC=60°,∵CD//BE,∴∠CDA=∠DEB=60°,∴∠ADB=∠DEB=60°,∴△BDE是等边三角形;(2)如图,过点B作MB⊥CD,交CD延长线于点M,∵∠CDB=∠ADC+∠ADB=120°,∴∠BDM=60°,∵在Rt△BDM中,BD=2,∴DM=1、BM=√3,则CM=CD+DM=2,∴BC=√7;(3)∵CD//BE,∴△CDP∽△BEP,∴CDBE =CPPB,由(1)知BD=BE,∴CDBD =CPBP.解析:(1)由等边△ABC知∠CBA=∠ACB=60°,根据圆周角定理得∠ADB=∠ACB=60°、∠ADC=∠ABC=60°,由CD//BE知∠CDA=∠DEB=60°,据此得出∠ADB=∠DEB=60°,即可得证;(2)作MB⊥CD,交CD延长线于点M,由∠BDM=60°知在Rt△BDM中,BD=2、DM=1、BM=√3,继而由CM=CD+DM=2即可得BC=√7;(3)由CD//BE知△CDP∽△BEP,即可得CDBE =CPPB,根据BD=BE可得答案.本题考查了圆的综合题:熟练掌握圆周角定理和等边三角形的判定与性质;相似三角形的判定与性质.学会构建直角三角形,利用勾股定理计算线段的长.25.答案:解:(1)抛物线y=−14x2−x+2=−14(x+2)2+3的开口方向向下,顶点A的坐标是(−2,3),抛物线的变化情况是:在对称轴直线x=−2左侧部分是上升的,右侧部分是下降的;(2)如图,设直线BC与对称轴交于点D,则AD⊥BD.设线段AD的长为m,则BD=AD⋅cot∠ABC=2m,∴点B的坐标可表示为(−2m−2,3−m),代入y=−14x2−x+2,得3−m=−14(−2m−2)2−(−2m−2)+2.解得m1=0(舍),m2=1,∴点B的坐标为(−4,2).解析:本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点B坐标是本题的关键.(1)由二次函数的性质可求解;(2)如图,设直线BC与对称轴交于点D,则AD⊥BD,设线段AD的长为m,则BD=AD⋅cot∠ABC=2m,可求点B坐标,代入解析式可求m的值,即可求点B坐标.。

2020年广东省广州市中考数学模拟试卷(1) 含详细答案解析

2020年广东省广州市中考数学模拟试卷(1) 含详细答案解析
B .若 = ,则 a= b ?? ??
C.若 a2= b2,则 a= b D .由 4x﹣ 5= 3x+2,得到 4x﹣ 3x=﹣ 5+2 【解答】 解: A、若 ca=cb,( c≠ 0),则 a=b,故此选项不符合题意;
?? ?? B、若 = ,则 a= b,故此选项符合题意;
?? ?? C、若 a2= b2(a, b 同号)则 a=b,故此选项不符合题意; D 、由 4x﹣ 5= 3x+2,得到 4x﹣ 3x=5+2,故此选项不符合题意. 故选: B.
A( 1, 3),与 x 轴的
一个交点 B( 4, 0),直线 y2= mx+n( m≠ 0)与抛物线交于 A,B 两点,下列结论:
① abc> 0;
② 2a+b=0;
③ 当 1< x< 4 时,有 y1< y2;
④ 方程 ax2+bx+c= 3 有两个相等的实数根;

代数式
(??+
??+
-??+ √??2 -4????
2500 元购进一
批车厘子,很快售完;老板又用 4400 元购进第二批车厘子,所购数量是第一批的
2 倍,
由于进货量增加,进价比第一批每千克少了
3 元.”
第 4页(共 16页)
( l)第一批车厘子每千克进价多少元?
( 2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了
a%,售出 80%
后,为了尽快售完, 决定将剩余车厘子在第二批进价的基础上每千克降价
一元一次方程有(

A .1 个
B.2 个
C. 3 个
6.( 5 分)关于多项式 6x2﹣ 3x2y3﹣4y3﹣ 10,下列说法正确的是(

2020年广东省广州市海珠区中考数学一模试卷

2020年广东省广州市海珠区中考数学一模试卷

2020年广东省广州市海珠区中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中是无理数的是()B. √6C. 0.3⋅D. 13A. 132.下列图形中是中心对称图形的是()A. B. C. D.3.下列计算正确的是()A. (a3)2=a5B. a3⋅a5=a8C. a5+a2=a7D. a6÷a2=a34.以下列各组线段为边,能组成三角形的是()A. 2cm,3cm,5cmB. 3cm,3cm,6cmC. 5cm,8cm,2cmD. 4cm,5cm,6cm5.20名同学的年龄情况如下表:年龄(岁) 12 13 14 15 16人数 1 4 3 5 7则这名同学年龄的众数和中位数分别是A. 15,14B. 15,15C. 16,14D. 16,156.对于函数y=−3x+1,下列结论正确的是()A. 它的图象必经过点(1,3)B. 它的图象经过第一、二、四象限C. 当x>0时,y<0D. y的值随x值的增大而增大7.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是()A. (−3,3)B. (3,−3)C. (−2,4)D. (1,4)8.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B.C. D.9. 如图,在平行四边形ABCD 中,点E 在DA 的延长线上,且AE =13AD ,连接CE 交BD 于点F ,交AB 于点G ,则S △BGC :S 四边形ADCG 的值是( )A. 35B. 53C. 57D. 3410. 对于三个数字a ,b ,c ,用max{a,b ,c}表示这三个数中最大数,例如max{−2,−1,0}=0,max{−2,−1,a}={a,(a ≥−1)−1,(a <−1).如果max{3,8−2x,2x −5}=3,则x 的取值范围是( ) A. 23≤x ≤92B. 52≤x ≤4C. 23<x <92D. 52<x <4二、填空题(本大题共6小题,共18.0分)11. 若√2−x 在实数范围内有意义,则x 的取值范围是______.12. 如图,点A ,B ,C 在⊙O 上,∠AOB =72°,则∠ACB 等于______.13. 某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数−(2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是______.甲 乙 丙 丁 x −7 887s 211.20.91.814. 15. 如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于E ,F 两点,若点E 的坐标是(−3,−1),则点F 的坐标是______.16. 如图,在△ABC 中∠A =60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,连接PM ,PN ,则下列结论:①PM =PN ;②AMAB =AN AC;③△PMN 为等边三角形;④当∠ABC =45°时,BN =√2PC .其中正确的是______.三、解答题(本大题共9小题,共102.0分)17.(1)计算:2sin45°+|−√2|−(π−2020)0−√18;(2)解分式方程:3x−2−x2x−4=12.18.已知:如图,E,F分别是平行四边形ABCD的边AD,BC的中点.求证:AF=CE.19.如图,甲袋子中有3张除数字外完全相同的卡片,乙袋子中有2张除数字外完全相同的卡片,若先从甲袋子中抽出一张数字为a的卡片,再从乙袋子中抽出一张数字为b的卡片,两张卡片中的数字,记为(a,b).(1)请用树形图或列表法列出(a,b)的所有可能的结果;(2)求在(a,b)中,使方程ax2+bx+1=0没有实数根的概率.20.先化简,再求值:(a2a−2−4a−2)×1a2+2a,其中a满足方程x2+5x+6=0.21.如图,已知△ABC中,AB=BC=10,tan∠ABC=3.4(1)求边AC的长;(2)设边BC的垂直平分线EF与边AB、BC的交点分别为E,F,求AE的值.BE22.矩形ABCD中,点E是DC上一点,连接AE.(1)在BC上取一点F,使∠AFE=90°,且BF<FC.(用尺规作图,找出点,保留作图痕迹);(2)连接AF,EF,延长EF与AB的延长线交于点G,求证:BF2=BG⋅AG−BG2.(k≠0)与直23.在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(−2,0),与y轴交于点B.双曲线y=kx 线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标.(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值和点Q的坐标;<S<1,求k的取值范围.(3)若k>0,连接PO,记△POB的面积为S.若1224.已知二次函数l1:y=x2+6x+5k和l2:y=kx2+6kx+5k,其中k≠0且k≠1.(1)分别直接写出关于二次函数l1和l2的对称轴及与y轴的交点坐标;(2)若两条抛物线l1和l2相交于点E,F,当k的值发生变化时,判断线段EF的长度是否发生变化,并说明理由;(3)在(2)中,若二次函数l1的顶点为M,二次函数l2的顶点为N;①当k为何值时,点M与点N关于直线EF对称?②是否存在实数k,使得MN=2EF?若存在,求出实数k的值,若不存在,请说明理由.25.圆内接四边形ABCD,点A是BD⏜的中点,∠ADC=120°.(1)求∠ABC的度数,并求证:AB+DC=BC;(2)连接AC,BD相交于点H,如图1,若AD=3,BC=5,求HD⋅AC的值;(3)在(2)的条件下,点E是四边形ABCD内一动点,点P在线段BC上,且PE=1,PC=3,以点D为旋转中DE,如图2,连接PF,试探索PF的长是否有心,将DE逆时针旋转120°,并缩短得到线段DF,使得DF=23最小值,若有请求出该值;若没有,请说明理由.答案和解析1.【答案】B,0.3⋅,13是有理数,【解析】解:13√6是无理数,故选:B.根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】C【解析】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不合题意;故选:C.根据中心对称图形定义进行解答即可.此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.【答案】B【解析】解:A、(a3)2=a6,错误;B、a3⋅a5=a8,正确;C、a5与a2不是同类项,不能合并,错误;D、a6÷a2=a4,错误;故选:B.根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.本题考查同底数幂的除法,合并同类项,幂的乘方.题目比较简单,解题需细心.4.【答案】D【解析】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、3+3=6,不能够组成三角形;C、2+5=7<8,不能组成三角形;D、4+5>6,能组成三角形.故选:D.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5.【答案】D【解析】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选:D.众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.【答案】B【解析】解:A、当x=1时,y=−3x+1=−2,则点(1,3)不在函数y=−3x+1的图象上,所以A选项错误;B、k=−3<0,b=1>0,函数图象经过第一、二、四象限,所以B选项正确;C、当x>0时,y<1,所以C选项错误;D、y随x的增大而减小,所以D选项错误.故选B.根据一次函数图象上点的坐标特征对A进行判断;根据一次函数的性质对B、D进行判断;利用x>0时,函数图象在y轴的左侧,y<1,则可对C进行判断.本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.7.【答案】A【解析】解:△A′B′C的位置如图.A′(−3,3).故选:A.根据题意画出图形,确定对应点的坐标.本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心C,旋转方向逆时针,旋转角度90°,通过画图得A′坐标.8.【答案】C【解析】【分析】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b 的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】<解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=−b2a 0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y =bx +a 来说,由图象可以判断,a <0,b >0;而对于抛物线y =ax 2+bx 来说,图象开口向下,对称轴x =−b2a >0,位于y 轴的右侧,故符合题意,D 、对于直线y =bx +a 来说,由图象可以判断,a >0,b >0;而对于抛物线y =ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误. 故选C . 9.【答案】A【解析】解:∵四边形ABCD 为平行四边形, ∴AD//BC ,AD =BC ,AB//CD , ∵AE//BC ,∴△AEG∽△BCG ,∴S △AEG S △BCG=(AE BC )2=(AE AD )2=(13)2=19,即S △BCG =9S △AEG , ∵AG//CD ,∴△EAG∽△EDC ,∴S △EAG S △EDC=(EA ED )2=(EA EA+AD )2=(14)2=116,即S △EDC =16S △EAG , ∴S 四边形ADCG =15S △EAG ,∴S △BGC :S 四边形ADCG =9S △AEG :15S △EAG =3:5. 故选:A .根据平行四边形的性质得到AD//BC ,AD =BC ,AB//CD ,再证明△AEG∽△BCG ,利用相似的性质得到S △AEGS △BCG=19,证明△EAG∽△EDC ,利用相似比得到S △EAGS△EDC=116,所以S 四边形ADCG =15S △EAG ,然后计算S △BGC :S 四边形ADCG 的值.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质. 10.【答案】B【解析】解:∵max{3,8−2x,2x −5}=3, 则{3≥8−2x 3≥2x −5, ∴x 的取值范围为:52≤x ≤4, 故选:B .根据max{a,b ,c}表示这三个数中最大数,对于max{3,8−2x,2x −5}=3,可得不等式组{3≥8−2x3≥2x −5,可得结论;本题考查了不等式的应用及新定义问题,理解新定义,得到不等式组是解题的关键. 11.【答案】x ≤2【解析】解:由题意得,2−x ≥0, 解得,x ≤2, 故答案为:x ≤2.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键. 12.【答案】36°【解析】解:∵∠AOB 与∠ACB 都对AB ⏜,∠AOB =72°, ∴∠ACB =12∠AOB =36°,故答案为:36°利用圆周角定理求出所求即可.此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键. 13.【答案】丙【解析】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小, 所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组. 故答案为:丙.先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.14.【答案】(−12,−94)【解析】解:∵抛物线y =x 2+bx +c 经过点A(−2,0)、B(1,0)两点, ∴{4−2b +c =01+b +c =0,解得:{b =1c =−2,∴y =x 2+x −2=(x +12)2−94,∴顶点坐标为(−12,−94), 故答案为:(−12,−94).利用待定系数法确定b 、c 的值,然后求得顶点坐标即可.考查了二次函数的性质,解题的关键是利用待定系数法确定二次函数的解析式,难度不大. 15.【答案】(−3,−9)【解析】解:过点P 作AP ⊥EF 交EF 于点A ,连接PE ,设OP =x , ∵⊙P 与x 轴相切于原点O , ∴OP ⊥OE ,∵平行于y 轴的直线交⊙P 于E ,F 两点, ∴四边形APOB 是矩形, ∴AB =OP =x ,∵点E 的坐标是(−3,−1),∴AP =OB =3,AE =AB −BE =x −1, 在Rt △ABE 中,32+(x −1)2=x 2, 解得x =5, ∴AE =4, ∵AF =AE ,∴EF=8,∴BF=EF+BE=9,∴点F的坐标是(−3,−9).故答案为(−3,−9).过点P作AP⊥EF交EF于点A,连接PE,设OP=x,由点E的坐标易求AP=OB=3,AE=AB−BE=x−1,在Rt△ABE中,由勾股定理可得32+(x−1)2=x2,解得x的值,即可求出BF的长,进而可求出点F的坐标.本题综合考查了圆形的性质和坐标的确定以及勾股定理的运用和矩形的判定及其性质,是综合性较强,难度中等的综合题,解题的关键是根据勾股定理求出⊙P的半径,从而得到F的坐标.16.【答案】①②③④【解析】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=12BC,PN=12BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴AMAB =ANAC,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°−60°−30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=√2PB=√2PC,正确.故答案为:①②③④.根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM= 60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN= 60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③正确;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=√2PB=√2PC,判断④正确.本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.17.【答案】解:(1)原式=2×√22+√2−1−3√2=√2+√2−1−3√2=−1−√2;(2)分式方程:3x−2−x2(x−2)=12,去分母得:6−x=x−2,解得:x=4,检验,把x=4代入得:2(x−2)≠0,∴分式方程的解为x=4.【解析】(1)原式利用特殊角的三角函数值,绝对值的代数意义,零指数幂法则,以及二次根式性质计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】证明:方法1:∵四边形ABCD是平行四边形,且E,F分别是AD,BC的中点,∴AE=CF,又∵四边形ABCD是平行四边形,∴AD//BC,即AE//CF.∴四边形AFCE是平行四边形,∴AF=CE;方法2:∵四边形ABCD是平行四边形,且E,F分别是AD,BC的中点,∴BF=DE,又∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,在△ABF和△CDE中,{AB=CD ∠B=∠D BF=DE,∴△ABF≌△CDE(SAS)∴AF=CE.【解析】方法一:根据一组对边平行且相等的四边形是平行四边形,证明AE=FC,AE//FC即可;方法二:利用“边角边”证明△ABF≌△CDE.本题考查了平行四边形的判断方法,平行四边形可以从边、角、对角线三方面进行判定,在选择判断方法时,要根据题目现有的条件,选择合理的判断方法.19.【答案】解:(1)画树状图如图:所有可能的结果有6个为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2);(2)在(a,b)中,使方程ax2+bx+1=0没有实数根的结果有5个,∴在(a,b)中,使方程ax2+bx+1=0没有实数根的概率为56.【解析】(1)画出树状图,即可得出答案;(2)在(a,b)中,使方程ax2+bx+1=0没有实数根,即b2−4a<0的结果有5个,由概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】解:(a2a−2−4a−2)×1a2+2a=a2−4a−2⋅1a(a+2)=(a+2)(a−2)a−2⋅1a(a+2)=1a,解方程x2+5x+6=0得:x=−2或−3,∵分式中a不能为±2,0,∴a=−3,当a=−3时,原式=1−3=−13.【解析】先算括号内的减法,再算乘法,求出方程的解,最后代入求出即可.本题考查了解一元二次方程和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.21.【答案】解:(1)作A作AE⊥BC,如图1,在Rt△ABD中,tan∠ABC=ADBD =34,AB=10,∴AD=6,BD=8,∴CD=BC−BD=10−8=2,在Rt△ACD中,根据勾股定理得:AC=√22+62=2√10;(2)如图2,连接CE,∵EF垂直平分BC,∴BE=CE,BF=CF=5,∵tan∠EBF=EFBF =34,∴EF=154,在Rt△BEF中,根据勾股定理得:BE=√BF2+EF2=254,∴AE=10−254=154,则AEBE =35.【解析】(1)过A作AD⊥BC,在直角三角形ABD中,利用锐角三角函数定义求出AD、BD的长,再由勾股定理求得AC即可;(2)由EF垂直平分BC,求出BF的长,利用锐角三角函数定义求出EF的长,利用勾股定理求出BE的长,进而求出AE的长,即可求出所求.此题考查了解直角三角形,线段垂直平分线的性质,以及等腰三角形的性质,构造直角三角形是解本题的关键.22.【答案】解:(1)根据题意作图如下,(2)如图2,∵∠AFE=90°,∴∠AFG=90°,∵四边形ABCD为矩形,∴∠ABC=∠GBF=90°,∴∠BAF+∠AFB=∠BAF+∠G=90°,∴∠AFB=∠G,∴△ABF∽△FBG,∴BFBG =ABFB,∴BF2=BG⋅AB,∴BG2=BG(AG−BG),∴BF2=BG⋅AG−BG2.【解析】(1)先作AE 的垂直平分线,与AE 交于点O ,再以O 为圆心,OA 长为半径,画弧,与BC 交于两点,则左边交点定为F ,连接AF 、EF ,则∠AEF 为所求作的角;(2)证明△ABF∽△FBG ,由比例线段便可得结论.本题主要考查尺规作图,圆周角定理,矩形的性质,相似三角形的性质与判定,关键是证明三角形相似. 23.【答案】解:(1)∵直线l :y =x +b 与x 轴交于点A(−2,0)∴−2+b =0∴b =2∴一次函数解析式为:y =x +2∴直线l 与y 轴交于点B 为(0,2)∴点B 的坐标为(0,2);(2)∵双曲线y =k x (k ≠0)与直线l 交于P ,Q 两点∴点P 在直线l 上∴当点P 的横坐标为2时,y =2+2=4∴点P 的坐标为(2,4)∴k =2×4=8,∴y =8x, 解{y =8x y =x +2得{x =2y =4或{x =−4y =−2, ∴Q(−4,−2);(3)如图:∵k >0,S △BOP =12×2×x p =x p ,∵12<S <1, ∴12<x p <1,∴52<y p <3, ∴54<k <3;综上,k 的取值范围为:54<k <3.【解析】(1)有点A 的坐标,可求出直线的解析式,再由解析式求出B 点坐标.(2)把点P 的横坐标代入直线解析式即可求得点P 的纵坐标,然后把点P 代入反比例函数解析式即可得k 值,然后解析式联立,解方程组即可求得Q 点的坐标.(3)根据△POB 的面积为S 的取值范围求点P 的横坐标取值,然后把横坐标代入直线解析式,即可求得点P 纵坐标的取值范围,进而求得k 的取值范围.本题主要涉及一次函数与反比例函数相交的知识点.根据交点既在一次函数上又在反比例函数上,即可解决问题. 24.【答案】解:(1)二次函数l 1的对称轴为x =−b 2a =−62×1=−3,令x =0,则y =5k ,故该抛物线和y 轴的交点坐标为(0,5k);同理可得:l 2的对称轴为x =−3,与y 轴的交点坐标(0,5k);(2)线段EF 的长度不发生变化,理由:当y 1=y 2时,x 2+6x +5k =kx 2+6kx +5k ,整理得:(k −1)(x 2+6x)=0.∵k ≠1,∴x 2+6x =0,解得:x 1=0,x 2=−6.不妨设点E 在点F 的左边,则点E 的坐标为(−6,5k),点F 的坐标为(0,5k),∴EF =|0−(−6)|=6,∴线段EF 的长度不发生变化;(3)①由y 1=x 2+6x +5k =(x +3)2+5k −9得M(−3,5k −9),由y 2=kx 2+6kx +5k =k(x +3)2−4k 得N(−3,−4k).∵直线EF 的关系式为y =5k ,且点M 与N 关于直线EF 对称,∴−4k −5k =5k −(5k −9),解得:k =−1,∴当k 为−1时,点M 与N 关于直线EF 对称;②∵MN =|(5k −9)−(−4k)|=|9k −9|,MN =2EF =12,∴|9k −9|=12,解得k 1=73,k 2=−13,∴实数k 为73或−13.【解析】(1)二次函数l 1的对称轴为x =−b 2a =−62×1=−3,令x =0,则y =5k ,故该抛物线和y 轴的交点坐标为(0,5k);同理可得l 2的对称轴为x =−3,与y 轴的交点坐标(0,5k);(2)可令y 1=y 2,求出点E 、F 的横坐标,从而得到点E 、F 的坐标,进行得到EF 的长,就可解决问题;(3)易得点M 、N 的坐标及直线EF 的关系式,然后根据条件建立关于k 的方程,就可解决问题.本题主要考查了二次函数的性质、解一元二次方程、轴对称的性质、解绝对值方程等知识,需要注意的是当两点横坐标相同时,两点之间的距离应为这两点纵坐标差的绝对值.25.【答案】解:(1)如图1,在BC 上截取BM =AB ,连接AM ,∵∠ADC =120°,∴∠ABC =60°,∴△ABM 为等边三角形,∴BM =AB ,∠AMB =60°,∴∠AMC =∠ADC =120°,∵A 的中点,∴AD =AB =BM ,∠ACB =∠ACD ,∵∠ACB =∠ACD ,∠AMC =∠ADC ,AD =AM ,∴△AMC≌△ADC(AAS),∴MC =DC ,∴AB +CD =BM +MC =BC .(2)∵点A是BD⏜的中点,∴∠ACD=∠ADB,∵∠CAD=∠CAD,∴△ADC∽△AHD,∴ACAD =DCHD,∴HD⋅AC=AD⋅DC,由(1)知,AB=AD=3,AB+DC=BC,∴DC=BC−AB=2,∴HD⋅AC=3×2=6;(3)PF的最小值为√181−23,理由如下:如图2,连接CF,延长BA至K,使AK=32PC,连接KE,过点K作KN⊥PC于N,∵CDAD =23,DFDE=23,∴CDAD =DFDE,又∵∠ADC=∠EDF=120°,∴∠ADE=∠CDF,∴△ADC∽△EDF,∴CFAE =CDAD=23,∠DAE=∠DCF,∵四边形ABCD是圆内接四边形,∴∠KAD=∠BCD,∴∠KAE=∠PCF,又∵CFAE =23=PCAK,∴△PCF∽△KAE,∴PFKE =CFAE=23,∴PF=23KE,∵PE=1,PC=3,∴点E在以点P为圆心,PE长为半径的圆上,∴当点K ,点E ,点P 三点共线时,KE 有最小值,即PF 有最小值,∵BK =BA +AK =3+32PC =3+92=152,∠ABC =60°,∠KNB =90°,∴∠BKN =30°,BN =154,KN =√3BN =15√34, ∵PN =BN −BP =154−(5−3)=74, ∴PK =√KN 2+PN 2=√67516+4916=√1812, ∴EK 的最小值为√1812−1, ∴PF 的最小值为23KE =√181−23.【解析】(1)在BC 上截取BM =AB ,连接AM ,由“AAS ”可证△AMC≌△ADC ,可得MC =DC ,可得结论;(2)通过证明△ADC∽△AHD ,可得AC AD =DC HD ,即可求解;(3)如图2,连接CF ,延长BA 至K ,使AK =32PC ,连接KE ,过点K 作KN ⊥PC 于N ,通过证明△PCF∽△KAE ,可得PF =23KE ,当点K ,点E ,点P 三点共线时,KE 有最小值,即PF 有最小值,由直角三角形的性质可求KP 的值,即可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是本题的关键.。

广州市2020年数学中考模拟试卷3(含答案)

广州市2020年数学中考模拟试卷3(含答案)

广州市2020年九年级中考模拟试卷数学科试卷本试卷共三大题25小题,共4页,满分150分.考试时间120分钟,不使用...计算器. 注意事项: 1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在问卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔(除作图外)、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.a (0a ≠)的相反数是( * ). (A) a (B) a - (C)1a(D) a 2.将如图所示的图形绕中心按逆时针方向旋转120°后可得到的图形是( * ).(A) (B) (C) (D)3.北京气象部门测得冬季某周内七天的气温如下:3,5,5,4,6,5,7(单位:°C ),则这组数据的平均数和众数分别是( * ).(A) 6,5 (B) 5.5,5 (C) 5,5 (D) 5,4 4.下列运算正确的是( * ).(A) 2233a a -= (B) 842a a a ÷= (C) ()2239a a +=+ (D) ()23639aa -=5.如图,在△ABC 中,AC=AD=DB ,∠C=70°,则∠CAB 的度数为( * ). (A) 75° (B) 70° (C) 40° (D) 35°6.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( * ).(A) 2010x x +>⎧⎨->⎩ (B)2010x x +>⎧⎨-<⎩ (C) 2010x x +<⎧⎨->⎩ (D) 2010x x +<⎧⎨-<⎩7.下列命题是真命题的是( * ).(A) 一元二次方程一定有两个实数根 (B) 对于反比例函数2y x=,y 随x 的增大而减小 (C) 有一个角是直角的四边形是矩形(D) 对角线互相平分的四边形是平行四边形第5题 第6题第2题8.在同一直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象有公共点,则( * ).(A) 120k k +< (B) 120k k +> (C) 120k k < (D) 120k k > 9.某几何体的三视图如图所示,则该几何体的体积为( * ).(A) 3 (B) 33 (C) 32 (D) 62 10.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在14x -<<的范围内有解,则t 的取值范围是( * ).(A) 05t << (B) 45t -≤< (C) 40t -≤< (D) 4t ≥-二、填空题(本大题共6小题,每小题3分,共18分.)11.如图,直线a ,b 被直线c 所截,且a ∥b .若∠1=38°,则∠2= * °.12.分解因式:24a b b -= * .13.已知点P 在线段AB 的垂直平分线上,PA =4cm ,则PB = * cm .14.已知扇形的面积为3π,半径为3,则该扇形的圆心角度数为 * °. 15.如图,在4×4的正方形网格图中有△ABC ,则∠ABC 的余弦值为 * .16.如图,AB 为半圆O 的直径,AD ,BC 分别切⊙O 于A ,B 两点,CD 切⊙O 于点E ,连接OD ,OC ,下列结论:①∠DOC =90°,②AD BC AB +=,③ABCD S CD OA =梯形,④22AOD BOC BO S BC S ∆∆=,其中正确的有 * (填序号).三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分10分)计算:(1)()20181233π-⎛⎫+-+-- ⎪⎝⎭;(2)2cos 604sin 453tan 30︒+︒-︒18.(本题满分8分)如图,在菱形ABCD 中, M ,N 分别为BC ,CD 的中点. 求证:AM=AN .第16题 第15题 第11题 第9题第18题已知221112111x x A x x x x ⎛⎫-+=-÷⎪-+--⎝⎭. (1)化简A ;(2)若2230x x --=,求A 的值.20.(本题满分10分)为了解本校学生平均每天的课外学习时间情况,学校随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学习时间为t (小时): A :t <1,B :1≤t <1.5,C :1.5≤t <2,D :t ≥2,根据调查结果绘制了如图所示的两副不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了 * 名学生,请将条形统计图补充完整; (2)求表示B 等级的扇形圆心角α的度数;(3)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,请用列表或画树状图的方法求选出的2人中至少有1人来自甲班的概率.21.(本题满分12分)如图,在平面直角坐标系中,四边形ABCD 为正方形,点A 的坐标为(0,3),点B 的坐标为(0,-4),反比例函数ky x=(0k ≠)的图象经过点C . (1)求反比例函数的解析式;(2)点P 是反比例函数在第二象限的图象上的一点,若△PBC 的面积等于正方形ABCD 的面积,求点P 的坐标.22.(本题满分12分)某商店销售一种旅游纪念品,第一周的营业额为200元,第二周该商店对纪念品打8折销售,结果销售量增加3件,营业额增加了40%. (1)求该商店第二周的营业额;(2)求第一周该种纪念品每件的销售价格.第21题已知,如图,△ABC 中,∠C =90°,E 为BC 边中点. (1)尺规作图:以AC 为直径,作⊙O ,交AB 于点D (保留作图痕迹,不需写作法).(2)连结DE ,求证:DE 为⊙O 的切线; (3)若AC=5,DE=158,求BD 的长.24.(本题满分14分)如图1,图2,△ABC 中,BF ,CE 分别为AC ,AB 边上的中线,BF ⊥CE 于点P . (1)如图1,当BC=62,∠PCB=45°时,PE= * ,AB= * ;(2)如图2,猜想2AB 、2AC 、2BC 三者之间的数量关系,并给予证明;(3)如图3,ABCD 中,点M ,N 分别在AD ,BC 上,AD=3AM ,BC =3BN ,连接AN ,BM ,CM ,AN 与BM 交于点G ,若BM ⊥CM 于点M ,AB=4,AD=36,求AN 的长.25.(本题满分14分)如图,已知抛物线()22y a x c =-+与x 轴从左到右依次交于A ,B 两点,与y 轴交于点C ,其中点B 的坐标为(3,0),点C 的坐标为(0,-3),连接AC ,BC . (1)求该抛物线的解析式;(2)若点P 是该抛物线的对称轴上的一个动点,连接PA ,PB ,PC ,设点P 的纵坐标为h ,试探究:①当h 为何值时,PA PC -的值最大?并求出这个最大值.②在P 点的运动过程中,∠APB 能否与∠ACB 相等?若能,请求出P 点的坐标;若不能,请说明理由.第23题备用图第25题第24题图1 图2 图32020年九年级中考模拟试卷数学科参考答案一、选择题:(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BBCDABDDCB二、填空题:(每小题3分,共18分)题号 11 1213 14 1516 答案 142()()2121b a a +-4120255①③三、解答题:注:下面只是给出各题的一般解法,其余解法对应给相应的分数17.(本题满分10分)解:(1)原式=22+2191-+- ……………………4分=327+ ……………………5分(2)原式=2134+23223⨯⨯-⨯……………………3分 =22 ……………………5分18.(本题满分8分)证明:∵四边形ABCD 是菱形,∴AB=BC=CD=AD ,∠B =∠D , ……………………2分 ∵M ,N 分别是BC ,CD 的中点,∴BM=12BC ,DN=12CD ,∴BM=DN . ……………………4分 在△ABM 和△ADN 中,AB AD B D BM DN ⎧⎪⎪⎩∠∠⎨===,∴△ABM ≌△ADN (SAS ) …………………7分 ∴AM=AN . ……………………8分 19.(本题满分10分)()()()21111111x x x A x x x ⎡⎤+--=-⎢⎥-+-⎢⎥⎣⎦解: ……………………3分 111111x x x x x +-⎛⎫=- ⎪--+⎝⎭ ……………………4分 111x x x x -=-+ ……………………5分 1xx =+ ……………………6分(2)由2230x x --=得13x =,21x =- ……………………8分10x +≠,1x ∴≠-331314x A x ∴===++ ……………………10分 20.(本题满分10分)解:(1)200,如图; ……………………2分 (2)∵B 等级所占的比为:30100%15%200⨯=, ∴15%36054ooα=⨯= ………………4分(3)设甲班的2名同学分别用1A ,2A 表示,乙班3名同学分别用1B ,2B ,3B 表示,随机选出两人参加座谈的树状图如下:……………………7分共有20种等可能结果,而选出2人中至少有1人来自甲班的有14种, …………9分∴所求概率为:1472010=. ……………………10分 21.(本题满分12分)解:(1)∵点A 的坐标为(0,3),点B 的坐标为(0,-4),∴AB =7 ……………1分∵四边形ABCD 为正方形,∴点C 的坐标为(7,-4) ……………………2分代入ky x=,得k =-28, ……………………4分 ∴反比例函数的解析式为28y x=-; ……………………5分(2)设点P 到BC 的距离为h .∵△PBC 的面积等于正方形ABCD 的面积, ∴12×7×h =72,解得h =14, ……………………8分 ∵点P 在第二象限,y P =h -4=10, ……………………10分此时,x P =2810-=145-, ……………………11分 ∴点P 的坐标为(145-,10). ……………………12分22.(本题满分12分)解:(1)200(140%)280⨯+= ……………………2分答:该商店第二周的营业额为280元. ……………………3分 (2)设该种纪念品第一周每件的销售价格为x 元 ……………4分依题意,列方程得28020030.8x x=+ ……………………8分 解得50x = ……………………10分经检验50x =是所列方程的解且符合题意. …………………11分 答:该种纪念品第一周每件的销售价格是50元. ……………12分23.(本题满分12分) (1)解:如图1, ……………………3分 (2)证明:如图2,连结OD ,CD ,∵AC 为直径,∴∠ADC=90°, ……………4分∵E 为BC 边中点,∴DE 为Rt △BDC 斜边BC 上的中线,∴DE=EC=BE ,∴∠1=∠2, ………………5分 ∵OC=OD ,∴∠3=∠4,∴∠ODE =∠2+∠4=∠1+∠3=∠ACB =90° ……6分 ∴OD ⊥DE ,∴DE 为⊙O 的切线; …………7分 (3)解:∵E 为BC 边中点,∴BC =2DE =154……8分 ∵AC=5 ∴AB=254………………9分 ∵∠DBC =∠CBA , ∴Rt △BDC ∽Rt △BCA, ………10分∴BD BC BC AB=,即154152544BD =, ……………11分 ∴BD=94. ………………12分24.(本题满分14分)解:(1)3,65 ………………2分(2)猜想:2225AB AC BC +=, ………………3分证明:连接EF ,∵BF ,CE 是△ABC 的中线, ∴EF 是△ABC 的中位线,∴EF ∥BC ,EF=12BC , PE PC =PF PB =12, ………………4分设 PF=m ,PE=n ,则PB=2m ,PC=2n , 在Rt △PBC 中,()()22222m n BC += ① 在Rt △PBE 中,()22222AB n m ⎛⎫+= ⎪⎝⎭② 在Rt △PCF 中,()22222AC m n ⎛⎫+= ⎪⎝⎭③由①,②,③得:2225AB AC BC += ………………7分(3)法一:在△AGM 与△NGB 中,AGM NGB AMG NBG AM NB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AGM ≌△NGB ,∴BG=MG ,AG=NG , ………………8分∴BG 是△ABN 的中线,如图1,取AB 的中点F ,连接NF 并延长交DA 的延长线于E ………………9分 同理,△AEF ≌△BNF ,∴AE=BN ,EM =2BN =NC ,∵EM ∥NC ,∴四边ENCM 是平行四边形 ………………10分 ∴EN ∥CM , ∵BM ⊥CM ,图2图1∴EN ⊥BM ,即BG ⊥FN ………………11分 ∵NF ,BG 都为△ABN 的中线,由(2)知,2225AB AN BN += ………………12分 ∵AB=4,BN =13AD=6, ∴()222456AN +=⨯,∴AN =14. ………………14分法二:如图2,作BP ⊥DA 延长线于点P ,CQ ⊥AD 于点Q ,在ABCD 中,AD=BC 易知四边形PBCQ 为矩形∴PQ=BC ∴PA=QD ………………8分 依题意:AM=BN=6,MD=26 设PA=QD=x ,PB=CQ=y , ∴PM=x+6,MQ=26-x ∵BM ⊥CM 于点M ,∠BMC=90° ∴∠BMP+∠CMQ=90° 又∠BMP+∠PBM=90° ∴∠PBM=∠CMQ又∵∠BPM=∠MQC=90° ∴△PBM ∽△QMC ∴PM PB QC QM =,即626x yy x+=- 化简得:22612y x x =-++ ① ………………10分 作AH ⊥BC 于点H ,则BH=PA=x ,AH=y , 在Rt △ABH 中,222AH AB BH =-∴22224=16y x x =-- ② ………………11分 由①②得:22612=16x x x -++- ∴263x =,2403y = ………………12分在Rt △AHN 中,AN=22+AH HN =()22+6y x-=24026+633⎛⎫- ⎪ ⎪⎝⎭=14. ………………14分25.(本题满分14分)图2解:(1)把B (3,0),C (0,-3)代入()22y a x c =-+解得:1a =-,1c = ………………2分 ∴此抛物线的解析式为()222143y x x x =--+=-+-; ………………3分(2)①∵抛物线243y x x =-+-的对称轴为直线x=2 ,∴设点P (2,h ) ………4分由三角形的三边关系可知,|PA -PC |<AC ,∴当P ,A ,C 三点共线时,|PA -PC |的值最大,为AC 的长度,∴延长CA 交直线x=2于点P ,则点P 为所求. ……5分 求得A (1,0),又C (0,-3), 则有OA =1,OC =3,∴AC =22OA OC +=10. ………………6分 设直线AC 的解析式为y kx b =+(0k ≠),则03k b b +=⎧⎨=-⎩, 解得33k b =⎧⎨=-⎩.∴直线AC 的解析式为33y x =-,…………7分∴h =3×2-3=3,∴当h=3时,|PA -PC |的值最大,最大值为10. …8分②设直线x=2与x 轴的交点为点D ,作△ABC 的外接圆⊙E 与直线x=2位于x 轴下方的部分的交点为P 1,P 1关于x 轴的对称点为P 2,则P 1、P 2均为所求的点. ………9分 1∴∠AP 1B=∠ACB ,且射线DE 上的其它点P 都不满足∠APB =∠ACB . ∵圆心E 必在AB 边的垂直平分线即直线x=2上. ∴点E 的横坐标为2.又∵OB=OC=3,BC 边的垂直平分线即直线y=-x . ∴圆心E 也在直线y=-x 上∴E (2,-2). ………………11分 在Rt △ADE 中,DE=2,AD=12AB=12(OB -OA )=12(3-1)=1, 由勾股定理得22AD DE +2212+5 ………………12分∴EP 15 ∴DP 1=DE+EP 1=5∴P 1(2,5 ………………13分 由对称性得P 2(2,5∴符合题意的点P 的坐标为P 1(2,5P 2(2,5 …………14分。

2020年广东省广州中考数学模拟试题五

2020年广东省广州中考数学模拟试题五考生须知 :1、本试卷分试题卷和答题卷两部分。

总分值120分,考试时刻120分钟。

2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号。

3、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

4、考试终止后,上交试题卷和答题卷。

一、精心选一选:〔本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项为哪一项符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!〕 1.以下等式正确的选项是〔 〕A .3(1)1--=B .236(2)(2)2-⨯-=C .826(5)(5)5-÷-=-D .0(4)1-=2.一元二次方程230x x -=的解是〔 〕 A .0x =B .1203x x ==,C .1210,3x x ==D .13x = 3. 假设23a b b -=,那么ab=〔 〕 A .13B .23C .43D .534.在半径为18的圆中,120°的圆心角所对的弧长是〔 〕 A .12B .10C .6D .35. 如图,在ABC ∆中,AD 平分BAC ∠且与BC 相交于点D , ∠B = 40°,∠BAD = 30°,那么C ∠的度数是〔 〕 A .70° B .80° C .100° D .110°6.x+y = –5,xy = 6,那么22x y +的值是〔 〕A . 1B . 13C . 17D . 25第5题图 第7题图7.如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB→BC→CD→DA→AB 连续地翻转,那么那个小正方形第一次回到起始位置时,它的方向是〔〕〔A〕〔B〕〔C〕〔D〕8.假如一条直线l通过不同的三点A(a,b),B(b,a),C(a-b,b-a),那么直线l通过〔〕(A) 第二、四象限 (B) 第一、二、三象限(C) 第一、三象限 (D) 第二、三、四象限9.右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是那个纸盒的展开图,那么那个展开图是〔〕A.B.C.D.10.某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A.小区物业管委会预备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC上找一点D,连接AD作为分割线;方法二:在腰AC上找一点D,连接BD作为分割线;方法三:在腰AB上找一点D,作DE∥BC,交AC于点E,DE作为分割线;方法四:以顶点A为圆心,AD为半径作弧,交AB于点D,交AC于点E,弧DE作为分割线.这些分割方法中分割线最短的是〔〕〔A〕方法一〔B〕方法二〔C〕方法三〔D〕方法四二、细心填一填:〔本大题共有6小题,每题4分,共24分.请把结果直截了当填在题中的横线上.只要你明白得概念,认真运算,积极摸索,相信你一定会填对的!〕11.据中央电视台2007年5月22日报道,〝杂交水稻之父〞袁隆平院士培养的杂交水稻,自1976年推广种植以来,累计增产5200亿公斤,假如按照每年每人消耗500斤运算,就等于解决了世界上20亿人口一年的温饱咨询题.5200亿公斤用科学记数法能够表示为公斤.△中,∠C为直角,AC = 4cm,BC = 3cm,sin∠A= .12.在Rt ABC13.2018年奥运火炬将在我省传递〔传递路线为:昆明—丽江—香格里拉〕,某校学生小明在我省地图上设定的临沧市位置点的坐标为〔–1,0〕,火炬传递起点昆明市位置点的坐标为〔1,1〕.如图,请关心小明确定出火炬传递终点香格里拉位置点的坐标为___________.14.m,n是关于x的方程〔k+1〕x2-x+1=0的两个实数根,且满足k+1=(m+1)(n+1),那么实数k的值是.15.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30o到正方形AB′C′D′,那么它们的公共部分的面积等于.16.把正整数1,2,3,4,5,……,按如下规律排列:12,3,4,5,6,7,8,9,10,11,12,13,14,15,…………按此规律,可知第n行有个正整数.三、认真答一答:〔本大题8小题,总分值66分. 只要你认真摸索, 认真运算, 一定会解答正确的!〕17.〔5+5分〕(1)运算:2152-⎛⎫-- ⎪⎝⎭(2) 用配方法解方程:0252=++x x18、〔6分〕解不等式组2012x x x -⎧⎪⎨-<⎪⎩≥,并利用数据表示不等式组的解集.19、〔6分〕化简求值:221323322+-++÷+++a a a a a a a ,其中,3=a .20.〔本小题6分〕如图,在所给网格图〔每小格均为边长是1的正方形〕中完成以下各题:〔1〕作出格点ABC ∆关于直线DE 对称的111A B C ∆;3-〔2〕作出111A B C ∆绕点1B 顺时针方向旋转90°后的212A B C ∆; 〔3〕求212A B C ∆的周长.21.〔此题总分值8分〕2006年,全国30个省区市在我省有投资项目,投资金额如下表:依照表格中的信息解答以下咨询题: 〔1〕求2006年外省区市在陕投资总额; 〔2〕补全图①中的条形统计图;〔3〕2006年,外省区投资中有81亿元用于西安高新技术产业开发区,54亿元用于西安经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情形的扇形统计图〔扇形统计图中的圆心角精确到1,百分比精确到1%〕.22.〔10〕如图,矩形ABCD,AB=3,BC=3,在BC 上取两点E 、F 〔E 在F 左边〕,以EF 为边作等边三角形PEF ,使顶点P 在AD 上,PE 、PF 分不交AC 于点G 、H.图①图②2006年外省区市在陕投资金额使用情形统计图〔第20题图〕东建京江它2006年外省区市在陕投资金额统计图〔1〕求△PEF 的边长;〔2〕假设△PEF 的边EF 在线段BC 上移动.试猜想:PH 与BE 有什么数量关系?并证明你猜想的结论. 〔22题〕23.〔本小题8分〕据国家税务总局通知,从2007年1月1日起,个人年所得12万元〔含12万元〕以上的个人需办理自行纳税申报.小张和小赵差不多上某公司职员,两人在业余时刻炒股.小张2006年转让沪市股票3次,分不获得收益8万元、1.5万元、5-万元;小赵2006年转让深市股票5次,分不获得收益2-万元、2万元、6-万元、1万元、4万元.小张2006年所得工资为8万元,小赵2006年所得工资为9万元.现请你判定:小张、小赵在2006年的个人年所得.....是否需要向有关税务部门办理自行纳税申报并讲明理由. 〔注:个人年所得 = 年工资〔薪金〕+ 年财产转让所得.股票转让属〝财产转让〞,股票转让所得盈亏相抵后为负数的,那么财产转让所得部分按零..〝填报..〞〕24.〔本小题12分〕在平面直角坐标系xOy 中,抛物线2y mx n =++通过(02)P A ,两点.〔1〕求此抛物线的解析式;〔2〕设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线l ,直线l 与抛物线的对称轴PH G FEDCBA交于C 点,求直线l 的解析式;〔3〕在〔2〕的条件下,求到直线OB OC BC ,,距离相等的点的坐标.2018年数学中考模拟试题五 参考答案一、精心选一选二、细心填一填11、 5.2×101112、 0.6 13、 〔1,4〕 14、 -2 15、3316、 2n-1 三、认真答一答17、〔1〕20152-⎛⎫-- ⎪⎝⎭=1-4+5-4 =-2x〔2〕解:移项,得x 2+5x=-2, …………………………………1分配方,得222)25(2)25(5+-=++x x …………………2分整理,得〔25+x 〕2=417…………………………………3分直截了当开平方,得25+x =217± …………………………4分∴x 1=25217-,x 2=25217-- …………………………5分18、 解:解不等式〔1〕得2x ≤ 1分解不等式〔2〕得1x >- 3分能在数轴上正确表示出不等式组的解集 5分∴不等式组的解集是12x -<≤ 6分19、 化简代入得:272a a -=+20. 解:〔1〕、〔2〕如下图:作出111A△、212; ······················ 4分〔3〕212A B C △的周长为4+. ··················· 6分 21.解:〔1〕2006年外省区市在陕投资总额为:124676647119423++++=〔亿元〕. ··················· 2分〔2〕如图①所示. ····························· 5分 2006年外省区市在陕投资金额计图 2006年外省区市在陕投资金额使用情形统计图〔3〕如图②所示. ····························· 8分 22、解: (1)过P 作PQ BC ⊥于Q 矩形ABCD90B ∴=∠,即AB BC ⊥,又AD BC ∥PQ AB ∴== ………………1分PEF △是等边三角形60PFQ ∴=∠在Rt PQF △中3sin 60PF=2PF ∴= ……………………………3分 PEF ∴△的边长为2.PH 与BE 的数量关系是:1PH BE -=………4分在RtABC △中,3AB BC ==tan 1AB BC ∴==∠ 130∴=∠ …………………………………5分〔第21题答案图①〕〔第21题答案图②〕东建京江它省区 市13% 西安高新技术 19%PEF △是等边三角形2602PF EF ∴===∠, ……………………………6分213=+∠∠∠330∴=∠13∴=∠∠FC FH ∴= …………………………………………7分23PH FH BE EF FC +=++=,1PH BE ∴-= ……………………………………………8分注:每题只给了一种解法,其他解法按本评标相应给分.23、解:小张需要办理自行纳税申报,小赵不需要办理自行纳税申报.理由如下:设小张股票转让总收益为x 万元,小赵股票转让总收益为y 万元,小张个人年所得为1W 万元,小赵个人年所得为2W 万元. ····················· 1分 那么8 1.55 4.5x =+-= ,2261410y =-+-++=-<. ······· 3分 ∴ 18 4.512.5W =+=〔万元〕,2909W =+=〔万元〕. ······· 5分 ∵ 112.5W =万元>12万元,29W =万元<12万元.∴ 依照规定小张需要办理自行纳税申报,小赵不需要申报. ······ 7分24、解:〔1〕依照题意得3652m m n n ++=⎧⎨=⎩ 解得132m n ⎧=⎪⎨⎪=⎩因此抛物线的解析式为:2123y x x =++〔〕由2123y x x =++得抛物线的顶点坐标为B〔1〕,依题意,可得C 〔3--1〕,且直线 过原点, 设直线 的解析式为y kx =,那么31k -=- 解得3k =因此直线 的解析式为33y x =〔3〕到直线OB 、OC 、BC 距离相等的点有四个,如图,由勾股定理得 OB=OC=BC=2,因此△OBC 为等边三角形。

广州市2020年中考数学模拟卷及答案

第 1 页 共 11 页
广州市2020年中考数学模拟卷
一、选择题(每小题3分,共30分)
1、计算3(2)-所得结果是( )
A 6-
B 6
C 8-
D 8
2、将图1按顺时针方向旋转90°后得到的是( )
3、下面四个图形中,是三棱柱的平面展开图的是( )
4、若实数a 、b 互为相反数,则下列等式中恒成立的是( )
A 0a b -=
B 0a b +=
C 1ab =
D 1ab =-
5、方程(2)0x x +=的根是( )
A 2x =
B 0x =
C 120,2x x ==-
D 120,2x x ==
6、一次函数34y x =-的图象不经过( )
A 第一象限
B 第二象限
C 第三象限
D 第四象限
7、下列说法正确的是( )
A “明天降雨的概率是80%”表示明天有80%的时间降雨
B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
C “彩票中奖的概率是1%”表示买100张彩票一定会中奖
D “抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛。

2020年广东省广州中考数学模拟试卷及答案解析

2020年广东省广州中考数学模拟试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.一种病毒长度约为0.000056mm,用科学记数法表示这个数为()A.5.6×10﹣6B.5.6×10﹣5C.0.56×10﹣5D.56×10﹣6
2.如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是()
A .
B .
C .
D .
3.下列计算正确的是()
A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2
C.3a2+2a3=5a5D.a6÷a3=a3
4.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是()
A.40°B.65°C.70°D.80°
5.据调查,某班20位女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()
A.35码,35码B.35码,36码C.36码,35码D.36码,36码6.在平面中,下列命题为真命题的是()
A.四边相等的四边形是正方形
B.对角线相等的四边形是菱形
C.四个角相等的四边形是矩形
D.对角线互相垂直的四边形是平行四边形
第1 页共37 页。

2020年海珠区南武中学中考数学模拟试卷(5月份)(含答案解析)

2020年海珠区南武中学中考数学模拟试卷(5月份)一、选择题(本大题共10小题,共30.0分)1.下列各图是中心对称图形但不是轴对称的是()A. 一般平行四边形B. 矩形C. 菱形D. 正方形2.下列运算正确的是()A. a2⋅a3=a6B. (−a2)3=−a5C. a10÷a9=a(a≠0)D. (−bc)4÷(−bc)2=−b2c23.如图,该几何体的俯视图可能是()A.B.C.D.4.袋子里有4个黑球,m个白球,它们除颜色外都相同,经过大量实验,从中任取一个球恰好是白球的频率是0.20,则m的值是()A. 1B. 2C. 4D. 165.如果△ABC中,sinA=cosB=√22,则△ABC是()A. 等腰直角三角形B. 等边三角形C. 锐角三角形D. 不能确定6.如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B. 35°C. 30°D. 20°7.已知关于x的分式方程1−mx−1−1=21−x的解是正数,则m的取值范围是()A. m<4且m≠3B. m<4C. m≤4且m≠3D. m>5且m≠68.在菱形ABCD中,AB=5cm,则此菱形的周长为().A. 5cmB. 15cmC. 20cmD. 25cm9.已知关于x的一元二次方程2x2+px−4=0的一个实数根为1,则另一实数根及p的值分别为()A. 2,−2B. −2,−2C. 2,2D. −2,210.一名考生步行前往考场,10分钟走了总路程的14.他估计步行不能准时到达,于是改乘出租车前往考场.这名考生的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了()A. 26分钟B. 24分钟C. 20分钟D. 16分钟二、填空题(本大题共6小题,共18.0分)11.中国的领水面积约为3700000km2,将3700000用科学记数法表示为______.12.在函数y=xx−1中,自变量x的取值范围是______ .13.因式分解:−3x3+18x2−27x=______.14.扇形的圆心角为60°,弧长为4πcm,则此扇形的面积等于______cm2.15.某市从2017年开始大力发展旅游产业.据统计该市2017年旅游收入约为2亿元,预计2019旅游收入达到2.88亿元,据此估计该市2018年、2019年旅游收入的年平均增长率约为______.16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2√5.以上结论中,你认为正确的是_____________.(填序号)三、解答题(本大题共9小题,共102.0分)17.解不等式组:{3x+2<4x x2−1≥3218.先化简:(3x+1−x+1)÷x2−4x+4x+1,然后从−1≤x≤2中选一个合适的整数作为x的值代入求值.19.某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了______名学生,图表中的m=______,n=______;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.20.某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.21.已知:如图,四边形ABCD是矩形,∠ECD=∠DBA,∠CED=90°,AF⊥BD于点F.(1)求证:四边形BCEF是平行四边形;(2)若AB=4,AD=3,求EC的长.22.如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C所对的边分别是a、b、c.(1)求证:asin∠A =bsin∠B=csin∠C=2R;(2)若∠A=60°,∠C=45°,BC=4√3,利用(1)的结论求AB的长和sin∠B的值.23.如图,在边长为8的等边△ABC中,点D是AB的中点,点E是平面上一点,且线段DE=2,将线段EB绕点E顺时针旋转60°得到线段EF,连接AF.(1)如图1,当BE=2时,求线段AF的长;(2)如图2,求证:AF=CE.24.如图,用两块完全相同的含30°角的直角三角板ABC与AFE按如图所示位置放置,使AE⊥BC,AE交BC于点M,AC与EF交于点N,BC与EF交于点D,连接CE.AB=4cm.(1)探究四边形ABDF是何种特殊四边形?证明结论.(2)求证:AM=CN;(3)点P、Q为两动点,同时从C出发,以1cm/s的速度运动,点P沿线段CN、NM运动,点Q沿CE、EM运动.经过多少时间后直线PQ经过点D?并求此时PAPQ的值.25.已知抛物线y=x2−mx−m−1与x轴交于A、B两点,点A在点B的左边,与y轴交于点C(1)当m=2时,求点A、B和C的坐标;(2)在(1)的条件下,P为抛物线上一点,且在BC上方.若△PBC的面积为15,求P点坐标;(3)Q为抛物线上A、B之间一点(不包括A、B),QN⊥x轴于点N,求AN⋅BNNQ的值.【答案与解析】1.答案:A解析:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不符合题意;C、既是轴对称图形,也是中心对称图形,不符合题意;D、既是轴对称图形,也是中心对称图形,不符合题意.故选A.2.答案:C解析:本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、幂的乘方与积的乘方进行计算即可.解:A.a2⋅a3=a5,故A错误;B.(−a2)3=−a6,故B错误;C.a10÷a9=a(a≠0),故C正确;D.(−bc)4÷(−bc)2=b2c2,故D错误;故选C.3.答案:A解析:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.根据从上边看得到的图形是俯视图,可得答案.解:的俯视图可能是,故选A.4.答案:A解析:根据概率公式列出从中任取一个球恰好是白球的概率,求出m的值即可.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=m.n,解:袋子里有4个黑球,m个白球,若从中任取一个球恰好是白球的概率是m4+m=0.2,根据题意可得:m4+m解得m=1.故选:A.5.答案:A解析:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.先根据特殊角的三角函数值求出∠A和∠B的度数,然后判断△ABC的形状.,解:∵sinA=cosB=√22∴∠A=45°,∠B=45°,则∠C=180°−45°−45°=90°.故△ABC为等腰直角三角形.故选A.6.答案:B解析:此题主要考查的是垂径定理和圆周角定理的综合应用,理解等弧所对的圆周角是圆心角的一半是解决问题的关键.由于直径AB⊥CD,由垂径定理知B是ĈD的中点,进而可根据等弧所对的圆心角和圆周角的数量关系求得∠A的度数.解:∵直径AB⊥CD,∴B是CD⏜的中点;∠BOC=35°;∴∠A=12故选B.7.答案:A解析:先利用m表示出x的值,再由x为正数求出m的取值范围即可.本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.解:方程两边同时乘以x−1得,1−m−(x−1)+2=0,解得x=4−m.∵x为正数,∴4−m>0,解得m<4.∵x≠1,∴4−m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.8.答案:C解析:解:∵在菱形ABCD中,AB=BC=CD=DA,AB=5cm,∴菱形的周长=AB×4=20cm;故选C.根据菱形的四条边长都相等的性质、菱形的周长=边长×4解答本题主要考查了菱形的基本性质.菱形的四条边都相等,菱形的对角线互相垂直平分.9.答案:D解析:此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0的两根为x1,x2,则x1+x2=−ba ,x1x2=ca,根据根与系数的关系求得方程的另一个根及p的值.解:因为一元二次方程2x2+px−4=0的一个实数根为1,则另一个实数根x满足x·1=−42=−2,则x=−2,所以−2+1=−p2,则p=2.故选D.10.答案:B解析:本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.先求出他改乘出租车赶往考场的速度和到考场的时间,再求出步行的速度和步行到达考场的时间,进而即可求出答案.解:他改乘出租车赶往考场的速度是14÷2=18,所以到考场的时间是10+34÷18=16分钟,∵他10分钟走了总路程的14,∴步行的速度=14÷10=140,∴一直步行到达考场的时间是1÷140=40,则他到达考场所花的时间比一直步行提前了40−16=24分钟.故选B.11.答案:3.7×106解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:3700000用科学记数法表示为:3.7×106.故答案为3.7×106.12.答案:x≠1解析:解:根据题意可得x−1≠0;解得x≠1;故答案为x≠1.根据分式有意义的条件是分母不为0;分析原函数式可得关系式x−1≠0,解可得答案.本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.13.答案:−3x(x−3)2解析:解:原式=−3x(x2−6x+9)=−3x(x−3)2,故答案为:−3x(x−3)2原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.答案:24π解析:lr是解题的关键.本题考查的是弧长计算、扇形面积计算,掌握扇形面积公式:S=12根据弧长公式求出扇形半径,根据扇形面积公式计算,得到答案.解:设扇形的半径为rcm,=4π,则60πr180解得,r=12,×4π×12=24π(cm2),∴此扇形的面积=12故答案为:24π.15.答案:20%解析:解:设该市2018年、2019年旅游收入的年平均增长率为x,依题意,得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).故答案为:20%.设该市2018年、2019年旅游收入的年平均增长率为x,根据该市2017年及2019年的旅游收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.答案:①③④解析:本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8−x,利用勾股定理列出方程求解得到BF 的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH//CG,EH//CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH =∠ECH ,∴只有∠DCE =30°时EC 平分∠DCH ,(故②错误);点H 与点A 重合时,设BF =x ,则AF =FC =8−x ,在Rt △ABF 中,AB 2+BF 2=AF 2,即42+x 2=(8−x)2,解得x =3,点G 与点D 重合时,CF =CD =4,∴BF =4,∴线段BF 的取值范围为3≤BF ≤4,(故③正确);过点F 作FM ⊥AD 于M ,则ME =(8−3)−3=2,由勾股定理得,EF =√MF 2+ME 2=√42+22=2√5,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.17.答案:解:{3x +2<4x①x 2−1≥32② ∵解不等式①得:x >2,解不等式②得:x ≥5,∴不等式组的解集为x ≥5.解析:先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键. 18.答案:解:原式=(3x+1−x 2−1x+1)÷(x−2)2x+1=3−x 2+1x +1×x +1(x −2)2 =−(x +2)(x −2)x +1×x +1(x −2)2 =x+22−x ,当x =1时,原式=1+22−1=3.解析:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.19.答案:解:(1)40, 12 ,0.40 ;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90人;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A ,B 两名女生的结果数为2,所以恰好抽到A 、B 两名女生的概率P(A)=26=13;解析:本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m 、n 的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能结果,然后根据概率公式计算即可得解.解:(1)本次调查的学生总人数为4÷0.1=40人,m =40×0.3=12、n =16÷40=0.40, 故答案为40、12、0.40;(2)见答案;(3)见答案.20.答案:解:(1)设笔记本单价为x 元,钢笔单价为y 元,{5x +2y =1004x +7y =161,得{x =14y =15, 答:笔记本单价为14元,钢笔单价为15元;答:笔记本单价为14元,钢笔单价为15元.(2)由题意可得,y 1=14×0.9x =12.6x ,当0≤x ≤10时,y 2=15x ,当x >10时,y 2=10×15+(x −10)×15×0.8=12x +30,即y 2={15x (0≤x ≤10)12x +30(x >10); (3)当x >10时,y 1=12.6x ,y 2=12x +30,当y 1=y 2时,12.6x =12x +30,得x =50,当y 1<y 2时,12.6x <12x +30,得x <50,当y 1>y 2时,12.6x >12x +30,得x >50,∴当购买奖品数量超过50时,买钢笔省钱;当购买奖品数量少于50时,买笔记本省钱;当购买奖品数量等于50时,买两种奖品花费一样.解析:(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意和函数图象中的数据可以求得y 1、y 2关于x 的函数解析式;(3)根据题意可以列出相应的不等式,从而可以解答本题.本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的思想解答.21.答案:(1)证明:∵四边形ABCD 是矩形,∴∠BAD =90°,DC =AB ,DC//AB ,∴∠CDF =∠DBA .∵AF ⊥BD 于点F ,∠CED =90°,∴∠BFA =∠CED =90°.又∵∠ECD =∠DBA ,∴∠CDF =∠ECD ,∴EC//BF ,在△ECD 和△FBA 中,{∠CED =∠BFA ∠ECD =∠FBA CD =BA,∴△ECD≌△FBA(AAS),∴EC =BF ,又∵EC//BF,∴四边形BCEF是平行四边形;(2)解:∵四边形ABCD是矩形,∴∠BAD=90°,∵AB=4,AD=3,∴BD=√AB2+AD2=5,∵AF⊥BD,∴∠AFB=90°=∠BAD,∴S△ABD=12AD·AB=12AF·BD,∴AD·AB=AF·BD,∴3×4=5·AF,解得:AF=125,∴BF=√AB2−AF2=√42−(125)2=165,∵四边形BCEF是平行四边形,∴EC=BF=165.解析:本题考查了矩形的性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.(1)由矩形的性质得出∠BAD=90°,DC=AB,DC//AB,得出∠CDF=∠DBA,证出∠BFA=∠CED= 90°,∠CDF=∠ECD得到EC//BF,证明△ECD≌△FBA,得出EC=BF,即可得出结论;(2)由勾股定理得出BD=√AB2+AD2=5,再用面积法求出AF,然后用勾股定理求出BF的长,即可得出CE的长.22.答案:(1)证明:作直径BE,连接CE,如图所示:则∠BCE=90°,∠E=∠A,∴sinA=sinE=BCBE =a2R,∴asin∠A=2R,同理:bsin∠B =2R,csin∠C=2R,∴asin∠A =bsin∠B=csin∠C=2R;(2)解:由(1)得:ABsinC =BCsinA,即ABsin45∘=4√3sin60°=2R,∴AB=4√3×√2 2√3 2=4√2,2R=4√3√32=8,过B作BH⊥AC于H,∵∠AHB=∠BHC=90°,∴AH=AB⋅cos60°=4√2×12=2√2,CH=√22BC=2√6,∴AC=AH+CH=2(√2+√6),∴sin∠B=AC2R =2(√2+√6)8=√2+√64.解析:(1)证明:作直径BE,连接CE,如图所示:则∠BCE=90°,∠E=∠A,根据三角函数的定义得到sinA=sinE=BCBE =a2R,求得asinA=2R,同理:bsin∠B=2R,csin∠C=2R,于是得到结论;(2)由(1)得:ABsinC =BCsinA,得到AB=4√3×√22√32=4√2,2R=√3√32=8,过B作BH⊥AC于H,解直角三角形得到AC=AH+CH=2(√2+√6),根据三角函数的定义即可得到结论.本题考查了三角形的外接圆、圆周角定理、三角函数定义、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握圆周角定理和三角函数定义是解题的关键.23.答案:解:(1)作AG⊥BC于G点,延长FE交AG于H点∵AB=AC,∴∠BAG=30°,∵EB绕点E顺时针旋转60°得到线段EF,∴∠BEF=60°,∴∠BEF=∠B,∴EF//BC,∵AG⊥BC,∴AG⊥FH,在Rt△AEH中,∵AE=6,∠EAH=30°,∴EH=12AE=3,AH=√AE2−EH2=3√3,在Rt△AFH中,AF=√AH2+FH2=√(3√3)2+52=2√13;(2)连接FB,∵EB绕点E顺时针旋转60°得到线段EF,∴△EBF是等边三角形,∴FB=EB,∴∠FBE=∠ABC=60°,∴∠FBE+∠EBA=∠ABC+∠EBA 即∠FBA=∠EBC,又∵AB=BC,在△FBA和△EBC中,{FB=EB∠FBA=∠EBC AB=BC,∴△FBA≌△EBC(SAS),∴AF=CE.解析:(1)作AG⊥BC于G点,延长FE交AG于H点,由性质的性质和已知条件开证明AG⊥FH,再利用勾股定理可求出AH的长,继而可求出AF的长;(2)连接FB,易证△EBF是等边三角形,可得FB=EB,再证明∠FBA=∠EBC,又因为AB=BC,所以可证明△FBA≌△EBC,进而可得AF=CE.本题考查了全等三角形的判定和性质,勾股定理的运用,旋转的性质,等边三角形的判定和性质,连接BF构造全等三角形是解题的关键.24.答案:(1)解:如图1中,结论:四边形ABDF是菱形.理由:∵AE⊥BC,∴∠AMB=90°,∵∠B=∠F=60°,∠BAC=∠EAF=90°,∴∠BAM=30°,∴∠BAF=30°+90°=120°,∴∠BDF=360°−∠B−∠F−∠BAF=120°,∴∠B=∠F,∠BDF=∠BAF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形.(2)证明:如图1中,∵AE⊥BC,AC⊥EF,∴∠AMB=∠ANF=90°,∵∠BAM=∠FAN=30°,AB=AF,∴△AMB≌△ANF,∴AM=AN,∵∠MAN=60°,∴△AMN是等边三角形,∴∠ANM=60°,AM=MN,∵∠ANM=∠ACN+∠NMC,∠ACM=30°,∴∠NMC=∠ACM=30°,∴MN=CN,∴AM=CN.(3)解:如图2中,作EN⊥BC交CE于E.则△CNE是等边三角形.当点P与N重合时,点Q与重合,易知EN⊥BC,当PQ经过点D时,∵PN=QE,PN//QE,∴四边形PQEN是平行四边形,∵PQ//NE,∴PQ⊥BC,∴∠CDQ=90°,∵△AEC是等边三角形,∴∠AEC=∠ACE=60°,∵∠AEF=∠ACB=30°,∴∠DCE=∠DEC=30°,∵AM=CN,∠CND=∠AMB,∠BAM=∠NCD=30°,∴△CND≌△AMB,∴CD=AB=4cm,∵cos30°=CD,CQ(cm),∴CQ=8√33(s)时,PQ经过点D.∴t=8√33连接AP,作AH⊥MN于H.在Rt△CDN中,CN=CE=CD⋅cos30°=2√3,∴PN=QE=2√3,3在Rt△AHP中,AH=AM⋅cos30°=AB⋅cos30°⋅cos30°=3,∵AM=AN,AH⊥MN,∴MH =HN =√3, ∴PH =√3−2√33=√33, ∴PA =(√33)=√783, ∵PQ =EN =CN =2√3,∴PA PQ =√262.解析:(1)首先证明∠B =∠F =60°,∠BDF =∠BAF =120°,推出四边形ABDF 是菱形,由AB =AF ,即可推出四边形ABDF 是菱形;(2)想办法证明△AMN 是等边三角形,再证明MN =CN 即可解决问题;(3)如图2中,作EN ⊥BC 交CE 于E.则△CNE 是等边三角形.当点P 与N 重合时,点Q 与重合,易知EN ⊥BC ,当PQ 经过点D 时,可证四边形PQEN 是平行四边形,在Rt △CDQ 中求出CQ 即可;连接AP ,作AH ⊥MN 于H.只要求出PA ,PQ 即可解决问题;本题考查四边形综合题、30度的直角三角形的性质、菱形的判定和性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.25.答案:解:(1)当m =2时,抛物线解析式为y =x 2−2x −3,令x =0,则y =−3,则C(0,−3)令y =0,则x 2−2x −3=0,解得x 1=−1,x 2=3,则A(−1,0)、B(3,0)(2)连接BC ,过点P 作PQ//BC 交y 轴于Q ,如图1,∵S △PBC =S △QBC =12×CQ ×3=15,解得CQ =10,∴Q(0,7),∵直线BC 的解析式为y =x −3∴直线PQ 的解析式为y =x +7,解方程组{y =x +7y =x 2−2x −3,解得{x =−2y =5或{x =5y =12, ∴P(−2,5)或(5,12);(3)设Q(t,t 2−mt −m −1),则N(t,0)令y =0,则x 2−mx −m −1=0,解得x 1=−1,x 2=m +1,∴A(−1,0)、B(m +1,0)∴AN =t +1,BN =m +1−t ,NQ =−(t 2−mt −m −1)=−(t +1)(t −m −1),∴AN⋅BN NQ =(t+1)⋅(m+1−t)−(t+1)(t−m−1)=1.解析:(1)抛物线解析式为y =x 2−2x −3,计算自变量为0时的函数值得到C 点坐标,通过解方程x 2−2x −3=0得A 、B 点的坐标;(2)连接BC ,过点P 作PQ//BC 交y 轴于Q ,如图1,利用三角形面积公式得到S △PBC =S △QBC =12×CQ ×3=15,解得CQ =10,从而得到Q(0,7),利用两直线平行问题确定直线PQ 的解析式为y =x +7,然后解方程组{y =x +7y =x 2−2x −3解得P 点坐标; (3)设Q(t,t 2−mt −m −1),则N(t,0),解方程x 2−mx −m −1=0得A(−1,0)、B(m +1,0),然后利用AN =t +1,BN =m +1−t ,NQ =−(t 2−mt −m −1)=−(t +1)(t −m −1)计算AN⋅BN NQ 的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和三角形面积公式;会利用待定系数法求函数解析式,会通过解方程或方程组求函数的交点坐标;理解坐标与图形性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A. a3•a2=a6B. (x3)3=x6C. x5+x5=x10D. (-ab)5÷(-ab)2=-a3b33.如图所示,该几何体的俯视图是()A.B.C.D.4.已知盒子里有2个黄色球和3个红色球,每个球除颜色外均相同,现从中任取一个球,则取出红色球的概率是()A. B. C. D.5.在△ABC中,∠C=90°,sin A=,则cos B的值为()A. 1B.C.D.6.如图,⊙O中,AD、BC是圆O的弦,OA⊥BC,∠AOB=50°,CE⊥AD,则∠DCE的度数是()A. 25°B. 65°C. 45°D. 55°7.已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A. ﹣2<k<0B. k>﹣2且k≠﹣1C. k>﹣2D. k<2且k≠18.在菱形ABCD中,对角线BD=4,∠BAD=120°,则菱形ABCD的周长是()A. 15B. 16C. 18D. 209.关于x的一元二次方程x2-4x+m=0的两实数根分别为x1,x2,且x1+3x2=5,则m的值为()A. B. C. D. 010.小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,那么从家到火车站路程是()A. 1300米B. 1400米C. 1600米D. 1500米二、填空题(本大题共6小题,共18.0分)11.中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为______.12.在函数y=中,自变量x的取值范围是______.13.因式分解:x3-2x2y+xy2=______.14.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是______度.15.据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,则这两年我国公民出境旅游总人数的年平均增长率为______.16.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是______(把正确结论的序号都填上).三、计算题(本大题共1小题,共10.0分)17.为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?四、解答题(本大题共8小题,共92.0分)18.(1)解方程:+1=(2)解不等式组:19.先化简,再从-1、2、3、4中选一个合适的数作为x的值代入求值.(-)÷20.体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率10≤x<1050.1210≤x<20210.42320≤x<30a430≤x<40b(1)表中的数a=______,b=______;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.21.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.22.已知锐角△ABC的外接圆圆心为O,半径为R.(1)求证:=2R;(2)若△ABC中∠A=45°,∠B=60°,AC=,求BC的长及sin C的值.23.已知,在等边△ABC中,点E在BA的延长线上,点D在BC上,且ED=EC(1)如图1,求证:AE=DB;(2)如图2,将△BCE绕点C顺时针旋转60°至△ACF(点B、E的对应点分别为点A、F),连接EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于AB的长.24.如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.已知:在平面直角坐标系中,抛物线y=ax2-2ax+4(a<0)交x轴于点A、B,与y轴交于点C,AB=6.(1)如图1,求抛物线的解析式;(2)如图2,点R为第一象限的抛物线上一点,分别连接RB、RC,设△RBC的面积为s,点R的横坐标为t,求s与t的函数关系式;(3)在(2)的条件下,如图3,点D在x轴的负半轴上,点F在y轴的正半轴上,点E为OB上一点,点P为第一象限内一点,连接PD、EF,PD交OC于点G,DG=EF,PD⊥EF,连接PE,∠PEF=2∠PDE,连接PB、PC,过点R作RT⊥OB于点T,交PC于点S,若点P在BT的垂直平分线上,OB-TS=,求点R的坐标.答案和解析1.【答案】C【解析】解:A、不是轴对称图形,也不是中心对称图形.故A选项错误;B、是轴对称图形,也是中心对称图形.故B选项错误;C、不是轴对称图形,是中心对称图形.故C选项正确;D、是轴对称图形,不是中心对称图形.故D选项错误.故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进行分析可以选出答案.此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.【答案】D【解析】解:A、a3•a2=a5,故A错误;B、(x3)3=x9,故B错误;C、x5+x5=2x5,故C错误;D、(-ab)5÷(-ab)2=-a5b5÷a2b2=-a3b3,故D正确.故选:D.根据合并同类项、幂的乘方与积的乘方、同底数幂的除法与乘法等知识点进行作答即可求得答案.本题考查了合并同类项,同底数的幂的除法与乘法,积的乘方等多个运算性质,需同学们熟练掌握.3.【答案】C【解析】解:如图所示:该几何体的俯视图是:.故选:C.根据俯视图即从物体的上面观察得得到的视图,进而得出答案.此题主要考查了简单的组合体的三视图,正确把握观察角度是解题关键.4.【答案】C【解析】解:因为盒子里有3个红球和2个黄球,共5个球,从中任取一个,所以是红球的概率是.故选:C.先求出球的总个数与红球的个数,再根据概率公式解答即可.此题考查了概率公式的应用.用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.【答案】B【解析】【分析】本题考查了特殊角的三角函数值及直角三角形两锐角互余的关系.根据特殊角的三角函数值求解即可.【解答】解:∵△ABC中,∠C=90°,sin A=,∴∠A=60°,∠B=90°-∠A=30°.cos B=cos30°=.故选B.6.【答案】B【解析】解:∵OA⊥BC,∴,∴∠D=∠AOB=×50°=25°,∵CE⊥AD,∴∠DCE=90°-∠D=65°.故选B.由OA⊥BC,根据垂径定理的即可求得,又由圆周角定理可求得∠D=∠AOB=×50°=25°,再由CE⊥AD,即可求得∠DCE的度数.此题考查了圆周角定理以及垂径定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.【答案】B【解析】解:∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠-1,∵x>0,∴2+k>0,∴k>-2,∴k>-2且k≠-1,故选:B.根据分式方程的解法即可求出答案.本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.8.【答案】B【解析】解:如图,连接AC、BD,在菱形ABCD中,AC⊥BD,OB=BD=×4=2,∵∠BAD=120°,∴∠BAO=60°,在Rt△AOB中,AB=OB÷=2÷=4,所以,菱形ABCD的周长=4×4=16.故选B.作出图形,连接AC、BD,根据菱形的对角线互相垂直平分可得AC⊥BD,OB=BD,菱形的对角线平分一组对角求出∠BAO=60°,再求出AB,然后根据菱形的周长等于边长的4倍计算即可得解.本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分,菱形的对角线平分一组对角的性质,熟练掌握性质是解题的关键,作出图形更形象直观.9.【答案】A【解析】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2-4x+m=0得:()2-4×+m=0,解得:m=,故选:A.根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x2=是解题的关键.10.【答案】C【解析】解:步行的速度为:480÷6=80米/分钟,∵小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,∴小元回到家时的时间为6×2=12(分钟)则返回时函数图象的点坐标是(12,0)设后来乘出租车中s与t的函数解析式为s=kt+b(k≠0),把(12,0)和(16,1280)代入得,,解得,所以s=320t-3840;设步行到达的时间为t,则实际到达是时间为t-3,由题意得,80t=320(t-3)-3840,解得t=20.所以家到火车站的距离为80×20=1600m.故选:C.先由函数图象步行6分钟,离家480米,可求得步行的速度,再根据小元以同样的速度回家取物品,便可求得返回到家时的时间,进而得出此时点的坐标,再用待定系数法求出后来乘出租车过程中s与t的函数解析式,最后设步行到达的时间为t,根据“然后从家乘出租车赶往火车站,结果比预计步行时间提前了3分钟.”列出方程求出t即可进一步求得家到火车站的路程.本题考查的是用一次函数解决实际问题,主要利用了路程、速度、时间三者之间的关系,待定系数法求一次函数解析式,难点在于找出等量关系列出方程.11.【答案】1.25×109【解析】【分析】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.12.【答案】x≠1【解析】解:∵x-1≠0,∴x≠1,故答案为x≠1.根据分式有意义的条件:分母不为0进行解答即可.本题考查了函数自变量的取值范围问题,掌握分式有意义的条件:分母不为0是解题的关键.13.【答案】x(x-y)2【解析】解:原式=x(x2-2xy+y2)=x(x-y)2,故答案为:x(x-y)2原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【答案】150【解析】解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.此题主要是利用扇形的面积公式先求出扇形的半径,再利用弧长公式求出圆心角.15.【答案】20%【解析】解:设这两年我国公民出境旅游总人数的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x=0.2=20%或x=-2.2(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.故答案为:20%.这两年我国公民出境旅游总人数的年平均增长率为x,根据我过2009年及2011年公民出境旅游总人数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.【答案】②③【解析】解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8-x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8-x)2,解得x=3,∴CN=8-3=5,AC=,∴,∴,∴MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,∴4≤S≤5,故④错误.故答案为:②③.先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CN=NP,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ=CD,得Rt△CMQ≌△CMD,进而得∠DCM=∠QCM=∠BCP=30°,这个不一定成立,判断①错误;点P与点A重合时,设BN=x,表示出AN=NC=8-x,利用勾股定理列出方程求解得x的值,进而用勾股定理求得MN,判断出③正确;当MN过D点时,求得四边形CMPN的最小面积,进而得S 的最小值,当P与A重合时,S的值最大,求得最大值便可.此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、勾股定理的综合应用,熟练掌握菱形的判定定理和性质定理、勾股定理是解本题的关键.17.【答案】解:(1)设购进A、B两种纪念品每件分别需要x元、y元,,解得,答:购进A、B两种纪念品每件分别需要100元、50元;(2)设该商场购进A种纪念品m件,则购进乙种纪念品(100-m)件,100m+50(100-m)≥7500,解得,m≥50,∴该商店至少要购进A种纪念品50件,答:该商店至少要购进A种纪念品50件.【解析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到相应的不等式,从而可以解答本题.本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.【答案】解:(1)+1=,两边同时乘以x-3,得x-2+x-3=-2,∴x=;经检验x=是原方程的根;(2)由,解不等式①得-2<x,解不等式②得x≤2;∴不等式的解为-2<x≤2.【解析】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.(1)两边同时乘以x-3,整理后可得x=;(2)不等式组的每个不等式解集为.19.【答案】解:原式=[-]÷=[-])÷=•=x+2∵x-2≠0,x-4≠0,∴x≠2且x≠4,∴当x=-1时,原式=-1+2=1.【解析】先化简分式,然后将x的值代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.【答案】解:(1)20;0.08.(2)估计该九年级排球垫球测试结果小于10的人数为450×0.1=45(人),答:估计该九年级排球垫球测试结果小于10的人数为45人;(3)列表如下一共的情况数为20,其中选出的2人为一个男生一个女生的情况数为12,∴选出的2人为一个男生一个女生的概率为=.【解析】【解答】解:(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数为:50×=20(人),即a=20,30≤x<40的人数为:50-5-21-20=4(人),b==0.08,故答案为20,0.08;(2)见答案;(3)见答案.【分析】本题考查了扇形统计图、频率分布表与用样本估计总体、用列表法或树状图法求概率,熟练掌握列表法与树状图求概率是解题的关键.(1)根据扇形统计图结合频率分布表分析可得答案;(2)用样本估计总体,用总人数乘以测试结果小于10的频率即可得解;(3)利用列表法列出所有情况,用选出的2人为一个男生一个女生的情况个数所有等可能的结果个数,即为满足条件的概率.21.【答案】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8-x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8-x)2,解之得:x=,∴DE=8-=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2 -OD2=OE2,∴OE=,∴EF=2OE=.【解析】(1)根据矩形的性质得到AB∥CD,由平行线的性质得到∠DFO=∠BEO,根据全等三角形的性质得到DF=BE,于是得到四边形BEDF是平行四边形;(2)推出四边形BEDF是菱形,得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8-x 根据勾股定理即可得到结论.本题考查了矩形的性质,平行四边形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.22.【答案】解:(1)如图1,连接AO并延长交⊙O于D,连接CD,则∠CD=90°,∠ABC=∠ADC,∵sin∠ABC=sin∠ADC=,∴=2R;(2)∵=2R,同理可得:=2R,∴2R==2,∴BC=2R•sin A=2sin45°=,如图2,过C作CE⊥AB于E,∴BE=BC•cos B=cos60°=,AE=AC•cos45°=,∴AB=AE+BE=,∵AB=AR•sin C,∴sin C==.【解析】(1)如图1,连接AO并延长交⊙O于D,连接CD,于是得到∠CD=90°,∠ABC=∠ADC,根据三角函数的定义即可得到结论;(2)由=2R,同理可得:=2R,于是得到2R==2,即可得到BC=2R•sin A=2sin45°=,如图2,过C作CE⊥AB于E,解直角三角形即可得到结论.本题考查了三角形的外接圆与外心,解直角三角形,正确的作出辅助线是解题的关键.23.【答案】解:(1)如图,作DK∥AC交AB于K,则△BDK是等边三角形,∵△ABC是等边三角形,∴∠EKD=∠EAC=120°,∠B=∠BKD=60°,∴DK=BD,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠KED=∠EDC,∵∠ECA+∠ACB=∠ECD,∴∠B+∠KED=∠ECA+∠ACB,∵∠B=∠ACB=60°,∴∠KED=∠ECA,在△DKE与△EAC中,,∴△DKE≌△EAC(AAS),∴AE=DK,∴BD=AE.(2)BE-AE=AB;BE-BD=AB;AF-AE=AB;AF-BD=AB.理由:由旋转可得,△BCE≌△ACF,∴BE=AF,又∵BD=AE,AB=BE-AE,∴BE-AE=AB;BE-BD=AB;AF-AE=AB;AF-BD=AB.【解析】(1)作DK∥AC交AB于K,根据平行线的性质可得出△BDK是等边三角形,∠EKD=∠EAC,故DK=BD,再根据ED=EC可知∠EDC=∠ECD,由三角形外角的性质可知∠B+∠KED=∠EDC,因为∠ECA+∠ACB=∠ECD,故可得出∠B+∠KED=∠ECA+∠ACB,再由∠B=∠ACB=60°可知∠KED=∠ECA,故可得出△DKE≌△EAC,故AE=DK,进而可得出结论.(2)由旋转可得,△BCE≌△ACF,进而得到BE=AF,再根据BD=AE,AB=BE-AE,即可得出BE-AE=AB;BE-BD=AB;AF-AE=AB;AF-BD=AB.本题考查的是等边三角形的性质以及旋转的性质:旋转前、后的图形全等.熟知等边三角形的三个内角都相等,且都等于60°是解答此题的关键.24.【答案】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE∥AC,DE=OC=OA,∴==,∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK中,AK===3,∴sin∠EAD==,②作PF⊥AD于F.由①知PF=AP•sin∠DAE=AP,∵点Q的运动时间t=+=OP+AP=OP+PF,∴当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==,∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为,点Q走完全程所需的时间为3s.【解析】本题考查四边形综合题、矩形的性质、菱形的判定和性质、锐角三角函数、平行线分线段成比例定理、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠EAD=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,由此即可解决问题.25.【答案】解:(1)∵抛物线的对称轴为x=1,AB=6,∴A(-2,0),B(4,0),将点A代入y=ax2-2ax+4,则有0=4a+4a+4,∴a=-,∴y=-x2+x+4;(2)设R(t,-t2+t+4),过点R作x、y轴的垂线,垂足分别为R',R'',则∠RR'O=∠RR''O=∠R'OR''=90°,∴四边形RR'OR''是矩形,∴RR''=OR'=t,OR''=RR'=-t2+t+4,∴S△OCR=OC•RR''=×4t=2t,S△ORB=OB•RR'=×4(-t2+t+4)=-t2+2t+8,∴S△RBC=S△ORB+S△OCR-S△OBC=-t2+2t+8+2t-×4×4=-t2+4t;(3)设EF、PD交于点G',连EG,∵PD⊥EF,∴∠FG'G=∠DG'E=90°=∠DOG,∴∠OFE=∠GDO,∵∠DGO=∠FOE=90°,EF=DG,∴OP是EG的垂直平分线,∴OP平分∠COB,过P作KP⊥x轴于K,PW⊥y轴于W,交RT于点H,则PW=PK,∠PWO=∠PKO=∠WOK=90°,∴四边形PWOK是正方形,∴WO=OK,∵OC=OB=4,∴CW=KB,∵P在BT垂直平分线上,∴PT=PB,∴TK=KB=CW,设OT=2a,则TK=KB=CW=2-a,HT=OK=PW=2+a,∵OB-TS=,∴HS=TS-HT=-(2+a)=-a,∵tan∠HPS==,∴=,∴a=1或a=,当a=1时,R(2,4),当a=时,R(,).【解析】(1)由题意可求A(-2,0),B(4,0),将A点代入y=ax2-2ax+4,即可求a的值;(2)设R(t,-t2+t+4),过点R作x、y轴的垂线,垂足分别为R',R'',可得四边形RR'OR''是矩形,求出S△OCR=OC•RR''=×4t=2t,S△ORB=OB•RR'=×4(-t2+t+4)=-t2+2t+8,则有S△RBC=S△ORB+S△OCR-S△OBC=-t2+2t+8+2t-×4×4=-t2+4t;(3)设EF、PD交于点G',连EG,可以证明OP是EG的垂直平分线,过P作KP⊥x 轴于K,PW⊥y轴于W,交RT于点H,则四边形PWOK是正方形,设OT=2a,则TK=KB=CW=2-a,HT=OK=PW=2+a,可求HS=TS-HT=-(2+a)=-a,又由tan∠HPS==,可得=,则a=1或a=,即可求R的坐标.本题考查二次函数的综合;熟练掌握二次函数的图象及性质是解题的关键.。

相关文档
最新文档