上海市2001-2012年中考数学试题分类解析专题10:四边形
20002012专题10:四边形

上海市2000-2012年中考数学试题分类解析专题10:四边形一、选择题1.(上海市2001年3分)下列命题中,真命题是【】A、对角线互相平分的四边形是平行四边形B、对角线相等的四边形是矩形C、对角线互相平分且垂直的四边形是菱形D、对角线互相垂直且相等的四边形是正方形【答案】A,C。
【考点】命题和证明,平行四边形、菱形、矩形、正方形的判定。
【分析】根据平行四边形、菱形、矩形、正方形的判定,逐个进行验证,即可得出正确选项:A、两条对角线互相平分的四边形是平行四边形,正确;B、两条对角线相等的四边形可能是梯形,不一定是矩形,错误;C、对角线互相平分且垂直的四边形是菱形,正确;D、对角线互相垂直且相等的四边形可能是菱形,不一定是正方形,错误。
2.(上海市2006年4分)在下列命题中,真命题是【】A、两条对角线相等的四边形是矩形;B、两条对角线互相垂直的四边形是菱形;C、两条对角线互相平分的四边形是平行四边形;D、两条对角线互相垂直且相等的四边形是正方形。
【答案】D。
【考点】正方形的判定,平行四边形的判定,菱形的判定,矩形的判定.【分析】A、等腰梯形也满足此条件,但不是矩形;故本选项错误;B、两条对角线互相垂直平分的四边形才是菱形,故本选项错误;C、对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形既是矩形又是菱形的四边形是正方形,所以两条对角线垂直且相等的平行四边形是正方形,故本选项错误;D、两条对角线互相平分的四边形是平行四边形,故本选项正确。
故选D。
3.(上海市2007年4分)已知四边形ABCD中,90∠∠∠,如果添A B C===加一个条件,即可推出该四边形是正方形,那么这个条件可以是【】A.90∠B.AB CDD===D.BC CD=C.AD BC【答案】D。
【考点】正方形的判定。
【分析】由∠A=∠B=∠C=90°可判定为矩形,因此再添加条件:一组邻边相等,即可判定为正方形。
全国中考数学试题分类解析汇编套专题专题平行四边形

2012年全国中考数学试题分类解析汇编159套63专题专题43:平行四边形一、选择题1. 2012广东佛山3分依次连接任意四边形各边的中点,得到一个特殊图形可认为是一般四边形的性质,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形答案 A;考点三角形中位线定理,平行四边形的判定;分析根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC;∴EF=GH,EF∥GH;∴四边形EFGH是平行四边形;由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断;故选A;2. 2012浙江杭州3分已知平行四边形ABCD中,∠B=4∠A,则∠C=A.18°B.36°C.72°D.144°答案B;考点平行四边形的性质,平行线的性质;分析由平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD;∴∠A+∠B=180°;∵∠B=4∠A,∴∠A=36°;∴∠C=∠A=36°;故选B;3. 2012湖北武汉3分在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为A.11+1132B.11-1132C .11+1132或11-1132D .11-1132或1+32答案C; 考点平行四边形的性质和面积,勾股定理;分析依题意,有如图的两种情况;设BE=x,DF=y;如图1,由AB =5,BE=x,得222AE AB BE 25x =-=-;由平行四边形ABCD 的面积为15,BC =6,得2625x =15-,解得53x=2±负数舍去; 由BC =6,DF=y,得222AF AD DF 36y =-=-;由平行四边形ABCD 的面积为15,AB =5,得2536y =15-,解得y=33±负数舍去;∴CE+CF=6-532+5-33=11-1132; 如图2,同理可得BE= 532,DF=33; ∴CE+CF=6+532+5+33=11+1132; 故选C;4. 2012湖南益阳4分如图,点A 是直线l 外一点,在l 上取两点B 、C,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D,分别连接AB 、AD 、CD,则四边形ABCD 一定是A .平行四边形B .矩形C .菱形D .梯形答案A;考点作图复杂作图,平行四边形的判定;分析∵别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D,∴AD=BC,AB=CD;∴四边形ABCD 是平行四边形两组对边分别相等的四边形是平行四边形;故选A;5. 2012四川广元3分 若以A,0,B2,0,C0,1三点为顶点要画平行四边形,则第四个顶点不可能在A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案C;考点平行四边形的判定,坐标与图形性质;分析根据题意画出图形,如图所示:分三种情况考虑:①以CB 为对角线作平行四边形ABD 1C,此时第四个顶点D 1落在第一象限;②以AC 为对角线作平行四边形ABCD 2,此时第四个顶点D 2落在第二象限;③以AB 为对角线作平行四边形ACBD 3,此时第四个顶点D 3落在第四象限;则第四个顶点不可能落在第三象限;故选C;6. 2012四川德阳3分 如图,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点不与点B 重合.以BD 、BF 为邻边作平行四边形BDEF,又AP BE 点P 、E 在直线AB 的同侧,如果BD B 14A =,那么△PBC 的面积与△ABC 面积之比为A.41B.53C.51D.43 答案D;考点平行四边形的判定和性质;分析过点P 作PH∥BC 交AB 于H,连接CH,PF,PE;∵APBE,∴四边形APEB 是平行四边形;∴PE AB;, ∵四边形BDEF 是平行四边形,∴EFBD; ∴EF∥AB;∴P,E,F 共线;设BD=a,∵1BD AB 4=,∴PE=AB=4a;∴PF=PE﹣EF=3a; ∵PH∥BC,∴S △HBC =S △PBC ;∵PF∥AB,∴四边形BFPH 是平行四边形;∴BH=PF=3a;∵S △HBC :S △ABC =BH :AB=3a :4a=3:4,∴S △PBC :S △ABC =3:4;故选D;7. 2012四川巴中3分不能判定一个四边形是平行四边形的条件是A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等答案B;考点平行四边形的判定分析根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形; A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形;故选B;8. 2012四川自贡3分如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为A.2和3 B.3和2 C.4和1 D.1和4 答案B;考点平行四边形的性质,平行的性质,等腰三角形的判定和性质;分析∵AE平分∠BAD,∴∠BAE=∠DAE;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠DAE=∠AEB;∴∠BAE=∠BEA;∴AB=BE=3;∴EC=AD﹣BE=2;故选B;答案D;考点平行四边形的性质,平行的性质,等腰三角形的判定;分析∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC;∴∠AEB=∠E BC;又BE平分∠ABC,∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AB=AE;同理可得:DC=DF;∴AE=DF;∴AE-EF=DE-EF,即AF=DE;当1EF AD4=时,设EF=x,则AD=BC=4x;∴AF=DE=14AD-EF=;∴AE=AB=AF+EF=;∴AB:BC=:4=5:8;∵以上各步可逆,∴当AB:BC=:4=5:8时,1EF AD4=;故选D;10. 2012山东聊城3分如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是A.DF=BE B.AF=CE C.CF=AE D.CF∥AE答案C;考点平行四边形的性质,全等三角形的判定;分析根据平行四边形的性质和全等三角形的判定方法逐项分析即可:A、当DF=BE时,由平行四边形的性质可得:AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;B、当AF=CE时,由平行四边形的性质可得:BE=DF,AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;C、当CF=AE时,由平行四边形的性质可得:AB=CD,∠B=∠D,利用SSA不能可判定△CDF≌△ABE;D、当CF∥AE时,由平行四边形的性质可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE;故选C;11. 2012山东泰安3分如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为A.53°B.37°C.47°D.123°答案B;考点平行四边形的性质,对项角的性质,平行的性质;分析设CE与AD相交于点F;∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°;∴∠DFC=37∵四边形ABCD是平行四边形, ∴AD∥BC;∴∠BCE=∠DFC=37°;故选B;12. 2012广西南宁3分如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是A.2cm<OA<5cm B.2cm<OA<8cm C.1cm<OA<4cm D.3cm<OA<8cm答案C;考点平行四边形的性质,三角形三边关系;分析∵平行四边形ABCD 中,AB=3cm,BC=5cm, ∴OA=OC=12AC 平行四边形对角线互相平分, BC -AB <AC <BC +AB 三角形三边关系,即2cm <AC <8cm;∴1cm<OA <4cm;故选C;13. 2012内蒙古包头3分如图,过口ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的口AEMG 的面积S 1 与口HCFG 的面积S 2的大小关系是A .S 1 > S 2 < S 2 C .S 1 = S 2 = S 2答案C;考点平行四边形的判定和性质;分析易知,四边形BHME 和MFDG 都是平行四边形;∵平行四边形的对角线把平行四边形分成了两个面积相等的三角形,∴ABD BCD EBM BHM GMD DMF S S S S S S ∆∆∆∆∆∆===,,;∴ABD EBM GMD BCD BHM DMF S S S S S S ∆∆∆∆∆∆--=--,即S 1 = S 2;故选C;14. 2012黑龙江绥化3分如图,在平行四边形ABCD 中,E 是CD 上的一点,DE :EC=2:3,连接AE 、BE 、BD,且AE 、BD 交于点F,则S △DEF :S △EBF :S △ABF =A .2:5:25B .4:9:25C .2: 3:5D .4:10:25答案D;考点平行四边形的性质,相似三角形的判定和性质;分析由DE :EC=2:3得DE :DC=2:5,根据平行四边形对边相等的性质,得DE :AB=2:5 由平行四边形对边平行的性质易得△DFE∽△BFA∴DF:FB= DE :AB=2:5,S △DEF :S △ABF =4:25;又∵S △DEF 和S △EBF 是等高三角形,且DF :FB =2:5,∴S △DEF :S △EBF =2:5=4:10;∴S △DEF :S △EBF :S △ABF =4:10:25;故选D;二、填空题1. 2012广东汕头4分如图,在 ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E,连接CE,则阴影部分的面积是 ▲ 结果保留π.答案133π-;考点平行四边形的性质,扇形面积的计算分析过D点作DF⊥AB于点F;∵AD=2,AB=4,∠A=30°,∴DF=AD sin30°=1,EB=AB﹣AE=2;∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-;2. 2012浙江衢州4分如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为▲ 用a的代数式表示.答案12a;考点平行四边形的性质,相似三角形的判定和性质;分析∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴△DEF∽△CEB,△DEF∽△ABF;∴S△DEF:S△CE B=DE:CE2,S△DEF:S△ABF=DE:AB2,∵CD=2DE,∴DE:CE=1:3,DE:AB=1:2,∵S△DEF=a,∴S△CBE=9a,S△ABF=4a,∴S四边形BCDF=S△CEB﹣S△DEF=8a;∴S ABCD=S四边形BCDF+S△ABF=8a+4a=12a;3. 2012江苏南京2分如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE= ▲ cm答案;考点平行四边形的性质,平行的性质,等腰三角形的性质,相似三角形的判定和性质;分析∵四边形ABCD是平行四边形,AD=10cm,CD=5cm,∴BC=AD=10cm,AD∥BC,∴∠2=∠3;∵BE=BC,CE=CD,∴BE=BC=10cm,CE=CD=5cm,∠1=∠2,∠3=∠D;∴∠1=∠2=∠3=∠D;∴△BCE∽△CDE;∴BC CECD DE=,即1055DE=,解得DE=;4. 2012江苏镇江2分如图,E是平行四边形ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,CE1AB3=,则CF的长为▲ ;答案2;考点平行四边形的性质,相似三角形的判定和性质的;分析∵四边形ABCD 是平行四边形,∴AB∥DC,BC=AD=4;∴△CEF∽△ABF;∴CE CF AB BF =; 又∵CE 1AB 3=,BF=BC+CF=4+ CF,∴CF 14CF 3=+,解得CF=2; 5. 2012湖北鄂州3分如图,ABCD 中,AE⊥BC 于E,AF⊥CD 于F,若AE=4,AF=6,sin∠BAE=31,则CF= ▲ .考点平行四边形的性质,锐角三角函数定义,勾股定理,相似三角形的判定和性质;分析由AE⊥BC 和sin∠BAE=13,得BE 1AB 3=;∴可设BE=k,则AB=3k;∵AE=4,∴根据勾股定理得222AB AE BE =+,即()2223k 4k =+,解得;;∵四边形ABCD ,∠D=∠B;又∵AE⊥BC,AF⊥CD,∴∠AFD=∠AEB=900;∴△AFD∽△AEB;∴DF AF BE AE=;64=,解得DF DF= =6. 2012湖南永州3分如图,平行四边形ABCD 的对角线相交于点O,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 ▲ .答案20;考点平行四边形的性质,线段垂直平分线的性质;144482分析∵四边形ABCD 是平行四边形,∴OB=OD,AB=CD,AD=BC 平行四边形对边相等,对角线互相平分;∵OE⊥BD,∴BE=DE 线段垂直平分线上的点到线段两端的距离相等;∵△CDE 的周长为10,即CD+DE+EC=10,∴平行四边形ABCD 的周长为:AB+BC+CD+AD=2BC+CD=2BE+EC+CD=2DE+EC+CD=2×10=20;7. 2012湖南怀化3分如图,在ABCD 中,AD=8,点E 、F 分别是BD 、CD 的中点,则EF=▲ .答案4;考点平行四边形的性质,三角形中位线定理;分析∵四边形ABCD 是平行四边形,∴BC=AD=8;∵点E 、F 分别是BD 、CD 的中点,∴EF=12BC=12×8=4; 8. 2012湖南湘潭3分如图,在ABCD 中,点E 在DC 上,若EC :AB=2:3,EF=4,则BF=▲ . 答案6;考点平行四边形的性质,相似三角形的判定和性质;分析∵四边形ABCD 是平行四边形,∴AB∥CD;∴∠CAB=∠ACD,∠ABE=∠BEC; ∴△ABF∽△CEF;∴AB BF CE EF=, 又∵EC:AB=2:3, EF=4,∴3BF 24=,解得BF=6; 9. 2012四川成都4分如图,将ABCD 的一边BC 延长至E,若∠A=110°,则∠1= ▲ .答案70°;考点平行四边形的性质,平角的性质; 分析∵平行四边形ABCD 的∠A=110°,∴∠BCD=∠A=110°;∴∠1=180°﹣∠BCD=180°﹣110°=70°;10. 2012辽宁本溪3分如图,在□ABCD 中,∠ABC 的平分线BE 交AD 边于点E,交对角线AC 于点F,若AB 3BC 5=,则AF AC = ▲ ; 答案38; 考点平行四边形的性质,平行的性质,相似三角形的判定和性质;分析∵四边形ABCD 是平行四边形,∴AD∥BC,∠EBC=∠AEB;∵BE 是∠ABC 的角平分线,∴∠EBC=∠AEB=∠ABE,AB=AE; ∵AB 3BC 5=,∴AE 3BC 5=; ∵AD∥BC,∴△AFE∽△CFB;∴AE AF 3BC FC 5==;∴AF 3AF FC 8=+;∴AF 3AC 8=; 11. 2012贵州黔西南3分如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE2012山东烟台3分ABCD中,已知点A﹣1,0,B2,0,D0,1.则点C的坐标为▲ .答案3,1;考点平行四边形的性质,坐标与图形性质;分析画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案:∵平行四边形ABCD中,已知点A﹣1,0,B2,0,D0,1,∴AB=CD=2﹣﹣1=3,DC∥AB;∴C的横坐标是3,纵坐标和D的纵坐标相等,是1;∴C的坐标是3,1;13. 2012吉林长春3分如图,ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合.若△ACD的面积为3,则图中的阴影部分两个三角形的面积和为▲ .答案3;考点平行四边形和矩形的性质;分析∵四边形ABCD是平行四边形,∴△ACD的面积=△ACB的面积;又∵△ACD的面积为3,∴△ACB的面积为3;∵△ACB的面积矩形AEFC的面积的一半, ∴阴影部分两个三角形的面积和=△ACB的面积=3; 14. 2012黑龙江龙东地区3分如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件使四边形AECF是平行四边形只填一个即可;答案AF=CE答案不唯一;考点平行四边形的判定和性质;分析根据平行四边形性质得出AD∥BC,AF=CE,得出AF∥CE;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE 或FD=EB;根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC;添加∠AEC=∠FCA 或∠DAE=∠DFC 等得到AE∥FC,也可使四边形AECF 是平行四边形;三、解答题1. 2012北京市5分已知:如图,点E,A,C 在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.答案证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC 和△E CD 中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECDSAS;∴CB=ED;考点平行线的性质,全等三角形的判定和性质;分析首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED;2. 2012陕西省6分如图,在ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F .1求证:AB=AF ;2当AB=3,BC=5时,求AE AC 的值. 答案解:1证明:如图,在ABCD 中,AD∥BC, ∴∠2=∠3;∵BF 是∠ABC 的平分线,∴∠1=∠2;∴∠1=∠3;∴AB=AF;2∵AEF CEB 23∠=∠∠=∠,,∴△AEF∽△CEB;∴AE AF 3EC BC 5==, ∴AE 3AC 8=; 考点平行四边形的性质,平行线的性质,等腰三角形的判定,相似三角形的判定和性质;分析1由在ABCD 中,AD∥BC,利用平行线的性质,可求得∠2=∠3,又由BF 是∠ABC 的平分线,易证得∠1=∠3,利用等角对等边的知识,即可证得AB=AF;2易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得AE AC的值; 3. 2012广东省6分已知:如图,在四边形ABCD 中,AB∥CD,对角线AC 、BD 相交于点O,BO=DO . 求证:四边形ABCD 是平行四边形.答案证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO 与△CDO 中,∵∠ABO=∠CDO,BO=DO,∠AOB=∠COD,∴△ABO≌△CDOASA;∴AB=CD;∴四边形ABCD是平行四边形;考点平行的性质,全等三角形的判定和性质,平行四边形的判定;分析根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠COD,即可根据ASA得出△ABO≌△CDO,故可得出AB=CD,从而根据一组对边平行且相等的四边是平行四边形的判定得出结论;4. 2012广东湛江8分如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:1△ABE≌△CDF;2四边形BFDE是平行四边形.答案证明:1∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CD FSAS;2∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF;∴四边形BFDE是平行四边形;考点平行四边形的性质和判定,全等三角形的判定;分析1由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;2由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF;根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形;5. 2012浙江湖州8分已知:如图,在ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.1说明△DCE≌△FBE的理由;2若EC=3,求AD的长.答案1证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC;∴∠CDE=∠F;又∵BF=AB,∴DC=FB;在△DCE和△FBE中,∵ ∠CDE=∠F,∠CED=∠BEF, DC=FB,∴△DCE≌△FBEAAS;2解:∵△DCE≌△FBE,∴EB=EC;∵EC=3,∴BC=2EB=6;∵四边形ABCD是平行四边形,∴AD=BC;∴AD=6;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析1由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∠CDE=∠F,又由BF=AB,即可利用AAS,判定△DCE≌△FBE;2由1,可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长;6. 2012浙江衢州6分如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系并对你的猜想加以证明.答案解:猜想:AE=CF;证明如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴∠ABE=∠CDF;在△ABE和△CDF中,AB=CD,∠ABE=∠CDF,BE=DF,∴△ABE≌△CDFSAS,∴AE=CF;考点平行四边形的性质,平行线的性质,全等三角形的判定和性质; 分析由四边形ABCD是平行四边形,即可得AB∥CD,AB=CD,然后利用平行线的性质,求得∠ABE=∠CDF,又由BE=DF,即可由SAS证得△ABE≌△CDF,从而可得AE=CF;7. 2012江苏淮安8分已知:如图在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F;求证:△BEF≌△CDF答案证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB; ∴∠CDF=∠B,∠C=∠FBE;又∵BE=AB,∴BE=CD;∵在△BEF和△CDF中,∠CDF=∠B,BE=CD,∠C=∠FBE,∴△BEF≌△CDFASA;考点平行四边形的性质,平行的性质,全等三角形的判定;分析根据平行四边形的对边平行且相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠C=∠FBE,然后利用ASA证明即可;8. 2012江苏泰州10分如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.答案证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠CFB=90°;∵AE∥CF,∴∠AED=∠CFB;在Rt△AED和Rt△CFB中,∵∠EAD=∠CFB=90°,∠AED=∠CFB, AE=CF,∴Rt△AED≌Rt△CFBASA;∴AD=BC;又∵AD∥BC,∴四边形ABCD是平行四边形;考点平行的性质,全等三角形的判定和性质,平行四边形的判定;分析由垂直得到∠EAD=∠BCF=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可;9. 2012江苏无锡8分如图,在ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.答案证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC;∴∠B=∠DCF;∵在△ABE和△DCF中,AB=DC,∠B=∠DCF,BE=CF,∴△ABE≌△DCFSAS;∴∠BAE=∠CDF;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形的性质可得AB=DC,AB∥DC,再根据平行线的性质可得∠B=∠DCF,即可由SAS证明△ABE≌△DCF,再根据全等三角形对应边相等的性质得到结论;10. 2012江苏徐州6分如图,C为AB的中点;四边形ACDE为平行四边形,BE与CD相交于点F;求证:EF=BF;答案证明:∵四边形ACDE为平行四边形,∴ED=AC,ED∥AC;∴∠D=∠FCB,∠DEF=∠B;又∵C为AB的中点,∴AC=BC;∴ED=BC;在△DEF和△C BF中,∵∠D=∠FCB,ED=BC,∠DEF=∠B,∴△DEF≌△CBFSAS;∴EF=BF;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形对边平行且相等的性质,易用SAS证明△DEF≌△CBF,从而根据全等三角形对应边相等的性质即可证得EF=BF;11. 2012福建厦门10分已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF.1如图,若PE=错误!,EO=1,求∠EPF的度数;2若点P是AD的中点,点F是DO的中点,BF =BC+3错误!-4,求BC的长.答案解:1连接PO ,∵ PE=PF,PO=PO,PE⊥AC、PF⊥BD,∴ Rt△PEO≌Rt△PFOHL;∴∠EPO=∠FPO;在Rt△PEO中, tan∠EPO=错误!=错误!,∴ ∠EPO=30°;∴ ∠EPF=60°;2∵点P是AD的中点,∴ AP=DP;又∵ PE=PF,∴ Rt△PEA≌Rt△PFDHL;∴∠OAD=∠ODA;∴ OA=OD;∴ AC=2OA=2OD=BD;∴ABCD是矩形;∵ 点P是AD的中点,点F是DO的中点,∴ AO∥PF;∵ PF⊥BD,∴ AC⊥BD;∴ABCD是菱形;∴ABCD是正方形;∴ BD=错误!BC;∵ BF=错误!BD,∴BC+3错误!-4=错误!BC,解得,BC=4;考点平行四边形的性质,角平分线的性质,三角形中位线定理,全等三角形的判定和性质,正方形的判定和性质,锐角三角函数定义;分析1连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;2根据条件证出 ABCD是正方形;根据正方形的对角线与边长的关系列式计算即可得解; 12. 2012福建莆田8分如图,四边形ABCD是平行四边形,连接AC.14分请根据以下语句画图,并标上相应的字母用黑色字迹的钢笔或签字笔画.①过点A画AE⊥BC于点E;②过点C画CF∥AE,交AD于点F;24分在完成1后的图形中不再添加其它线段和字母,请你找出一对全等三角形,并予以证明.答案解:1画图如下:2△ABC≌△CDA ;证明如下:∵ 四边形ABCD是平行四边形,∴ AB=CD,BC=DA;又∵ AC=CA,∴△ABC≌△CDASSS;考点作图复杂作图,平行四边形的性质,全等三角形的判定;分析1根据语句要求画图即可;2首先根据平行四边形的性质和AE∥CF,可得①△ABC≌△CDA,②△AEC≌△CFA,③△ABE≌△CDF;下面给出其它两个的证明:②△AEC≌△CFA;证明如下:∵四边形ABCD是平行四边形,∴ AD∥BC;∴ ∠DAC=∠ACE;∵AE∥CF,∴ ∠EAC=∠ACF;∵AC=CA,∴ △AEC≌△CFAASA;③△ABE≌△CDF;证明如下:∵四边形ABCD是平行四边形,∴ AD∥BC,∠B=∠D,AB =CD ;又∵AE∥CF,∴四边形AECF是平行四边形;∴∠AEC=∠AFC;∴∠AEB=∠CFD;∴△ABE≌△CDFAAS;13. 2012福建南平8分如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明, 备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明答案解:添加的条件可以是BE=DF答案不唯一;证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵BE=DF,∴AF=CE,即AF=CE,AF∥CE;∴四边形AECF是平行四边形;考点平行四边形的判定和性质,全等三角形的判定和性质,平行的判定和性质;分析根据平行四边形性质得出AD∥BC,AD=BC,求出AF∥CE,AF=CE,根据平行四边形的判定推出即可;当AE=CF时,四边形AECF可能是平行四边形,也可能是等腰梯形;当∠AEB=∠CFD时,四边形AECF也是平行四边形,证明如下:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D;∵∠AEB=∠CFD,∴△AEB≌△CFDAAS;∴AE=CF;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠AEB=∠EAF;∴∠CFD=∠EAF;∴AE∥FC;∴四边形AECF是平行四边形;14. 2012福建泉州9分如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F,求证∠DAE=∠BCF.答案证明:证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC平行四边形对边平行且相等∴∠ADB=∠CBD两直线平行,内错角相等;∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°垂直的定义;在△ADE和△CBF中,∵∠ADB=∠CBD,∠AED=∠CFB,AD=CB,∴△ADE≌S△CBFAAS;∴∠DAE=∠BCF全等三角形的对应角相等;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析由四边形ABCD为平行四边形,根据平行四边形的对边平行且相等得到AD=BC,AD与BC平行,利用两直线平行内错角相等得到一对角相等,再由AE⊥BD,CF⊥BD得到一对直角相等,利用AAS可得出三角形ADE与三角形CBF全等,利用全等三角形的对应角相等可得出∠DAE=∠BCF,得证;15. 2012湖北黄石7分如图,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.答案证明:∵四边形ABCD为平行四边形, ∴AD∥BC,且AD=BC;∴∠ADE=∠BCF;又∵BE=DF, ∴BF=DE;∴△ADE≌△CBFSAS;∴∠DAE=∠BCF ;考点平行四边形的性质,平行线的性质,全等三角形的判定和性质;分析根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,由SAS证△ADE≌△CBF,推出∠DAE=∠BCF即可;16. 2012湖南郴州8分已知:点P是ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC 于点F.求证:AE=CF.答案证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠PAE=∠PCF;∵点P是ABCD的对角线AC的中点,∴PA=PC;在△PAE和△PCE中,∵∠PAE=∠PCF,PA=PC,∠APE=∠CPF,∴△PAE≌△PCEASA;∴AE=CF;考点平行四边形的性质,全等三角形的判定和性质;分析由四边形ABCD是平行四边形,易得∠PAE=∠PCF,由点P是 ABCD 的对角线AC的中点,可得PA=PC,又由对顶角相等,可得∠APE=∠CPF,即可利用ASA证得△PAE≌△PCF,即可证得AE=CF;17. 2012四川广安6分如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.答案证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD; ∴∠D=∠EAF;∵AF=AB,BE=AD,∴AF=CD,AD﹣AF=BE﹣AB,即DF=AE;在△AEF和△DFC中,∵AE=DF,∠EAF=∠D,AF=DC,∴△AEF≌△DFCSAS,考点平行四边形的性质,平行线的性质,全等三角形的判定;分析由四边形ABCD是平行四边形,利用平行四边形的性质,即可得AB=CD,AB∥CD,又由平行线的性质,即可得∠D=∠EAF,然后由BE=AD,AF=AB,求得AF=CD,DF=AE,从而由SAS证得;18. 2012辽宁鞍山8分如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.答案证明:∵四边形ABCD是平行四边形,∴AD∥BC;∴∠DGC=∠GCB,∵DG=DC,∴∠DGC=∠DCG;∴∠DCG=∠GCB;∵∠DCG+∠DCP=180°,∠GCB+∠FCP=180°,∴∠DCP=∠FCP;∵在△PCF和△PCE中,CE=CF,∠FCP=∠ECP,CP=CP,∴△PCF≌△PCESAS;∴PF=PE;考点平行四边形的性质,平行的性质,等腰三角形的性质,全等三角形的判定和性质;分析根据平行四边形的性质推出∠DGC=∠GCB,根据等腰三角形性质求出∠DGC=∠DCG,推出∠DCG=∠GCB,根据等角的补角相等求出∠DCP=∠FCP,根据SAS证出△PCF≌△PCE即可;19. 2012辽宁大连9分如图,□ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O.求证:OA=OC.答案证明:∵四边形ABCD是平行四边形,∴AD=BC;∵ED=BF,∴AE=CF;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠OAE=∠OCF,∠OEA=∠OFC;在△AOE 和△COF中,∵∠OAE=∠OCF,AE=CF,∠OEA=∠OFC,∴△AOE ≌△COFASA;∴OA=OC;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形的性质可得AD BC;由等量减等量差相等得AE=CF;由两直线平行内错角相等得∠OAE=∠OCF,∠OEA=∠OFC;由ASA证得△AOE ≌△COF,从而根据全等三角形对应边相等的性质得OA=OC;20. 2012辽宁沈阳10分已知,如图,在荀ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.1求证:△AEM≌△CFN;21世纪教育网2求证:四边形BMDN是平行四边形.答案证明:1 ∵四边形ABCD是平行四边形,∴AB∥DC ,AD∥BC;∴∠E=∠F,∠DAB=∠BCD; ∴∠EAM=∠FCN;又∵AE=CF ∴△AEM≌△CFNASA;2 ∵由1△AEM≌△CFN, ∴AM=CN;又∵四边形ABCD是平行四边形,∴AB CD ;∴BM DN;∴四边形BMDN是平行四边形;考点平行四边形的判定和性质,平行的性质,全等三角形的判定和性质;分析1根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;2根据平行四边形的性质及1的结论可得BM DN,则由有一组对边平行且相等的四边形是平行四边形即可证明;21. 2012贵州六盘水12分如图,已知E是 ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.1求证:△ABE≌△FCE.2连接AC.BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.答案证明:1∵四边形ABCD为平行四边形,∴AB∥DC;∴∠ABE=∠ECF;又∵E为BC的中点,∴BE=CE;在△ABE和△FCE中,∵∠ABE=∠FCE,BE=CE,∠AEB=∠FEC,∴△ABE≌△FCEASA;2∵△ABE≌△FCE,∴AB=CF;又AB∥CF,∴四边形ABFC为平行四边形;∴BE=EC,AE=EF;又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB;∴∠ABC=∠EAB,∴AE=BE;∴AE+EF=BE+EC,即AF=BC;∴四边形ABFC为矩形;考点平行四边形的性质,平行的性质,全等三角形的判定和性质,等腰三角形和判定,矩形的判定;分析1由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;2由△ABE≌△FCE,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEB等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形;22. 2012山东济南7分1如图1,在ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.2如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.答案1证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,AD=CB ,∠A=∠C ,AE=CF,∴△ADE≌△CBFSAS;∴DE=BF;2解:∵AB=AC,∠A=40°,∴∠ABC=∠C=12180°-40°=70°,又∵BD是∠ABC的平分线,∴∠DBC=12∠ABC=35°;∴∠BDC=180°-∠DBC-∠C=75°;考点平行四边形的性质,全等三角形的判定和性质;等腰三角形的性质,角平分线的定义,角形的内角和定理;分析1根据四边形ABCD是平行四边形,利用平行四边形的性质得到一对边和一对角的对应相等,在加上已知的一对边的相等,由“SAS”,证得△ADE≌△CBF,最后根据全等三角形的对应边相等即可得证;2根据AB=AC,利用等角对等边和已知的∠A的度数求出∠ABC和∠C的度数,再根据已知的BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,最后根据三角形的内角和定理即可求出∠BDC的度数;23. 2012山东潍坊10分如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.。
2002-2012上海中考数学试题分类解析汇编专题7-平面几何基础

2002年-2012年上海市中考数学试题分类解析汇编专题7:平面几何基础和向量一、选择题1.(上海市2002年3分)下列命题中,正确的是【 】 (A )正多边形都是轴对称图形;(B )正多边形一个内角的大小与边数成正比例; (C )正多边形一个外角的大小随边数的增加而减少; (D )边数大于3的正多边形的对角线长相等. 【答案】A ,C 。
【考点】正多边形和圆,命题与定理。
【分析】根据正多边形的性质,以及正多边形的内角和.外角和的计算方法即可求解:A 、所有的正多边形都是轴对称图形,故正确;B 、正多边形一个内角的大小=(n -2)×180n ,不符合正比例的关系式,故错误;C 、正多边形的外角和为360°,每个外角=0360n,随着n 的增大,度数将变小,故正确;D 、正五边形的对角线就不相等,故错误。
故选A ,C 。
2.(上海市2008年Ⅱ组4分)计算32a a -的结果是【 】 A .aB .aC .a -D .a -【答案】B 。
【考点】向量的计算。
【分析】根据向量计算的法则直接计算即可:32=a a a -。
故选B 。
3.(上海市2008年Ⅱ组4分)如图,在平行四边形ABCD 中,如果AB a =,AD b =,那么a b +等于【 】A .BDB .ACC .DBD .CA【答案】B 。
【考点】向量的几何意义。
【分析】根据向量的意义,=a b AC +。
故选B 。
4.(上海市2009年4分)下列正多边形中,中心角等于内角的是【 】 A .正六边形 B .正五边形C .正四边形C .正三边形【答案】C 。
【考点】多边形内角与外角。
【分析】正n 边形的内角和可以表示成02180n -⋅(),则它的内角是等于02180n n-⋅(),n 边形的中心角等于0360n,根据中心角等于内角就可以得到一个关于n 的方程:002180360n n n-⋅=(),解这个方程得n =4,即这个多边形是正四边形。
2012年上海市中考数学试卷及答案解析课件.doc

2012 年上海市中考数学试卷一.选择题(共 6 小题)1.(2012 上海)在下列代数式中,次数为 3 的单项式是()2 3 3 3A.xyB.x +y C..x y D..3xy考点:单项式。
解答:解:根据单项式的次数定义可知:2的次数为3,符合题意;A、xy3 3B、x +y 不是单项式,不符合题意;3C、x y 的次数为4,不符合题意;D、3xy 的次数为2,不符合题意.故选A.2.(2012 上海)数据5,7,5,8,6,13,5 的中位数是()A.5 B.6 C.7 D.8考点:中位数。
解答:解:将数据5,7,5,8,6,13,5 按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3.(2012 上海)不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2考点:解一元一次不等式组。
解答:解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.4.(2012 上海)在下列各式中,二次根式的有理化因式是()A.B.C.D.考点:分母有理化。
解答:解:∵×=a﹣b,∴二次根式的有理化因式是:.故选:C.5.(2012 上海)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形考点:中心对称图形。
解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合, A 、C、D 都不符合;是中心对称图形的只有B.第 1 页共10 页故选:B.6.(2012 上海)如果两圆的半径长分别为 6 和2,圆心距为3,那么这两个圆的位置关系是()A.外离B.相切C.相交D.内含考点:圆与圆的位置关系。
解答:解:∵两个圆的半径分别为 6 和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含.故选:D.二.填空题(共12 小题)7.(2012 上海)计算= .考点:绝对值;有理数的减法。
上海市(2001-2012)历年中考数学试题(含答案)

2001年上海市数学中考试卷一、填空题(本题共14小题,每小题2分,满分28分)1.计算:2·18=2.如果分式242--x x 的值为零,那么x = 3.不等式7—2x >1的正整数解是 .4.点A (1,3)关于原点的对称点坐标是 .5.函数1-=x x y 的定义域是 . 6.如果正比例函数的图象经过点(2,4),那么这个函数的解析式为 .7.如果x 1、x 2是方程x 2-3x +1=0的两个根,那么代数式(x 1+1)( x 2+1)的值是 .8.方程2+x =-x 的解是 .9.甲、乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10.那么成绩较为稳定的是 (填“甲”或“乙”).10.如果梯形的两底之比为2∶5,中位线长14厘米,那么较大底的长为 厘米.11.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米.12.某飞机在离地面1200米的上空测得地面控制点的俯角为60°,此时飞机与该地面控制点之间的距离是 米.13.在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AB 'E ,那么△AB 'E 与四边形AECD 重叠部分的面积是 .14.如图1,在大小为4×4的正方形方格中,△ABC 的顶点A 、B 、C 在单位正方形的顶点上,请在图中画一个△A 1B 1C 1,使△A 1B 1C 1∽△ABC (相似比不为1),且点A 1、B 1、C 1都在单位正方形的顶点上.二、多项选择题(本题共4小题,每小题3分,满分12分.每小题列出的四个答案中,至少有一个是正确的,把所有正确答案的代号填入括号内,错选或不选得0分,否则每漏选一个扣1分)15.下列计算中,正确的是( ).A .a 3·a 2=a 6B .(a +b )(a -b )=a 2-b 2C .(a +b )2=a 2+b 2D .(a +b )(a -2b )=a 2-ab -2b 216.下列多项式中,能在实数范围内分解因式的是( ).A .x 2+4B .x 2-2C .x 2-x -1D .x 2+x +117.下列命题中,真命题是( ).A .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相平分且垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形18.如果⊙O 1、⊙O 2的半径分别为4、5,那么下列叙述中,正确的是( ).A .当O 1 O 2=1时,⊙O 1与⊙O 2相切B .当O 1 O 2=5时,⊙O 1与⊙O 2有两个公共点C .当O 1 O 2>6时,⊙O 1与⊙O 2必有公共点D .当O 1 O 2>1时,⊙O 1与⊙O 2至少有两条公切线三、(本题共4小题,每小题7分,满分28分)1 9.计算12102)13(12)21()2(--⋅--+ 20.解方程:31066=+++x x x x .21.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图(如图2)和快餐公司盒饭年销量的平均数情况条形图(如图3).利用图2、图3共同提供的信息,解答下列问题:图2 图3(1)1999年该地区销售盒饭共 万盒. (2)该地区盒饭销量最大的年份是 年,这一年的年销量是 万盒.(3)这三年中该地区每年平均销售盒饭多少万盒?22.如图4,在△ABC 中,∠C =90°,点D 在BC 上,BD =4,AD =BC ,cos ∠ADC=53.求:(1)DC 的长;(2)sin B 的值.四、(本题共4小题,每小题10分,满分40分)23.如图5,已知点A (4,m ),B (-1,n )在反比例函数y =x8的图象上,直线AB 与x 轴交于点C .如果点D 在y 轴上,且DA =DC ,求点D 的坐标.24.如图6,在Rt △ABC 中,∠B =90°,∠A 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D .求证:(1)AC 是⊙O 的切线;(2)AB +EB =AC .25.某电脑公司2000年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%.该公司预计2002年经营总收入要达到2160万元,且计划从2000年到2002年,每年经营总收入的年增长率相同,问2001年预计经营总收入为多少万元?26.如图7,已知抛物线y =2x 2-4x +m 与x 轴交于不同的两点A 、B ,其顶点是C ,点D 是抛物线的对称轴与x 轴的交点.(1)求实数m 的取值范围;(2)求顶点C 的坐标和线段AB 的长度(用含有m 的式子表示);(3)若直线12+=x y 分别交x 轴、y 轴于点E 、F ,问△BDC与△EOF 是否有可能全等,如果可能,请证明;如果不可能,请说明理由.五、(本题满分12分)27.已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.(1)如图8,P为AD上的一点,满足∠BPC=∠A.①求证;△ABP∽△DPC②求AP的长.(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q,那么①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;②当CE=1时,写出AP的长(不必写出解题过程).答案一、填空题1.6 2.-2 3.1,2 4.(-1,-3)5.x >1 (题5中定义域的意思即指函数自变量的取值范围.)6.y =2x 7.5 8.x =-19.甲 10.20 11.2.5 12.8003 13.22—214.图略(画出一个符合要求的三角形)(题14的考查目标是阅读理解、计算、作图能力,单位正方形是指边长为1的正方形,4×4的正方形方格指边长为4的正方形,被分成16个单位正方形,再应用勾股定理计算出AC ,AB ,BC 的长,依相似三角形性质按比例扩大,画出适中的△A 1B 1C 1.)二、多项选择题(本题共4小题,每小题3分,满分12分)(题二不是平时习以为常的“四选一”型单选题,而是多项选择题,读准原题括号中的提示后,解题时要逐个筛选,逐一排查.)15.B 、D 16.B 、C 17.A 、C 18.A 、B 、D三、(本题共4小题,每小题?分,满分28分)19.解:12102)13(12)21()2(--⋅--+ .33332133231311212-=--=+⋅-=-⋅-+=(题19中出现了分数指数,2112意义是12.) 20.解法一:设xx y 6+=,则原方程为3101=+y y ,整理,得3y 2-10y +3=0,解得y 1=31,y 2=3.当y =31时,316=+x x ,解得x =—9;当y =3时,36=+x x ,解得x =3.经检验,x 1=-9,x 2=3都是原方程的根.则原方程的根是x 1=-9,x 2=3.解法二:方程两边同乘3x (x +6),得3(x +6)2+3x 2=10x (x +6),整理得.x 2+6x -27=0,解得x 1=-9,x 2=3.经检验,x 1=-9,x 2=3都是原方程的根,所以原方程的根是x 1=-9,x 2=3.21.(1)118;(2)2000,1 20:(3)解:3518002590150...⨯+⨯+⨯=x =96(万盒). 答:这三年中,该地区每年平均销售盒饭96万盒.(题21考查统计图表在实际生产、生活中的应用,两个图形既相互独立,又互相联系.单个图表的阅读可考查阅读能力,双图表则更体现了思维间的联系与综合能力.)22.解:∵ 在Rt △ACD 中,cos ∠ADC =53=AD CD ,设CD =3k ,∴ AD =5k . 又∵ BC =AD ,∴ 3k +4=5k ,∴ k =2.∴ CD =3k =6.(2) ∵ BC =3k +4=6+4=10,AC =22CD AD -=4k =8,∴ 4121082222=+=+=BC AC AB .∴ 414144128sin ==AB AC B . (题22考查解直角三角形知识,解题时依三角函数定义设参数,结合代数知识求解,应注意的是AC DC ADC =∠cos ,则设DC =3k ,AC =5k ,但不能把DC =3,AC =5当作已知量直接应用.)四、(本题共4小题,每小题10分,满分40分)23.解:由点A 、B 在y =x8的图象上,得m =2,n =-8,则点A 的坐标为(4,2),点B 的坐标为(-1,-8).设直线AB 的函数解析式为y =kx +b ,则⎩⎨⎧+-=-+=b k b k 842,解得⎩⎨⎧-==.,62b k 则直线AB 的函数解析式为y =2x -6.所以点C 坐标为(3,0).设D (0,y ),由DA =DC ,得(y -2)2+42=y 2+32.解得y =411.则点D 的坐标是(0,411). 24.证明:(1)过D 作DF ⊥AC ,F 为垂足.∵ AD 是∠BAC 的平分线,DB ⊥AB ,∴ DB =DF .∴ 点D 到AC 的距离等于圆D 的半径.∴ AC 是⊙D 的切线.(2) ∵ AB ⊥BD ,⊙D 的半径等于BD ,∴ AB 是⊙O 的切线.∴ AB =AF .∵ 在Rt △BED 和Rt △FCD 中,ED =CD ,BD =FD ,∴ △BED ≌△FCD .∴ BE =FC .∴ AB +BE =AF +FC =AC .25.解:2000年的经营总收入为600÷40%=1500(万元).设年增长率为x ,则1500(1+x )2=2160,(1+x )2=1.44,1+x =±1.2(舍去1+x =—1.2),1500(1+x )=1500×1.2=1800(万元).答:2001年预计经营总收入为1800万元.26.解:(1) ∵ 抛物线y =2x 2-4x +m 与x 轴交于不同的两个点,∴ 关于x 的方程2x 2—4x +m =0有两个不相等的实数根.∴ △=(—4) 2—4·2m >0,∴ m <2.(2)由y =2x 2-4x +m =2(x —1)2+m -2,得顶点C 的坐标是(1,m -2).由2x 2—4x +m =0,解得,x 1=1+m 2421-或x 2=1—m 2421-. ∴ AB =(1+m 2421-)—(1—m 2421-)=m 24-. (3)可能.证明:由y =2x +1分别交x 轴、y 轴于点E 、F ,得E (-22,0),F (0,1).∴ OE =22,OF =1.而BD =m 2421-,DC =2-m .当OE =BD ,得m 242122-=,解得m =1.此时OF =OC =1. 又∵ ∠EOF =∠CDB =90°,∴ △BDC ≌△EOF .∴ △BDC 与△EOF 有可能全等. (题26是一元二次方程,二次函数与直线形的综合考查题,由图象可知,抛物线与x 轴有两个交点,则△>0;求AB 的长度可用简化公式aAB ∆=;(3)要求判断△BDC 与△EOF 是否有可能全等,即指探索全等的可能性,本题已有∠CDB =∠EOF =90°,BD 与OE 或OF 都可能是对应边,证出其中一种情形成立即可,解题时要注意“有可能”这个关键词.)27.(1)①证明:∵ ∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴ ∠ABP =∠DPC .∵ 在梯形ABCD 中,AD ∥BC ,AB =CD ,∴ ∠A =∠D .∴ △ABP ∽△DPC .②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DCPD AP AB =,即252x x -=,解得x 1=1,x 2=4,则AP 的长为1或4. (2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴DQ AP PD AB =.即y x x +=-252,得225212-+-=x x y ,1<x <4. ②AP =2或AP =3-5.(题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)上海市2002年中等学校高中阶段招生文化考试数学试卷(满分120分,考试时间120分钟)考生注意:除第一、二大题外其余各题如无特别说明,都必须写出证明或计算的主要步骤.一.填空题(本大题共14题,每题2分,满分28分)1.计算:221-⎪⎭⎫ ⎝⎛=__________. 2.如果分式23-+x x 无意义,那么x =__________. 3.在张江高科技园区的上海超级计算中心内,被称为“神威1”的计算机运算速度为每秒384 000 000 000次,这个速度用科学记数法表示为每秒___________次.4.方程122-x =x 的根是__________.5.抛物线y =x 2-6x +3的顶点坐标是 __________.6.如果f (x )=kx ,f (2)=-4,那么k =__________.7.在方程x 2+x x 312-=3x -4中,如果设y =x 2-3x ,那么原方程可化为关于y 的整式方程是__________.8.某出租车公司在“五一”长假期间平均每天的营业额为5万元,由此推断5月份的总营业额约为5×31=155(万元)根据所学的统计知识,你认为这样的推断是否合理?答:__________.9.在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,如果AD =8,DB =6,EC =9,那么AE =__________.10.在离旗杆20米处的地方用测角仪测得旗杆顶的仰角为a ,如果测角仪高为1.5米,那么旗杆的高为__________米,(用含a 的三角比表示).11.在△ABC 中,如果AB =AC =5cm ,BC =8cm ,那么这个三角形的重心G 到BC 的距离是__________cm .12.两个以点O 为圆心的同心圆中,大圆的弦AB 与小圆相切,如果AB 的长为24,大圆的半径OA 为13,那么小圆的半径为__________.13.在R t △ABC 中,∠A <∠B ,CM 是斜边AB 上的中线,将△A CM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于__________度.14.已知AD 是△ABC 的角平分线,E 、F 分别是边AB 、AC 的中点,连结DE 、DF ,在不再连结其他线段的前提下,要使四边形AEDF 成为菱形,还需添加一个条件,这个条可以是__________.二、多项选择题(本大题4题,每题3分,满分12分)[每题列出的四个答案中,至少有一个是正确的,把所有正确答案的代号填入括号内,错选或不选得0分,否则每漏选一个扣1分,直至扣完为止]15.在下列各数中,是无理数的是 ( )(A )π; (B )722; (C )9; (D )4.16.在下列各组根式中,是同类二次根式的是 ( )(A )2和12; (B )2和21; (C )ab 4和3ab ; (D )1-a 和1+a .17.如果两个半径不相等的圆有公共点,那么这两个圆的公切线可能是 ( )(A )1条; (B )2条; (C )3条; (D )4条18.下列命题中,正确的是 ( )(A )正多边形都是轴对称图形;(B )正多边形一个内角的大小与边数成正比例;(C )正多边形一个外角的大小随边数的增加而减少;(D )边数大于3的正多边形的对角线长相等.三、(大小题共4题,每题7分,满分28分)19.计算:96261212222-+---+-⋅-+x x x x x x x x .20.解不等式组:()⎪⎩⎪⎨⎧-≥-->+②①.356634,1513x x x x21.如图1,已知四边形ABCD 中,BC =CD =DB ,∠ADB =90°,cos ∠ABD =54,求S △ABD ︰S △BCD .图122.某校在六年级和九年级男生中分别随机抽取20名男生测量他们的身高,绘制的频数分布直方图如图2所示,其中两条点划线上端的数值分别是每个年级被抽20名男生身高的平均数,该根据该图提供的信息填空:图2(1)六年级被抽取的20名男生身高的中位数所在组的范围是__________厘米; 九年级被抽取的20名男生身高的中位数所在组的范围是__________厘米.(2)估计这所学校九年级男生的平均身高比六年级男生的平均身高高__________厘米. (3)估计这所学校六、九两个年级全体男生中,身高不低于153厘米且低于163厘米的男生所占的百分比是__________.四、(本大题共4题,每题10分,满40分)23.已知:二次函数y =x 2-2(m -1)x +m 2-2m -3,其中m 为实数.(1)求证:不论m 取何实数,这个二次函数的图象与x 轴必有两个交点;(2)设这个二次函数的图象与x 轴交于点A (x 1,0).B (x 2,0),且x 1、x 2的倒数和为32,求这个二次函数的解析式.24.已知:如图3,AB 是半圆O 的直径,弦CD ∥AB ,直线CM 、DN 分别切半圆于点C 、D ,且分别和直线AB 相交于点M 、N .图3(1)求证:MO =NO ;(2)设∠M =30°,求证:NM =4CD .25.某班进行个人投篮比赛,受污损的下表记录了在规定时间内设进n 个球的人数分布情况:同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个求,问投进3个球和4个求的各有多少人.26.如图4,直线y =21x +2分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,S △ABP =9.图4(1)求点P的坐标;(2)设点R与点P的同一个反比例函数的图象上,且点R在直线PB的右侧,作RT ⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标.五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分)27.操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.图567 探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)上海市2002年中等学校高中阶段招生文化考试数学试卷答案要点与评分说明一.填空题(本大题共14题,每题2分,满分28分)1.4; 2.2;3.3.84×1011;4.x =1;5.(3,-6); 6.-2;7.y 2+4y +1=0;8.不合理; 9.12; 10.20tan α+1.5;11.1;12.5;13.30;14.AB =AC 、∠B =∠C 、AE =AF 、AE =ED 、DE ∥AC 、…中的一个 二、多项选择题(本大题共4题,每题3分,满分12分) 15.A 、D ;16.B 、C17.A 、B 、C18.A 、C三、(本大题共4题,每题7分,满分28分)19.解:原式=()()()()()()3332231122-++-+--⋅-+x x x x x x x x ……………………(4分) =3231----x x x ……………………(2分) =33--x x =1. ……………………(1分)20.解:由①解得 x <3 ……………………(3分)由②解得 x ≥83……………………(3分) ∴ 原不等式组的解集是 83≤x <3 ……………………(1分)21.解:∵ cos ∠ABD =54 ∴ 设AB =5k BD =4k (k >0),得AD =3k ……………………(1分) 于是S △ABC =21AD ·BD =6k 2 ……………………(2分) ∴ △BCD 是等边三角形, ∴ S △BCD =43BD 2=43k 2 ……………………(2分)∴ S △ABD ︰S △BCD =6k 2︰43k 2=3︰2 ……………………(2分) 22.(1)148~153 ……………………(1分) 168~173 ……………………(1分) (2)18.6 ……………………(2分) (3)22.5% ……………………(3分) 四、(本大题共4题,每题10分,满分40分) 23. (1)证明:和这个二次函数对应的一元二次方程是x 2-2(m -1)x +m 2-2m -3=0Δ=4(m -1)2-4(m 2-2m -3) ……………………(1分) =4m 2-8m +4-4m 2+8m +12 ……………………(1分) =16>0. ……………………(1分) ∵ 方程x 2-2(m -1)x +m 2-2m -3=0必有两个不相等的实数根.∴ 不论m 取何值,这个二次函数的图象与x 轴必有两个交点. ……………(1分) (2)解:由题意,可知x 1、x 2是方程x 2-2(m -1)x +m 2-2m -3=0的两个实数根, ∴ x 1+x 2=2(m -1),x 1·x 2=m 2-2m -3. ……………………(2分) ∵321121=+x x ,即 322121=⋅+x x x x ,∴ ()3232122=---m m m (*) …………(1分)解得 m =0或m =5 ……………………(2分) 经检验:m =0,m =5都是方程(*)的解∴ 所求二次函数的解析是y =x 2+2x -3或y =x 2-8x +12.……………………(1分) 24.证明:连结OC 、OD .(1)∵ OC =OD ,∴ ∠OCD =∠ODC ……………………(1分) ∵ CD ∥AB ,∴ ∠COD =∠COM ,∠ODC ∠DON .∴ ∠COM =∠DON ……………………(1分) ∵ CM 、DN 分别切半圆O 于点C 、D ,∴ ∠O CM =∠ODN =90°. …(1分)∴ △O CM ≌△ODN . ……………………(1分) ∴ OM =ON . ……………………(1分) (2)由(1)△O CM ≌△ODN 可得∠M =∠N .∵ ∠M =30°∴ ∠N =30° ……………………(1分) ∴ OM =2OD ,ON =2OD ,∠COM =∠DON =60° ……………………(1分) ∴ ∠COD =60° ……………………(1分) ∴ △COD 是等边三角形,即CD =OC =OD . ……………………(1分) ∴ MN =OM +ON =2OC +2OD =4CD . ……………………(1分) 25.解:设投进3个球的有x 个人,投进4个球的有y 个人……………………(1分)由题意,得⎪⎪⎩⎪⎪⎨⎧=++++++⨯+⨯+⨯=++⨯++.5.272143722110,5.322543y x y x y x y x (*)……………………(4分)整理,得⎩⎨⎧=+=-183,6y x y x ……………………(2分)解得⎩⎨⎧==3,9y x ……………………(2分)经检验:⎩⎨⎧==3,9y x 是方程组(*)的解.答:投进3个球的有9个人,投进4个球的有3个人. ……………………(1分) 26.解:(1)由题意,得点C (0,2),点A (-4,0). ……………………(2分)设点P 的坐标为(a ,21a +2),其中a >0. 由题意,得S △ABP =21(a +4)(21a +2)=9. ……………………(1分)解得a =2或a =-10(舍去) ……………………(1分)而当a =2时,21a +2=3,∴ 点P 的坐标为(2,3). ……………………(1分) (2)设反比例函数的解析式为y =xk.∵ 点P 在反比例函数的图象上,∴ 3=2k,k =6∴ 反比例函数的解析式为y =x6, ……………………(1分) 设点R 的坐标为(b ,b 6),点T 的坐标为(b ,0)其中b >2, 那么BT =b -2,RT =b6.①当△RTB ~△AOC 时,CO BT AO RT =,即 2==COAOBT RT , ………………(1分)∴ 226=-b b ,解得b =3或b =-1(舍去). ∴ 点R 的坐标为(3,2). ……………………(1分) ①当△RTB ∽△COA 时,AO BT CO RT =,即 21==AO CO BT RT , ………………(1分)∴ 2126=-b b ,解得b =1+13或b =1-13(舍去). ∴ 点R 的坐标为(1+13,2113-). ……………………(1分) 综上所述,点R 的坐标为(3,2)或(1+13,2113-). 五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分) 27.图1 图2 图3(1)解:PQ =PB ……………………(1分) 证明如下:过点P 作MN ∥BC ,分别交AB 于点M ,交CD 于点N ,那么四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰直角三角形(如图1).∴ NP =NC =MB . ……………………(1分) ∵ ∠BPQ =90°,∴ ∠QPN +∠BPM =90°.而∠BPM +∠PBM =90°,∴ ∠QPN =∠PBM . ……………………(1分)又∵ ∠QNP =∠PMB =90°,∴ △QNP ≌△PMB . ……………………(1分) ∴ PQ =PB . (2)解法一由(1)△QNP ≌△PMB .得NQ =MP . ∵ AP =x ,∴ AM =MP =NQ =DN =x 22,BM =PN =CN =1-x 22, ∴ CQ =CD -DQ =1-2·x 22=1-x 2. 得S △PBC =21BC ·BM =21×1×(1-x 22)=21-42x . ………………(1分) S △PCQ =21CQ ·PN =21×(1-x 2)(1-x 22)=21-x 423+21x 2(1分) S 四边形PBCQ =S △PBC +S △PCQ =21x 2-x 2+1. 即 y =21x 2-x 2+1(0≤x <22). ……………………(1分,1分)解法二作PT ⊥BC ,T 为垂足(如图2),那么四边形PTCN 为正方形. ∴ PT =CB =PN .又∠PNQ =∠PTB =90°,PB =PQ ,∴△PBT ≌△PQN .S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △PQN =S 正方形PTCN (2分)=CN 2=(1-x 22)2=21x 2-x 2+1 ∴ y =21x 2-x 2+1(0≤x <22). ……………………(1分)(3)△PCQ 可能成为等腰三角形①当点P 与点A 重合,点Q 与点D 重合,这时PQ =QC ,△PCQ 是等腰三角形, 此时x =0 ……………………(1分) ②当点Q 在边DC 的延长线上,且CP =CQ 时,△PCQ 是等腰三角形(如图3) ……………………(1分)解法一 此时,QN =PM =x 22,CP =2-x ,CN =22CP =1-x 22. ∴ CQ =QN -CN =x 22-(1-x 22)=x 2-1. 当2-x =x 2-1时,得x =1. ……………………(1分) 解法二 此时∠CPQ =21∠PCN =22.5°,∠APB =90°-22.5°=67.5°, ∠ABP =180°-(45°+67.5°)=67.5°,得∠APB =∠ABP ,∴ AP =AB =1,∴ x =1. ……………………(1分)上海市2003年初中毕业高中招生统一考试数 学 试 卷一、填空题1. 8的平方根是 .2. 在6,8,21,4中,是最简二次根式的是 。
北京市2001-2012年中考数学试题分类解析专题10:四边形

一、选择题1. (2001年北京市4分)已知梯形的上底长是3cm,它的中位线长是4cm,则它的下底长等于【】A.3cm B.3.5cm C.5cm D.5.5cm2. (2002年北京市4分)如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE:EF:FB为【】3. (2004年北京市4分)如图,在菱形ABCD中,E是AB的中点,作EF∥BC,交AC于点F.如果EF=4,那么CD的长为【】4. (2004年北京市4分)如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是【】5. (2005年北京市4分)如图,在平行四边形ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是【】A、∠AEF=∠DECB、FA:CD=AE:BCC、FA:AB=FE:ECD、AB=DC【答案】B。
7.(2011年北京市4分)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的AOCO值为【】又∵AD=1,BC=3,∴AO1CO3。
故选B。
二、填空题1. (2006年北京市大纲4分)如图,在等腰梯形ABCD中,AD∥BC,如果AD=4,BC=8,∠B=60°,那么这个等腰梯形的周长等于▲ 。
三、解答题1. (2001年北京市8分)已知:如图,在ABCD中,E为AD中点,连接CE并延长交BA 的延长线于F.求证:CD=AF.2. (2001年北京市8分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形面积S.3. (2002年北京市7分)如图,在梯形ABCD中,AD∥BC,AB=CD,延长CB到E,使EB=AD,连接AE.求证:AE=CA.【答案】证明:连接BD,∴AC=BD。
2012年上海数学中考答案
2012年中考数学试题参考答案一、选择题:二、填空题:16.1217. 3(2)(2)a a 18. 89 19. 5x 20. 4或8 21.5n三、解答题:22(1)解:2(2)4(1)aa =24444a aa……………………………………………………………2分=2a………………………………………………………………………………3分22(2)解:①+②,得5x =5 …………………………………………………………………1分∴x =1. …………………………………………………………………2分将x =1代入①,得3+y =4,∴y =1.………………………………………………………………..3分∴x =1,y =1..................................................................................................4分23(1)证明:∵四边形ABCD 是菱形∴E A CF A C……………………………………………………1分又∵AE=AF ,AC 为公共边∴△ACE ≌△ACF ……………………………………………………2分∴CE =CF ………………………………………………………………3分23(2)解:连接OC∵AB 切⊙O 于点C∴OC ⊥AB (1)又∵OA = OB ∴AC = BC =12AB = 5cm ………………………..........................…..2分在Rt △OCA 中OA 2= OC 2+ AC 2=34∴OA =34cm.....................................................................................3分1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 B21世纪教育网BADADACBCCDBCB∴sinA=33343434O C O A..................................…………...................................4分24.解:游戏是公平的………………………………………………………………………1分抽取的面值之和列表(或树状图)为:4 51 5 62 6 7 378………………………………………………………4分总共有6种可能,面值和是偶数和奇数各3种可能1(2P 小明赢),1(2P 小丽赢).…………………………………………………….7分∴游戏对双方是公平的.……………………………………………………………..8分25.解:(1)设2012年至2014年该单位投入环保经费的年平均增长率为x ,根据题意,得24001576x ……………………………………………………3分解得120.2 2.2x x ,(不合题意,舍去)……………………………………….5分答:2012年至2014年该单位投入环保经费的年平均增长率为20%. …………..….6分(2)∵576120%691.2680∴该目标能实现. ……………………………………………………………………….8分26.解:(1)设直线AB 的解析式为y=kx+b则3kb b………………………………………..2分解得k=-3,b=3∴y=-3x+3……………………………………3分作CD ⊥x 轴,垂足为D ,∵OA=1,OB=3,∴AB=2∵∠ABC=30°,∴AC=233………………….…..4分∵3O B O A∴∠OAB=60,∴∠CAD=30∴CD=33,AD =1…………………………………………………………….………. 5分第一张第二张xy B COADPQl第26题答案图∴C 的坐标是3(2,)3………………………………………………………....………6分(2)如图,过点P 作直线l ∥x 轴,交AB 于点Q ,则点Q 的坐标是13(,)22S △ABC12A B A C=123232233∵S △ABC= S △APB ,∴12323P Q O B,即123323PQ ……………7分解得P Q =43,∴1423m,解得12115,66m m …………………………9分27.解:(1)∠D= 45 度…………………………………………………………………1分(2)∵∠CBE 是Rt △ABC 的外角∴∠CBE=90°+∠CAB ……………………………………………………………………2分又∵AD 平分∠CAB ,BD 平分∠CBE ∴∠BAD=12C A B,∠DBE=1452C B ED A B …………………………………3分又∵∠DBE=D A BD………………………………………………………………..4分∴∠D=45°…………………………………………………………………………………5分(3)∵∠ADB =45°,BG ⊥DF ∴BG=DG=4 在Rt △BGF 中,2225B F G F G B……………………………………………..6分∵BG ⊥DF ,DH ⊥BF∴∠DFB +∠FDH =∠DFB +∠FBG =90°∴∠FDH =∠FBG …………………………………………………………………………7分又∵∠BGF =∠DHF =90°∴△DHF ∽△BGF ………………………………………………………………………..8分∴F H D F G F B F ∴655F H,455B H…………………………………………………………….9分28.解:(1)将A (1,0)(3,0)代入23yaxbx得030933a b ab …….……………………………………………………………..…1分解得14a b,……………………………………………………………..………….……2分∴243yxx…………………………………………………….…………….……3分(2)①设F (x ,x 2-4x +3),若E ,F 在AB 的同侧,则EF =AB =2∵点E 在抛物线的对称轴上∴22x∴x=0或x=4∴F 1(0,3),F 2(4,3)………………………………………………………..5分②若E ,F 在AB 异侧,则F 与抛物线的顶点重合,即F 3(2,-1)∴存在点F 1(0,3),F 2(4,3),F 3(2,-1),使以A ,B ,E ,F 为顶点的四边形为平行四边形………………………………………………………………………………….6分(3)连接BC ∵∠BNC=90°,∴点N 的路径是以BC 的中点M 为圆心,BC 长的一半为半径的O C………………7分连接OM∵OB=OC=3,∴则OM ⊥BC ,∴∠OMC =90°…………………………………………8分∵BC=22=32O BO C ,∴OM322∴o cl 90323218024..…………………9分第28题答案图ABCOP xyN M。
【中考12年】江苏省常州市2001-2012年中考数学试题分类解析 专题10 四边形
2001-2012年某某某某中考数学试题分类解析汇编(12专题)专题10:四边形一、选择题1. (2001某某某某2分)顺次连结等腰梯形各边中点所得的四边形一定是【】【答案】D。
【考点】等腰梯形的性质,三角形中位线定理,菱形的判定。
【分析】如图,等腰梯形ABCD中,AD∥BC,AB≡CD,E、F、G、H分别是各边的中点,连接AC、BD。
∵E、F分别是AB、BC的中点,∴EF=12 AC。
同理FG=12BD,GH=12AC,EH=12BD。
又∵四边形ABCD是等腰梯形,∴AC=BD。
∴EF=FG=GH=HE。
∴四边形EFGH是菱形。
故选D。
2. (2001某某某某2分)下列命题中的真命题是【】【答案】D。
【考点】命题与定理,菱形、矩形、梯形、正方形的判定。
【分析】根据菱形、矩形、梯形、正方形的判定作出判断:A、假命题,有一组邻边相等的平行四边形才是菱形;B、假命题,例如等腰梯形,对角线也相等;C、假命题,例如平行四边形的一组对边也平行;D、真命题,符合矩形的判定定理。
故选D。
3. (某某省某某市2005年2分)如图,等腰梯形ABC D中,AB∥DC,AD=BC=8,AB=10,CD=6,则梯形ABCD的面积是【 】A 、1516B 、516C 、1532D 、1716 【答案】A 。
【考点】等腰梯形的性质,勾股定理。
【分析】知道等腰梯形的上底、下底,只要求出高,就可得梯形的面积:过D ,C 分别作高DE ,CF ,垂足分别为E ,F ,∵等腰梯形ABCD 中,AB∥DC,AD=BC=8,AB=10,CD=6, ∴DC=EF=6,AE=BF=2。
∴DE=25,∴梯形ABCD 的面积=1610 2 1516152+⨯=()。
故选A 。
4. (某某省某某市2008年2分)顺次连接菱形各边中点所得的四边形一定是【 】【答案】D 。
【考点】菱形的性质,三角形中位线定理,矩形的判定。
【分析】先证明四边形EFGH 是平行四边形,再根据有一个角是直角的平行四边形是矩形判断:如图:菱形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点, ∴EH∥FG∥BD,EH=FG=12BD ;EF∥HG∥AC,EF=HG=12AC 。
【中考12年】上海市2001-中考数学试题分类解析 专题4 图形的变换
2001-2012年上海市中考数学试题分类解析汇编(12专题)专题4:图形的变换一、选择题 二、填空题1. (2001上海市2分)如图,在边长为2的菱形ABCD 中,∠B=45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AB'E,那么△AB'E 与四边形AECD 重叠部分的面积是 ▲ .【答案】2。
【考点】翻折变换(折叠问题),菱形的性质,等腰直角三角形的判定和性质,相似三角形的判定和性质,二次根式化简。
【分析】∵在边长为2的菱形ABCD 中,∠B=45°,AE 为BC 。
由折叠易得△AEG 和△OCG 为等腰直角三角形,∴AEG 1S AE EG 12∆=⋅=。
设OC=OG= x ,则AO=2-x ,x 。
由△ODA∽△OCG 得AD AOCG GO =2x x -=,解得x 2=。
∴(22COG 11S x 2=322∆==-∴重叠部分的面积为(AEG COG S S 132∆∆-=--=。
2. (2001上海市2分)如图,在大小为4×4的正方形方格中,△ABC 的顶点A 、B 、C 在单位正方形的顶点上,请在图中画一个△A 1B 1C 1,使△A 1B 1C 1∽△ABC(相似比不为1),且点A 1、B 1、C 1都在单位正方形的顶点上.【答案】。
【考点】作图(相似变换)。
【分析】在4×4的方格纸中,使△A1B1C1与格点三角形ABC相似,根据对应边相似比相等,对应角相等,可知要画一个145度的钝角,钝角的两边只能缩小,又要在格点上所以要缩小为1和2,画出这样的两边长后,三角形的三点就确定了。
4.(上海市2003年2分)正方形ABCD的边长为1。
如果将线段BD绕着点B旋转后,点D落在BC延长线上的点D’处,那么tg∠BAD’=▲ 。
【考点】正方形的性质,勾股定理,旋转的性质,锐角三角函数的定义。
【分析】根据题意画出图形.根据勾股定理求出BD的长,由旋转的性质求出BD′的长,再运用三角函数的定义解答即可:∵正方形ABCD 的边长为1,则对角线。
【中考12年】江苏省无锡市2001-2012年中考数学试题分类解析 专题10 四边形
2001-2012年某某某某中考数学试题分类解析汇编(12专题)专题10:四边形一、选择题1. (2001某某某某3分)下列命题中,正确的是【】A.对角线相等的四边形是矩形 B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形 D.对角线互相垂直且相等的四边形是正方形2. (2001某某某某3分)如图,E是平行四边形ABCD的边BC延长线上的一点,连接AE交CD于F,则图中共有相似三角形【】A.1对 B.2对 C.3对 D.4对【答案】C。
【考点】平行四边形的的性质,相似三角形的判定。
【分析】根据已知及相似三角形的判定方法进行分析,从而得到图中的相似三角形的对数.∵ABCD是平行四边形,∴AD∥BC,DC∥AB。
∴△ADF∽△EBA∽△ECF。
∴有三对。
故选C。
3.(某某省某某市2008年3分)如图,E,F,G,H分别为正方形ABCD的边AB,BC,CD,DA上的点,且AE=BF=CG=DH=13AB,则图中阴影部分的面积与正方形ABCD的面积之比为【】A.25B.49C.12D.35【答案】A 。
【考点】正方形的性质,全等三角形的判定和性质,勾股定理。
【分析】先根据正方形的对称性得到阴影部分是正方形,设正方形的边长为3a ,利用勾股定理求出CH 、DM 、HM 的长,即可得到MN 的长,也就是阴影部分的边长,面积也就求出了,再求比值即可:设CH 与DE 、BG 分别相交于点M 、N ,正方形的边长为3a ,DH=CG=a , 由正方形的中心对称性知,阴影部分为正方形,且△ADE≌△DCH。
从而可得DM⊥CH。
在Rt△CDH 中,由勾股定理得CH=10a ,由面积公式得11CH DM DH CD 22⋅=⋅,得DM=310a 10。
在Rt△DMH 中由勾股定理得MH=10a 10, 则MN=CH -MH -=10a -310a 10-10310a=a 105。
∴阴影部分的面积:正方形ABCD 的面积=()222310902a 3a =9a =5255⎛⎫ ⎪ ⎪⎝⎭::。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2001-2012年上海市中考数学试题分类解析汇编(12专题)专题10:四边形锦元数学工作室编辑一、选择题2.(上海市2006年4分)在下列命题中,真命题是【】二、两条对角线相等的四边形是矩形;三、两条对角线互相垂直的四边形是菱形;四、两条对角线互相平分的四边形是平行四边形;五、两条对角线互相垂直且相等的四边形是正方形。
【答案】D。
【考点】正方形的判定,平行四边形的判定,菱形的判定,矩形的判定.【分析】A、等腰梯形也满足此条件,但不是矩形;故本选项错误;B、两条对角线互相垂直平分的四边形才是菱形,故本选项错误;C、对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形既是矩形又是菱形的四边形是正方形,所以两条对角线垂直且相等的平行四边形是正方形,故本选项错误;D、两条对角线互相平分的四边形是平行四边形,故本选项正确。
故选D 。
3.(上海市2007年4分)已知四边形ABCD 中,90A B C === ∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是【 】A .90D = ∠B .AB CD =C .AD BC = D .BC CD = 【答案】D 。
【考点】正方形的判定。
【分析】由∠A=∠B=∠C=90°可判定为矩形,因此再添加条件:一组邻边相等,即可判定为正方形。
故选D 。
4.(上海市2011年4分)矩形ABCD 中,AB =8,BC =,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是【 】.(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内;(C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.【答案】 C 。
【考点】点与圆的位置关系,矩形的性质,勾股定理。
【分析】根据BP=3AP 和AB 的长度求得AP=2,然后利用勾股定理求得圆P 的半径PD=7=。
点B 、C 到P 点的距离分别为:PB=6,9=。
∴由PB <半径PD ,PC >半径PD ,得点B 在圆P 内、点C 在外。
故选C 。
二、填空题1. (2001上海市2分)如果梯形的两底之比为2∶5,中位线长14厘米,那么较大底的长为 ▲ 厘米.【答案】703。
【考点】梯形中位线定理,解一元一次方程。
【分析】设较小的底边长为xcm ,则较大的为5xcm 。
根据“梯形中位线的长等于上底与下底和的一半”,得28=x+5x ,解得x=143。
∴较大底的长为5x=703(厘米)。
1. 上海市2002年2分)已知AD 是△ABC 的角平分线,E 、F 分别是边AB 、AC 的中点,连结DE 、DF ,在不再连结其他线段的前提下,要使四边形AEDF 成为菱形,还需添加一个条件,这个条件可以是▲ .【答案】AB=AC 或∠B=∠C 或AE=AF 。
【考点】菱形的判定,等腰三角形的性质,三角形中位线的性质。
【分析】根据菱形的判定定理,结合等腰三角形和三角形中位线的性质,可添加一个条件:AB=AC 或∠B=∠C 或AE=AF 。
2.(上海市2003年2分)如图,矩形内有两个相邻的正方形,面积分别是4和2,那么,阴影部分的面积为 ▲ 。
【答案】2。
【考点】正方形的性质。
【分析】根据已知可求得两个正方形的边长,从而得到矩形的长与宽,根据面积公式可求得矩形的面积,从而不难求得阴影部分的面积:∵两个相邻的正方形面积分别为4和2,∴两个正方形的边长为2∴矩形的长为22。
∴矩形的面积=4+∴阴影部分的面积为4+4-2。
3.(上海市2005年3分)一个梯形的两底长分别为6和8,这个梯形的中位线长为 ▲【答案】7。
【考点】梯形中位线定理。
【分析】根据梯形的中位线长等于两底和的一半,进行计算:∵梯形的两底长分别为6和8,∴这个梯形的中位线长为68=72。
4.(上海市2007年3分)如图,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F .在不添加辅助线的情况下,请写出图中一对相似三角形: ▲ .【答案】△AFD∽△EFC(或△EFC∽△EAB,或△EAB∽△AFD)。
【考点】相似三角形的判定,平行四边形的性质。
【分析】根据平行四边形的性质及相似三角形的判定方法进行分析即可:∵四边形ABCD 是平行四边形,∴AD∥BC,AB∥C D ,∴△AFD∽△EFC∽△EAB。
5.(上海市2008年4分)如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BF FD = ▲ . 【答案】23。
【考点】平行四边形的性质,相似三角形的判定和性质。
【分析】∵四边形ABCD 是平行四边形,∴ADBC 。
∴ADF ∆∽EBF ∆。
∴23BF BE BE FD DA BC ===。
6.(上海市2009年4分)在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是 ▲ .【答案】AC=BD 或有个内角等于900。
【考点】矩形的判定。
【分析】因为在四边形ABCD 中,对角线AC 与BD 互相平分,所以四边形ABCD 是平行四边形。
根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等。
三、解答题1.(上海市2002年12分)操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .图1 图2 图3探究:设A 、P 两点间的距离为x .(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;(3)当点P 在线段AC 上滑动时,△PC Q 是否可能成为等腰三角形?如果可能,指出所有能使△PC Q 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.(图1、图2、图3的形状大小相同,图1供操作、实验用,图2和图3备用)【答案】解:(1)PQ =PB 。
证明如下:过点P 作MN∥BC,分别交AB 于点M ,交CD 于点N ,那么四边形AMND和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰直角三角形(如图1)。
∴NP=NC =MB 。
∵∠BP Q =90°,∴∠QPN +∠BPM=90°。
而∠BPM+∠PBM=90°,∴∠QPN =∠PBM。
又∵∠QNP =∠PMB=90°,∴△Q NP≌△PMB(AAS )。
∴P Q =PB 。
(2)作PT⊥BC,T 为垂足(如图2),那么四边形PTCN 为正方形。
∴PT=CB =PN .又∠PN Q =∠PTB=90°,PB =PQ ,∴△PBT≌△P QN (HL )。
∴S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △P QN =S 正方形PTCN=CN 2=(1-x 22)2=21x 2-x 2+1 ∴y=21x 2-x 2+1(0≤x<22)。
(3)△PC Q 可能成为等腰三角形。
①当点P 与点A 重合,点Q 与点D 重合,这时PQ =QC ,△PC Q 是等腰三角形,此时x =0。
②当点Q 在边DC 的延长线上,且CP =CQ 时,△PC Q 是等腰三角形(如图3)此时,QN =PM =22x ,CP =2-x ,CN =22CP =1-22x 。
∴C Q =QN -CN =22x -(1-22x )=2x -1。
当2-x =2x -1时,得x =1。
【考点】二次函数综合题,正方形的性质。
【分析】(1)过点P 作MN∥BC,分别交AB 于点M ,交CD 于点N ,可得四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰三角形;根据等腰三角形的性质与角的互余关系进行代换可得△QNP≌△PMB,故PQ=PB 。
(2)由(1)的结论,根据图形可得关系S四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △P QN =S 正方形PTCN ,代入数据可得解析式。
(3)分①当点P 与点A 重合,与②当点Q 在边DC 的延长线上,两种情况讨论,分别讨论答案。
2.(上海市2003年12分)如图,在正方形ABCD 中,AB =1,弧AC 是点B 为圆心,AB 长为半径的圆的一段弧。
点E 是边AD 上的任意一点(点E 与点A 、D 不重合),过E 作弧AC 所在圆的切线,交边DC 于点F ,G 为切点:(1)当∠DEF=45º时,求证:点G 为线段EF 的中点;(2)设AE =x ,FC =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)将△DEF 沿直线EF 翻折后得△D 1EF ,如图,当EF =65时,讨论△AD 1D 与△ED 1F 是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由。
【答案】解:(1)证明:∵∠DEF=45°,∴∠DFE=90°-∠DEF=45°。
∴∠DFE=∠DEF。
∴DE=DF。
又∵AD=DC,∴AE=FC。
∵AB 是圆B 的半径,AD⊥AB,∴AD 切圆B 于点A 。
同理:CD 切圆B 于点C 。
又∵EF 切圆B 于点G ,∴AE=EG,FC=FG 。
∴EG=FG,即G 为线段EF 的中点。
(2)根据(1)中的线段之间的关系,得EF=x+y ,DE=1-x ,DF=1-y ,根据勾股定理,得(x+y )2=(1-x )2+(1-y )2,∴y=1x 1x+-(0<x <1)。
(3)当EF=65时,由(2)得EF=EG+FG=AE+FC ,即x +1x 1x +-=65,解得x 1=13或x 2=12。
①当AE=12时,△AD 1D∽△ED 1F ,证明如下: 设直线EF 交线段DD 1于点H ,由题意,得:△EDF≌△ED 1F ,EF⊥DD 1且DH=D 1H 。
∵AE=12,AD=1,∴AE=ED。
∴EH∥AD 1,∠AD 1D=∠EHD=90°。
又∵∠E D 1F=∠EDF=90°,∴∠ED 1F=∠AD 1D 。
∴△ED1F∽△AD1D。
②当AE=13时,△ED 1F 与△AD 1D 不相似。
【考点】切线的性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定。