电磁场复习题

合集下载

电磁场复习习题

电磁场复习习题

一、选择题1、下列的矢量运算规律有错误的一项是:( B ) A 、θsin AB e B A n →→→=⨯ B 、→→⨯B A =→→⨯A BC 、)()()(→→→→→→→→→⋅-⋅=⨯⨯B A C C A B C B A D 、)()(→→→→→→⨯=⨯⋅A C B C B A2、选出下列的场中不属于矢量场的项:( C ) A 、电场 B 、磁场 C 、高度场 D 、力场3、关于梯度的性质下列说法不正确的是:( D ) A 、标量场的梯度是一个矢量场B 、在标量场中,在给定点沿任意方向的方向导数等于梯度在该方向上的投影C 、标量场中每一点M 处的梯度,垂直于过该点的等值面D 、标量场中每一点M 处的梯度,指向场减小的方向 4、关于矢量场的性质,下列说法有误的是:( A )A 、在矢量线上,任一点的法线方向都与该点的场矢量方向相同B 、静电场中的正电荷就是发出电场线的正通量源C 、磁感应强度B 在某一曲面S 上的面积分就是矢量B 通过该曲面的磁通量D 、漩涡源产生的矢量线是闭合曲线5、下列不属于电磁学三大实验定律的是:( A )A 、高斯定律B 、安培定律C 、库伦定律D 、法拉第电磁感应定律 6、关于电荷,下列描述不正确的是:( B ) A 、点电荷是电荷分布的一种极限情况 B 、实际上带电体上的电荷分布是连续的C 、宏观上我们常用电荷密度来描述电荷的分布情况D 、电荷不能被创造也不能被消灭只能转移 7、关于静电场,下列说法中 (1)由空间位置固定的电荷产生 (2)由电量不随时间变化的电荷产生 (3)基本物理量是电场强度 (4)性质由其散度和旋度来描述 (5)基本实验定律是库仑定律 下列判断正确的是:( D )A 、都不对B 、有一个错C 、有三个错D 、全对 8、0E ερ=⋅∇→是高斯定理的微分形式,它表明任意一点电场强度的( C )与该处的电荷密度有关。

A 、梯度B 、旋度C 、散度D 、环流9、静磁场的磁感应强度在闭合曲线上的环量等于闭合曲线交链的恒定电流的代数和与( B )的乘积。

电磁场复习题

电磁场复习题

电磁场复习题1.设y=0平面是两种介质分界面,在y>0的区域内,ε1=5ε0,而在y<0的区域内ε2=3ε0。

如已知E2=10i+20j伏/米,求D2,D1及E1。

2.简述静电场的基本性质。

3.为什么静电场解答是唯一的?4.求空气中一个点电荷q在地面上引起的感应电荷分布情况。

5.真空中有两个同号点电荷:q1(=q)和q2(=3q),它们的距离为d。

试决定在它们的联结线上,哪一点的电场强度为零;哪一点上由这两个电荷所引起的电场强度量值相等,方向一致。

6.一圆柱形电容器,外导体的直径为4厘米,内外导体间介质的击穿电场强度为200千伏/厘米,内导体的直径2γ可以自由选定,问γ为何值时,该电容器能承受最大电压并求此最大电压值?7.由方程x3+y2+z=1000(其中x,y和z皆为正值)决定的曲面是一个电位为200伏的等位面。

如果已知曲面上P点(7米,25米,32米)的|E|=50伏/米,求该点上的E。

8.一平行板电容器,极板面积S=400厘米2,两板相距d=0.5厘米,两板中间的一半厚度为玻璃所占,另一半为空气。

已知玻璃的εr=7,其击穿场强为60千伏/厘米,空气的击穿场强为30千伏/厘米。

当电容器接到10千伏的电源时,会不会被击穿?9.半径为R的金属球壳内,离球心d(d<R)处,置一点电荷q。

且已知金属球壳的电位为φ0,求q所受之力。

设球壳在真空中。

10.一根水平天线,直径为3毫米,长度为40米,轴线离地面5米,求此天线的电容。

11.电导率为γ的均匀、各向同性的导体球,其表面上的电位为φ0∞sθ,其中θ是球坐标(r,θ,α)的一个变量。

试决定表面上各点的电流密度δ。

12.一长度为1米,内外导体的半径分别是R1=5厘米,R2=10厘米的圆柱形电容器,中间的非理想介质有电导率γ=10-9西门子/米。

若在两电极间加电压U0=1000伏,求:(1)各点的电位、电场强度;(2)漏电导。

13.一个由钢条组成的接地体系统,已知其接地电阻为100欧姆,土壤的电导率γ=10-2西门子/米。

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。

静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。

不随时间变化的电场称为静电场。

2、请解释磁场与恒定磁场的概念。

运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。

不随时间变化的磁场称为恒定磁场。

3、请解释时变电磁场与电磁波的概念。

如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。

时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。

4、请解释自由空间的概念。

电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。

在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。

因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。

5、举例说明电磁场与波的应用。

静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。

电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。

当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。

6、请解释常矢与变矢的概念。

若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。

而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。

7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。

8、请解释静态场和动态场的概念。

如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。

换句话说,在某一空间区域中,物理量的无穷集合表示一种场。

工程电磁场复习题.

工程电磁场复习题.

工程电磁场期末复习题一、简答题1.如何由电位求电场强度?试写出直角坐标系下的表达式。

.2.写出毕奥—沙伐定律的数学表达式,说明它揭示了哪些物理量间的关系。

表明磁感应强度B与电流I及电流元dl所处位置(R,e R)有关。

3.传导电流、位移电流、运流电流是如何定义的?各有什么特点?传导电流是导体中电荷运动形成的电流。

位移电流是变化的电场产生的等效电流。

运流电流是不导电空间内电荷运动形成的电流。

4.一带电导体球外套有一个与它同心的导体球壳,球壳内外均为空气。

如用导线把壳与球连在一起,结果会如何?5.在磁场中,洛仑兹力是否会对运动电荷做功?为什么?6.什么是接地电阻?其大小与哪些因素有关?.接地设备呈现出的总电阻称之。

与土壤电导率和接地体尺寸(等效球半径)成反比。

7.由电磁感应定律,线圈中感应电流的方向应如何判断?.感应电流与其产生的磁通成右手螺旋关系。

该磁通用以后抗线圈中外磁通的变化。

8.电场强度相同时,电介质中的电能体密度为什么比真空中的大?因而,故9.什么是跨步电压?有何意义?跨步电压,就是指电气设备发生接地故障时,在接地电流入地点周围电位分布区行走的人,其两脚之间的电压。

意义是确定电力系统接地体危险区的半径,并根据其表达式采取相应的工程对策减小危险区面积。

10.平行板电容器,两板带有等量异号自由电荷,忽略边缘效应,当板间距离增大时,板间电场强度是否改变?为什么?电场强度减小,电场强度与平行板之间的距离成反比11.什么是全电流定律?12.不同磁媒质分界面上,磁矢量位满足A1=A2,为什么?13.在线性媒质中,两个线圈之间的互感系数与哪些因素有关?14.将处于平板电容器之间的介质板抽出,问是什么力在做功?外力做功15.恒定磁场中束缚电流和自由电流有何区别?束缚电流是由电介质束缚电荷产生磁偶极子所构成的电流,一个原子尺寸的现象,自由电流不受磁介质束缚二、分析计算题1.半径为a的均匀带电球壳,电荷面密度为常数,外包一层厚度为d、介电常数为的介质,求介质内外的电场强度。

电磁场理论复习试题

电磁场理论复习试题

1. 两导体间的电容与_A__有关A. 导体间的位置B. 导体上的电量C. 导体间的电压D. 导体间的电场强度2. 下面关于静电场中的导体的描述不正确的是:____C__A. 导体处于非平衡状态。

B. 导体内部电场处处为零。

C. 电荷分布在导体内部。

D. 导体表面的电场垂直于导体表面3. 在不同介质的分界面上,电位是__B_。

A. 不连续的B. 连续的C. 不确定的D. 等于零4. 静电场的源是AA. 静止的电荷B. 电流C. 时变的电荷D. 磁荷5. 静电场的旋度等于__D_。

A. 电荷密度B. 电荷密度与介电常数之比C. 电位D. 零6. 在理想导体表面上电场强度的切向分量DA. 不连续的B. 连续的C. 不确定的D. 等于零7. 静电场中的电场储能密度为BA. B. C. D.8. 自由空间中静电场通过任一闭合曲面的总通量,等于BA. 整个空间的总电荷量与自由空间介电常数之比B. 该闭合曲面内所包围的总电荷量与自由空间介电常数之比。

C. 该闭合曲面内所包围的总电荷量与自由空间相对介电常数之比。

D. 该闭合曲面内所包围的总电荷量。

9. 虚位移法求解静电力的原理依据是GA. 高斯定律B. 库仑定律C. 能量守恒定律D. 静电场的边界条件10. 静电场中的介质产生极化现象,介质内电场与外加电场相比,有何变化?A. 变大B. 变小C. 不变D. 不确定11. 恒定电场中,电流密度的散度在源外区域中等于B____A. 电荷密度B. 零C. 电荷密度与介电常数之比D. 电位12. 恒定电场中的电流连续性方程反映了___A_A. 电荷守恒定律B. 欧姆定律C. 基尔霍夫电压定律D. 焦耳定律13. 恒定电场的源是___B_A. 静止的电荷B. 恒定电流C. 时变的电荷D. 时变电流14. 根据恒定电场与无源区静电场的比拟关系,导体系统的电导可直接由静电场中导体系统的DA. 电量B. 电位差C. 电感D. 电容15. 恒定电场中,流入或流出闭合面的总电流等于__C___A. 闭合面包围的总电荷量B. 闭合面包围的总电荷量与介电常数之比C. 零D. 总电荷量随时间的变化率16. 恒定电场是DA. 有旋度B. 时变场C. 非保守场D. 无旋场17. 在恒定电场中,分界面两边电流密度矢量的法向方向是BA. 不连续的B. 连续的C. 不确定的D. 等于零18. 导电媒质中的功率损耗反映了电路中的_D____A. 电荷守恒定律B. 欧姆定律C. 基尔霍夫电压定D. 焦耳定律19. 下面关于电流密度的描述正确的是AA. 电流密度的大小为单位时间垂直穿过单位面积的电荷量,方向为正电荷运动的方向。

电磁场复习题

电磁场复习题

14设平板电容器中,电位函数为bx ax +2=ϕ,则电容器中的电场强度E= ,体电荷密度ρ= 。

15、两个半无限大导电平面相交,夹角为90度,中间有一点电荷q ,若用镜像法求解,则应出现 个镜像点电荷。

16、半径为a 的球形接地体深埋地下,则接地电阻为 。

17、线圈1和2的形状、尺寸及相互间位置不变,现在它们之间放置一块铁板,则互感将 。

18、无限大导体平面一侧有一点电荷q ,利用镜像法求电介质空间的电场时,镜制中电感的单位是 。

9、欧姆定律的微分形式是E J γ=。

一、 单项选择题1、在静电场中,引入电位函数ϕ的依据是……………( )(1)0=∙∇E (2) 0=⨯∇E (3) 0=∙∇D2、一无限长空心铜圆柱体载有电流 I ,内外半径分别为1R 和2R ,另一无限长实心铜圆柱体载有电流 I , 半径为2R ,则……………( )(1)2R r >处产生的磁场强度相同(2)在2R r >处空心导体产生的磁场强度比实心导体产生的磁场强度大(3)在2R r >处空心导体产生的磁场强度比实心导体产生的磁场强度小3、下列向量表达式中,哪一个可能是磁感应强度。

(其中a 为常数)……( )(1)F =ar 0r (2) F =i ay j ax - (3)F =0sin θθa4、长直同轴圆柱电容器,内外导体单位长度带电荷量分别为 +τ 和 -τ ,内外导体之间充满两种电介质,内层为1ε,外层为2ε。

分界面是以R 为半径的柱面。

则两种介质分界面上的电场强度 E 和电位移D 的关系为 ( )(1)2121,D D E E =≠ (2) 2121,D D E E ≠≠ (3) 2121,D D E E ≠=5、载有电流 I 的细导线,围成半径为 R 的圆环,置于k B B 0=的均匀磁场中,线圈环所在平面的法线方向为i 。

此时线圈导线上……………( )(1)受到0α方向的力 (2)不受力 (3)受到转距7、一半径为a 的圆柱形铁棒在均匀外磁场中磁化后,棒内的磁化强度为k M 0 ,则铁棒表面的磁化电流密度为……………( )(1)k M K m 0= (2) 00αM K m = (3) 00αM K m -=8、平板电容器板间介质为空气,板间距离为d ,平板面积为S,与恒定电压源U 相连,极间电场强度为E 。

电磁场理论期末复习题

电磁场理论期末复习题

电磁场理论期末复习题(附答案)一填空题1.静止电荷所产生的电场,称之为静电场;电荷Q在某点所受电场力为F,则该点电场强度的大小为QFE=。

2. 可以用电位的负梯度来表示电场强度;当电位的参考点选定之后,静电场中各点的电位值是唯一确定的。

3.__电荷_____的规则运动形成电流;将单位正电荷从电源负极移动到正极,非静电力__所做的功定义为电源的电动势4.由恒定电流或永磁体产生的磁场不随时间变化,称为恒定磁场。

5.磁感应强度B是无散场,它可以表示为另一个矢量场A的旋度,称A为矢量磁位,为了唯一地确定A,还必须指定A的散度为零,称为库仑规范。

6.静电场的边界条件,即边值问题通常分为三类:第一类为给定整个边界上的位函数值;第二类为给定边界上每一点位函数的法向导数值;第三类为给定一部分边界上每一点的位函数值,同时给定另一部分边界上每一点的位函数的法向导数值。

7.位移电流扩大了电流的概念,它由电场的变化产生,相对于位移电流我们称由电荷规则运动形成的电流为传导电流和运流电流。

8. 在电磁波传播中,衰减常数α的物理意义为表示电磁波每传播一个单位的距离,其振幅的衰减量,相位常数β的物理意义为表示电磁波每传播一个单位距离相位偏移量。

10.静电场是有势场,静电场中各点的电场与电位关系用公式表示是__Eφ=-∇_______。

13._____恒定电流________________产生的磁场,叫做恒定磁场。

14.库仑规范限制了矢量磁位A的多值性,但不能唯一确定A。

为了唯一确定A,还必须给定A的____散度为零________________________。

16.时变电磁场分析中,引入洛仑兹规范是为了解决动态位的____惟一性__________。

18.载流导体在磁场中会受到电磁力的作用,电磁力的方向由__左手_____定则确定。

二、选择题1.磁感应强度B与磁场强度H的一般关系为 ( B )A.H=μBB.B=μHC.H=μr BD.B=μ0H2 导体在静电平衡下,其内部电场强度( B )A.为常数B.为零C.不为零D.不确定3 真空中磁导率的数值为( C )A. 4π×10-5H/mB. 4π×10-6H/mC. 4π×10-7H/mD. 4π×10-8H/m4.磁通Φ的单位为( B )A.特斯拉B.韦伯C.库仑D.安匝5.矢量磁位的旋度是 ( A )A.磁感应强度B.磁通量C.电场强度D.磁场强度6.真空中介电常数ε0的值为 ( D )A.8.85×10-9F/mB.8.85×10-10F/mC.8.85×10-11F/mD.8.85×10-12F/m7.下面说法正确的是 ( A )A.凡是有磁场的区域都存在磁场能量B.仅在无源区域存在磁场能量C.仅在有源区域存在磁场能量D.在无源、有源区域均不存在磁场能量8 静电场中试验电荷受到的作用力大小与试验电荷的电量( C )A.成反比B.成平方关系C.成正比D.无关9.平板电容器的电容量与极板间的距离 ( B )A.成正比B.成反比C.成平方关系D.无关10.在磁场B中运动的电荷会受到洛仑兹力F的作用,F与B的空间位置关系 ( B )A.是任意的B.相互垂直C.同向平行D.反向平行2.高斯定理的积分形式描述了 B 的关系;A.闭合曲面内电场强度与闭合曲面内电荷之间的关系B. 闭合曲面的电场强度通量与闭合曲面内电荷之间的关系C.闭合曲面内电场强度与闭合曲面外电荷之间的关系D. 闭合曲面的电场强度通量与闭合曲面附近电荷之间的关系13.以下阐述中,你认为正确的一项为 D ;A. 可以用电位的函数的梯度表示电场强度B. 感应电场是保守场,其两点间线积分与路径无关C.静电场是无散场,其在无源区域的散度为零D.静电场是无旋场,其在任意闭合回路的环量为零14. 以下关于电感的阐述中,你认为错误的一项为 C ;A.电感与回路的几何结构有关B. 电感与介质的磁导率有关C.电感与回路的电流有关D.电感与回路所处的磁场强度无关17.若电介质中的极化强度矢量和电场强度成正比关系,则称这种电介质为 BC ;A.均匀的B.各向同性的C.线性的D.可极化的18. 均匀导电媒质是指其电导率无关于 B ;A.电流密度B.空间位置C.时间D.温度19.关于镜像法,以下不正确的是 B ;A.它是解静电边值问题的一种特殊方法B.用假想电荷代替原电荷C.假想电荷位于计算区域之外D.假想电荷与原电荷共同作用满足原边界条件20. 交变电磁场中,回路感应电动势与回路材料电导率的关系为 D ;A.电导率越大,感应电动势越大B.电导率越小,感应电动势越大C.电导率越大,感应电动势越小D.感应电动势大小与导电率无关22.相同尺寸和匝数的空心线圈的电感系数与铁心线圈的电感系数之比( C )A.大于1B.等于1C.小于1D.无确定关系24.真空中均匀平面波的波阻抗为 A ;A.377ΩB.237ΩC.277ΩD.337Ω25. 在磁场B 中运动的电荷会受到洛仑兹力F 的作用,F 与B 的空间位置关系 B ; A.是任意的 B.相互垂直 C.同向平行 D.反向平行三、简答题1.什么是接地电阻?其大小与哪些因素有关?答:接地设备呈现出的总电阻称之为接地电阻;其大小与土壤电导率和接地体尺寸(等效球半径)成反比2.写出微分形式的麦克斯韦的数学表达式。

工程电磁场复习题

工程电磁场复习题

一填空题1.麦克斯韦方程组的微分形式是:、、和。

2.静电场的基本方程为:、 .3.恒定电场的基本方程为:、。

4.恒定磁场的基本方程为:、。

5.理想导体(媒质2)与空气(媒质1)分界面上,电磁场边界条件为: 、、和。

6.线性且各向同性媒质的本构关系方程是:、、 .7.电流连续性方程的微分形式为: .8.引入电位函数是根据静电场的特性。

9.引入矢量磁位是根据磁场的特性。

10.在两种不同电介质的分界面上,用电位函数表示的边界条件为:、。

11.电场强度的单位是,电位移的单位是;磁感应强度的单位是,磁场强度的单位是。

12.静场问题中,与的微分关系为: ,与的积分关系为: .13.在自由空间中,点电荷产生的电场强度与其电荷量成比,与观察点到电荷所在点的距离平方成比.14.XOY平面是两种电介质的分界面,分界面上方电位移矢量为 C/m2,相对介电常数为2,分界面下方相对介电常数为5,则分界面下方z方向电场强度为__________,分界面下方z方向的电位移矢量为_______________。

15.静电场中电场强度,则电位沿的方向导数为_______________,点A(1,2,3)和B(2,2,3)之间的电位差__________________。

16.两个电容器和各充以电荷和,且两电容器电压不相等,移去电源后将两电容器并联,总的电容器储存能量为,并联前后能量是否变化 .17.一无限长矩形接地导体槽,在导体槽中心位置有一电位为U的无限长圆柱导体,如图所示。

由于对称性,矩形槽与圆柱导体所围区域内电场分布的计算可归结为图中边界、、、和所围区域内的电场计算。

则在边界_____________上满足第一类边界条件,在边界_____________上满足第二类边界条件。

18.导体球壳内半径为a,外半径为b,球壳外距球心d处有一点电荷q,若导体球壳接地,则球壳内表面的感应电荷总量为____________,球壳外表面的感应电荷总量为____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁场与电磁波基础》复习题一、 填空题: (第一章)(第二章)(第三章)(第四章)(第五章)(第六章) (第一章)1、直角坐标系下,微分线元表达式 z e y e x e l z y x d d d d ++= 面积元表达式2、圆柱坐标系下,微分线元表达式z e e e l z d d d d ++=φρρφρ, 面积元表达式z e l l e S z d d d d d φρρφρρ == z e l l e S z d d d d d ρφρφφ ==φρρφρd d d d d z z z e l l e S ==3、圆柱坐标系中,ρe 、e ϕ 随变量ϕ 的变化关系分别是φρφe e =∂∂,ρφφe -e =∂∂ 4、矢量的通量物理含义是 矢量穿过曲面的矢量线的总和;散度的物理意义是 矢量场中任意一点处通量对体积的变化率;散度与通量的关系是 散度一个单位体积内通过的通量。

5、散度在直角坐标系 F zF y F x F V S d F F div Z Y X SV ⋅∇=∂∂+∂∂+∂∂=∆⋅=⎰→∆0lim 散度在圆柱坐标系 zF F F F div Z ∂∂+∂∂+∂∂=φρρρρφρ1)(1 6、矢量微分算符(哈密顿算符)∇在直角坐标系的表达式为 z z y y x x e e e ∂∂+∂∂+∂∂=∇圆柱坐标系 ze z ∂∂+∂∂+∂∂=∇ φρρφρe e 球坐标系分别 ϕθθφθ∂∂+∂∂+∂∂=∇sin e e r e r r r 7、高斯散度定理数学表达式 ⎰⎰⋅=⋅∇V sS d F dV F ,本课程主要应用的两个方面分别是 静电场的散度 、 恒定磁场的散度 ;8、矢量函数的环量定义 ⎰⋅=ΓC l z y x F d ),,(;旋度的定义MAX l S S l d F F rot ∆⋅=⎰→∆ lim 0; 二者的关系⎰⎰∙=∙⨯∇C S l d F S d F )(;旋度的物理意义:描述矢量场中某一点漩涡源密度。

9、旋度在直角坐标系下的表达式F ⨯∇=)()()(yF x F e x F z F e z F y F e z y z z x y y Z x ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂ 10、旋度的重要恒等式,其物理意义是旋涡源密度矢量; 11、斯托克斯定理数学表达式⎰⎰∙=∙⨯∇CS l d F S d F )(,本课程主要应用的两个方面分别是 静电场的旋度 、 恒定磁场的旋度 ; 12、梯度的物理意义 描述标量场在某点的最大变化率及其变化最大的方向;等值面、方向导数与梯度的关系是 空间某一点的梯度垂直过该点的等值面;梯度在某方向上的投影即为方向导数;13、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式γβαcos cos cos e l z y x e e e ++=;14、直角坐标系下方向导数的数学表达式lM u M u M ∆-=∂∂→∆)()(lim |l u 00l 0, 梯度的表达式;15、梯度的一个重要恒等式u u grad ∇=,其主要应用是求出任意方向的方向导数 ;16、亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是 要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度17、描述一个矢量场的矢量函数能够用一个标量函数来描述的必要条件是 旋度处处为零 ,这是因为恒等式()0u ≡∇⨯∇=⨯∇F 。

(第二章)17、麦克斯韦方程组的积分表达式分别为 1.⎰⎰=∙S V dV S d D ρ;2.S d tB l d E l S ⎰⎰∂∂-=∙; 3.0=∙⎰S S d B ; 4.⎰⎰∙∂∂+=∙S l S d tD J l d H )( 其物理描述分别为1.电荷是产生电场的通量源 2.变换的磁场是产生电场的漩涡源3.磁感应强度的散度为0,说明磁场不可能由通量源产生;4.传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。

18、麦克斯韦方程组的微分表达式分别为 1.ρ=∙∇D ;2.t B E ∂∂-=⨯∇; 3.0=∙∇B ; 4.t D J H ∂∂+=⨯∇ 其物理描述分别为(同上) 19、传导电流、运流电流和位移电流的形成分别是 导电煤质内有许多能自由活动的带电粒子,它们在外电场的作用下做宏观定向运动而形成的电流叫传导电流 、 电荷在不导电的空间,如真空或极稀薄气体中的有规则运动所形成的电流 、 由时变电场引起的电流称为位移电流 。

20、电流连续性原理的数学表达式: 积分形式⎰⎰-=-=⋅VS V t t q S J d d d d d d ρ , 微分形式tJ ∂∂-=⋅∇ρ ,该原理表明 从任意闭合面穿出的恒定电流为0,或恒定 电流场是一个无散度的场。

21、电介质是 具有电效应的物体,分为两类 无极分子、 有极分子。

22、电介质的极化是指在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。

两种极化现象分别是 位移极化(无极分子的极化) ;转向极化(有极分子的极化)。

产生的现象分别有 1.电偶极子有序排列 2.表面上出现束缚电荷 3.影响外电场分布; 描述电介质极化程度或强度的物理量是 极化矢量P23、介质中的电位移矢量数学表达式 E D 0ε= ,其物理意义是 静电场中存在电介质的情况下,电荷分布和电场强度的关系 。

位移电流密度矢量与电场强度的关系t DJ H ∂∂+=⨯∇ 。

25、相对介电常数的表达式0r 0e 1εεεχε=+=)(, 相对磁导率的表达式0r 0m )1(μμμχμ=+=。

26、介质的三个物态方程分别是E D ε=、H B μ=、E J C σ=27、电磁场的边界条件是指 把电磁场矢量E 、D 、B 、H 在不同媒质分界面上各自满足的关系。

28、一般介质分界面的边界条件分别为29、两种理想介质分界面的边界条件分别是,理想介质与理想导体分界面的边界条件分别是 。

(课本P79) (第三章)30、静态场是指 不随时间变化的场;静态场包括 静电场 、恒定电场 、恒定磁场; 分别是由静止电荷或静止带电体 、在导电媒质中恒定运动电荷 、恒定电流产生的。

31、静电场中的麦克斯韦方程组的积分形式分别为1.⎰⎰=∙V S dV S d D ρ 2.0=∙⎰ll d E 静电场中的麦克斯韦方程组的微分形式分别为1.ρ=∙∇D 2.0=⨯∇E32、对偶原理的内容是 如果描述两种物理现象的方程具有相同的数学形式,并且具有相似或对应的边界条件,那么它们的数学解形式相同;叠加原理的内容是)b a (,0)(0,02122212均为常数,,那么如果=+∇=∇=∇φφφφb a ; 唯一性定理的内容是内具有惟一解普拉斯方程在场域的值,则泊松方程或拉n 或给定在场域V的边界面S上V ∂∂ϕϕ 33、电磁场的亥姆霍兹方程组是1。

022002=∂∂-∇t E E με 2。

022002=∂∂-∇t B B με (第四章)34、求解时变电磁场或解释一切宏观电磁现象的理论依据是 麦克斯韦方程组 。

35、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场; 一般采用时谐场来分析时变电磁场的一般规律,是因为1.任何时变周期函数都可以用正弦函数表示的傅里叶级数来描述 2.在线性条件下可以使用叠加原理36、坡印廷矢量的数学表达式 H E S ⨯=;其物理意义 电磁能量在空间的能流密度; 表达式⎰⨯SS d H E )(的物理意义单位时间内穿出闭合曲面S 的电磁能流大小 37、对于时变电磁场,电场强度与标量位φ函数的关系为ϕ∇-∂∂-=t A E 。

38、磁场中,定义矢量位函数B A =∇⨯的前提条件是因为有恒等式0=⋅∇B,这里只确定了矢量位函数A 的旋度。

在时变电磁场中,A 的散度定义为0=∂∂+⋅∇t A ϕμε ,这个条件叫洛仑兹规范。

39、标量位函数的达朗贝尔方程是ερϕμεϕ-=∂∂-∇222t ;矢量位函数的达朗贝尔方程是J tA A μμε-=∂∂-∇222。

(第五章)40、电磁波的极化是指在空间任意给定点上,合成波电场强度矢量的大小和方向都可能随时间变化的现象。

其三种基本形式分别是直线极化波 、圆极化波 、椭圆极化波41、按照波长或频率的顺序把电磁波排列起来,成为电磁波谱。

在电磁波谱中,频率越小,辐射强度越 小 ;42、一般介质中电磁波的波动方程是 0222=∂∂-∇t E E με、 0222=∂∂-∇t H H με。

均匀平面电磁波的波动方程是。

43、工程上经常用到的损耗正切(ωεγδ/tan =C ,传导电流和位移电流密度的比值),其无耗介质的表达式是 0tan =C δ,其表示的物理含义是是无耗介质内部没有传导电流;损耗正切越大说明 介质中传导电流越大,电磁波能量损耗越大;有耗介质的损耗介质是个复数,说明均匀平面波中电场强度矢量和磁场强度矢量之间存在相位差。

44、一般用介质的损耗正切不同取值说明介质在不同情况下的性质,一个介质是良介质的损耗正切远小于1 ,属于非色散介质;当表现为良导体时,损耗正切远大于1,属于色散介质。

45、波的色散是指同一媒质中,不同频率的波将以不同的速率在介质中传播,其相应的介质为色散介质,波的色散是由 介质 特性所决定的。

色散介质分为正常色散和非正常色散介质,前者波长大的波,其相速度大,群速 小于 相速;后者是波长大的波,其相速度 小,群速 大于 相速;在无色散介质中,不同波长的波相速度 相等 ,其群速 等于 相速。

46、色散介质与介质的折射率的关系是 i r in n n -=;耗散介质是指波在其中传播会发生能量损耗的介质47、基波的相速为 k /ω;群速就是波包或包络的传播速度,其表达式为 dkd v g ω=; 一般情况下,相速与群速不相等,它是由于波包通过有色散的介质,不同单色波分量以不同相速向前传播引起的。

48、趋肤效应是指 当交变电流通过导体时,随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体表面附近,导体内部的电流越来越小的现象; 趋肤深度的定义是 电磁波的振幅衰减到1-e 时,它透入导电介质的深度;趋肤深度的表达式 ωμγαδ21== (第六章)49、折射率的定义是 n=c/v ,折射率与波速和相对介电常数之间的关系分别为r 2n ε=、nc v =。

三、简答题1、一个矢量场一般是需要采用矢量函数描述,要用一个标量函数描述这个矢量场的条件是什么?对于一个矢量,如果已知它的旋度处处为零,则可以把它表示为一个标量函数的梯度。

即一个矢量场可以用标量函数描述的条件。

2、散度和旋度均是用来描述矢量场的,它们之间有什么不同?A 、矢量场的散度是一个标量函数,而旋度是一个矢量函数B 、散度表示场中某点通量密度。

相关文档
最新文档