电磁感应两种模型
电磁感应模型总结

电磁感应模型总结
电磁感应模型是描述电磁感应现象的一种模型,包括法拉第电磁感应定律、楞次定律和麦克斯韦方程组等。
1. 法拉第电磁感应定律:当导体运动于磁场中或磁场变化时,导体内将产生感应电动势。
2. 楞次定律:感应电动势的方向与磁场变化的方向相反,且大小与磁场变化的速率成正比。
3. 麦克斯韦方程组:描述了电场和磁场的变化对彼此的影响。
其中包括根据楞次定律得出的一个方程,描述了电场变化产生的磁场;以及根据法拉第电磁感应定律得出的一个方程,描述了磁场变化产生的电场。
电磁感应模型在实际应用中有着广泛的应用,例如发电机、变压器、感应加热等。
在电磁感应中的动力学问题中有两类常见的模型

在电磁感应中的动力学问题中有两类常见的模型ab长L,质量m,电阻导轨光滑水平,电阻不计长L,质量m,电阻轨光滑,电阻不计1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.2、如图所示,足够长的光滑平行导轨MN、PQ倾斜放置,两导轨间距离为L=1.0 m,导轨平面与水平面间的夹角为30°,磁感应强度为B的磁场垂直于导轨平面向上,导轨的M、P两端连接阻值为R=3.0 Ω的电阻,金属棒ab垂直于导轨放置并用细线通过光滑定滑轮与重物相连,金属棒ab的质量m=0.20 kg,电阻r=0.50 Ω,重物的质量M =0.60 kg,如果将金属棒和重物由静止释放,金属棒沿斜面上滑的距离与时间的关系如下表所示,不计导轨电阻,g取10 m/s2.求:(2)所加磁场的磁感应强度B为多大?(3)当v=2 m/s时,金属棒的加速度为多大?3、边长为L 的正方形闭合金属线框,其质量为m ,回路电阻为R.图中M 、N 、P 为磁场区域的边界,上下两部分水平匀强磁场的磁感应强度大小均为B ,方向如图4所示.现让金属线框在图示位置由静止开始下落,金属线框在穿过M 和P 两界面的过程中均为匀速运动.已知M 、N 之间和N 、P 之间的高度差相等,均为h =L +5m2gR28B4L4,金属线框下落过程中金属线框平面始终保持竖直,底边始终保持水平,当地的重力加速度为g.试求:(1)图示位置金属线框的底边到M 的高度d ;(2)在整个运动过程中,金属线框中产生的焦耳热;(3)金属线框的底边刚通过磁场边界N 时,金属线框加速度的大小.4、如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l ,所在平面的正方形区域abcd 内存在有界匀强磁场,磁感应强度为B ,方向垂直斜面向上.将甲、乙两阻值相同、质量均为m 的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距l.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F ,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,加速度大小为gsin θ,乙金属杆刚进入磁场时做匀速运动. (1)甲、乙的电阻R 为多少;(2)设刚释放两金属杆时t =0,写出从开始释放到乙金属杆离开磁场,外力F 随时间t 的变化关系;(3)若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q ,试求此过程中外力F 对甲做的功.5、如图9所示,长L1=1.0 m,宽L2=0.50 m的矩形导线框,质量为m=0.20 kg,电阻R=2.0 Ω.其正下方有宽为H(H>L2),磁感应强度为B=1.0 T,垂直于纸面向里的匀强磁场.现在,让导线框从cd 边距磁场上边界h=0.70 m处开始自由下落,当cd边进入磁场中,ab尚未进入磁场时,导线框做匀速运动.(不计空气阻力,取g=10 m/s2)求:(1)线框完全进入磁场过程中安培力做的功是多少?(2)线框穿出磁场过程中通过线框任一截面的电荷量q是多少?6、如图所示,绝缘细绳绕过轻滑轮连接着质量为m的正方形导线框和质量为M的物块,导线框的边长为L、电阻为R0,物块放在光滑水平面上,线框平面竖直且ab边水平,其下方存在两个匀强磁场区域,磁感应强度的大小均为B,方向水平但相反,Ⅰ区域的高度为L,Ⅱ区域的高度为2L.开始时,线框ab边距磁场上边界PP′的高度也为L,各段绳都处于伸直状态,把它们由静止释放,运动中线框平面始终与磁场方向垂直,M始终在水平面上运动,当ab边刚穿过两磁场的分界线QQ′进入磁场Ⅱ时,线框做匀速运动.不计滑轮处的摩擦.求:(1)ab边刚进入磁场Ⅰ时,线框的速度大小;(2)cd边从PP′位置运动到QQ′位置过程中,通过线圈导线某横截面的电荷量;(3)ab边从PP′位置运动到NN′位置过程中,线圈中产生的焦耳热.7、(2011·天津·11)(18分)如图所示,两根足够长的光滑平行金属导轨MN、PQ间距为L=0.5 m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m=0.02 kg,电阻均为R=0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2 T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能够保持静止,取g=10 m/s2,问:(1)通过棒cd的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)棒cd每产生Q=0.1 J的热量,力F做的功W是多少?8、(15分)如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直方向的磁场中,整个磁场由若干个宽度皆为d的条形匀强磁场区域1、2、3、4……组成,磁感应强度B1、B2的方向相反,大小相等,即B1=B2=B.导轨左端MP间接一电阻R,质量为m、电阻为r的细导体棒ab垂直放置在导轨上,与导轨接触良好,不计导轨的电阻.现对棒ab施加水平向右的拉力,使其从区域1磁场左边界位置开始以速度v0向右做匀速直线运动并穿越n个磁场区域.(1)求棒ab穿越区域1磁场的过程中电阻R产生的焦耳热Q;(2)求棒ab穿越n个磁场区域的过程中拉力对棒ab所做的功W;(3)规定棒中从a到b的电流方向为正,画出上述过程中通过棒ab的电流I随时间t变化的图象;(4)求棒ab穿越n个磁场区域的过程中通过电阻R的净电荷量q.9、(16分)如图所示,在水平面上固定一光滑金属导轨HGDEF,EF//GH,DE=EF=DG=GH=EG=L.一质量为m足够长导体棒AC 垂直EF方向放置在金属导轨上,导轨与导体棒单位长度的电阻均为r,整个装置处在方向竖直向下、磁感应强度为B的匀强磁场中.现对导体棒AC施加一水平向右的外力,使导体棒从D位置开始以速度v0沿EF方向做匀速直线运动,导体棒在滑动过程中始终保持与导轨良好接触.(1)求导体棒运动到FH位置,即将要离开导轨时,FH两端的电势差.(2)关于导体棒运动过程中回路产生的感应电流,小明和小华两位同学进行了讨论.小明认为导体棒在整个运动过程中是匀速的,所以回路中电流的值是恒定不变的;小华则认为前一过程导体棒有效切割长度在增大,所以电流是增大的,后一过程导体棒有效切割长度不变,电流才是恒定不变的,你认为这两位同学的观点正确吗?请通过推算证明你的观点.(3)求导体棒从D位置运动到EG位置的过程中,导体棒上产生的焦耳热.10、(重庆市2012(春)高三考前模拟测)(16分)如题23-1图所示,边长为L、质量为m、总电阻为R的正方形导线框静置于光滑水平面上,处于与水平面垂直的匀强磁场中,匀强磁场磁感应强度B随时间t变化规律如题23-2图所示.求:(1)在t=0到t=t0时间内,通过导线框的感应电流大小;(2)在t=2t时刻,a、b边所受磁场作用力大小;(3)在t=0到t=t0时间内,导线框中电流做的功。
核心素养微专题6 电磁感应中的“杆+导轨”模型

(1)若涉及变力作用下运动问题,可选用动量守恒和能量守恒的方法解决。
(2)若涉及恒力或恒定加速度,一般选用动力学的观点。若涉及运动时间
问题也可选用动量定理求解。
17
二轮 ·物理
[示例3] 如图所示,在大小为B的匀强磁场区域内跟磁场方向垂直的水 平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导 体棒ab和cd,两棒彼此平行,构成一矩形回路。导轨间距为l,导体棒的 质量都为m,电阻都为R,导轨部分电阻可忽略不计。设导体棒可在导 轨上无摩擦地滑行,初始时刻ab棒静止,给cd棒一个向右的初速v0,求: (1)当cd棒速度减为0.8v0时的加速度大小; (2)从开始运动到最终稳定,电路中产生的电能; (3)两棒之间距离增加量Δx的上限。
×mgsin θ=ma,解得加速度大小为 2.5 m/s2,B 正确;金属杆滑至底端
的整个过程中,整个回路中产生的焦耳热为 mgh-12mv2m,电阻 R 产生的
13
二轮 ·物理
焦耳热一定小于 mgh-21mvm2 ,C 错误;金属杆达到最大速度后,根据受 力平衡可得 mgsin θ=F 安=BIL,得 I=mgBsiLn θ=neSv-,得v-=ρgnseiBn θ, 其中 n 为单位体积的电子数,ρ 为金属杆的密度,所以杆中定向运动的 电荷沿杆长度方向的平均速度与杆的粗细无关,D 正确。 [答案] BD
8
二轮 ·物理
⑦ ⑧
二轮 ·物理
2.单杆“倾斜导轨”模型 匀强磁场与导轨垂直,磁感应强度为 B,导轨间距 L,导体棒 质量 m,电阻 R,导轨光滑,电阻不计(如图)
物理 模型
9
二轮 ·物理
棒 ab 由静止释放后下滑,此时 a=gsin α,棒 ab 速度 v↑→
电磁感应中两种终态模型总结(教育材料)

电磁感应中两种终态模型总结重庆张开华导体棒做切割磁感线运动的分析和推理是高考的热点内容,涉及规律较多,过程复杂,其解题关键在于能否正确分析出棒在运动中各量的动态变化,列出相关表达式,找出导体棒终极状态时的隐含条件. 下面对两种常见模型进行总结并加以拓展.一、“棒配电阻”模型例1. 如图1所示,MN、PQ是两根足够长且相距为L的固定平行金属导轨,导轨平面与水平面的夹角为θ,整个导轨平面内有磁感应强度为B、垂直于导轨平面斜向上的匀强磁场,在导轨的N、Q端连接有阻值为R的电阻,另一根质量为m、垂直于导轨放置的金属棒ab从静止释放后沿导轨下滑. 求棒的最大速度.解法1. 动态分析法:金属棒下滑后,速度v增大→感应电动势E增大→感应电流I增大→导体棒受安培力F安增大→导体棒受合外力F合减小→加速度a减小→……,周而复始地循环→循环结束时,可知金属棒ab最终做匀速直线运动终态时根据平衡条件,导体棒在斜面方向上有因,又,可求得最大速度。
解法2. 一般位置分析法:导体棒运动到任一个位置时,在斜面方向上由牛顿第二定律可列方程而,又,求得随着速度的增大,棒的加速度逐渐减小,当加速度减小到零时、速度最大(设为v m),以后一直做匀速直线运动.即所受合外力为0,,求得最大速度。
模型拓展:1. 若磁场方向竖直向上,如图2所示. 则终态时感应电动势为斜面方向上合外力为0,有求得。
2. 如图3、4所示情况下导体棒的动态特征和能量转化与本题相似.3. 原模型中若导体棒与导轨间动摩擦因数为μ,则终态时斜面方向上有求得4. 若将两平行金属导轨(无论是否光滑)水平放置且只给金属棒初速度,如图5所示. 则棒切割磁感线运动,回路中产生感应电流,棒受到反方向的安培力而做减速运动,其安培力减小、加速度减小,当棒的速度减小到零时,加速度也减小到零. 即棒的终态是静止状态.由此也可推得:导轨光滑时、棒的初动能全部转化为感应电流的焦耳热. 导轨不光滑时,棒的初动能一部分转化为焦耳热,另一部分由于摩擦转化为内能.二、“棒配电容”模型例2. 两水平放置的足够长的光滑平行金属导轨间距为L,电阻不计,左端串接有电容为C的理想电容器(不会被击穿),质量为m、电阻为r的金属棒始终处于磁感应强度为B的匀强磁场中. 金属棒在水平向右的恒力F作用下由静止开始运动. 判断金属棒最终的运动状态并求出金属棒在终态时的加速度.解析:金属棒运动后,产生的感应电流对电容器充电,两极板间的电势差随之增大,同时金属棒又受到反方向的安培力作用,加速度开始减小,当棒由于速度的增大而增大的感应电动势与电容器由于充电而增加的电势差相等时,即时,其电流开始稳定(这一步对“棒配电容”类电磁感应定量计算问题很关键),棒受到的安培力稳定,从而棒受合外力稳定而最终做匀加速直线运动.棒匀加速直线运动时,时间△t内导体棒增大的感应电动势电容器增加的电压,根据求得电路中电流I=BLaC对导体棒由牛顿第二定律F-BIL=ma求得,即棒最终做匀加速直线运动。
高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.一、平行导轨:不受其他外力作用光滑平行导轨光滑不等距导轨示意图质量m1=m2 电阻r1=r2 长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2规律分析杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2015·高考四川卷)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.[解析](1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=E k①且W=W1②由题意有E k=12m v21③得W=14m v21.④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势平均值为E,ab棒中的电流为I,通过ab棒某横截面的电荷量为q,则甲E=ΔΦΔt⑤且ΔΦ=BΔS⑥I=qΔt⑦又有I=2ER⑧由图甲所示ΔS=d(L-d cot θ)⑨联立⑤~⑨,解得q=2Bd(L-d cot θ)R.⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为L x=L-2x cot θ⑪此时,ab棒产生的电动势E x为E x=B v2L x⑫流过ef棒的电流I x为I x=E xR⑬ef棒所受安培力F x为F x=BI x L⑭联立⑪~⑭,解得F x=B2v2LR(L-2x cot θ)⑮由⑮式可得,F x在x=0和B为最大值B m时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图乙所示,图中f m为最大静摩擦力,有F1cos α=mg sin α+μ(mg cos α+F1sin α)⑯联立⑮⑯,得B m=1Lmg(sin α+μcos α)R(cos α-μsin α)v2⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.乙丙由⑮式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值F2,如图丙可知F2cos α+μ(mg cos α+F2sin α)=mg sin α⑱联立⑮⑰⑱,得x m =μL tan θ(1+μ2)sin αcos α+μ.[答案]见解析二、平行导轨:一杆受恒定水平外力作用光滑平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2=F f 质量m1=m2电阻r1=r2长度L1=L2规律分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀变速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀速,MN杆一直静止;若F>2F f,PQ杆先变加速,MN后做变加速最后两杆做匀速运动如图所示,两条平行的金属导轨相距L=1 m,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B1中,B1=B2=0.5 T.金属棒MN和PQ的质量均为m=0.2 kg,电阻R MN=0.5 Ω、R PQ=1.5 Ω.MN置于水平导轨上,PQ置于倾斜导轨上,刚好不下滑.两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F的作用下由静止开始向右运动,MN棒的速度v与位移x满足关系v=0.4x.不计导轨的电阻,MN始终在水平导轨上运动,MN与水平导轨间的动摩擦因数μ=0.5.(1)问当MN棒运动的位移为多少时PQ刚要滑动?(2)求从t=0到PQ刚要滑动的过程中通过PQ棒的电荷量;(3)定性画出MN受的安培力随位移变化的图象,并求出MN从开始到位移x1=5 m的过程中外力F做的功.[解析](1)开始PQ刚好不下滑时,PQ受沿倾斜导轨向上的最大静摩擦力F fm,则F fm=mg sin 37°设PQ刚好要向上滑动时,MN棒的感应电动势为E,由法拉第电磁感应定律E=B1L v设电路中的感应电流为I,由闭合电路的欧姆定律得I=ER MN+R PQ设PQ所受安培力为F A,有F A=B2IL此时PQ受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有:F A=F fm+mg sin 37°又由v=0.4x,联立解得x=48 m.(2)在从t=0到PQ刚要滑动的过程中,穿过回路MNQP的磁通量的变化量ΔΦ=B1Lx=0.5×1×48 Wb=24 Wb通过PQ棒的电荷量q=I·t=ER MN+R PQ·t=ΔΦR MN+R PQ=240.5+1.5C=12 C.(3)回路中的电流I=B1L vR MN+R PQ,MN受到的安培力F A=B1IL,又v=0.4x,故推出F A=0.4xB21L2R MN+R PQ因此MN受的安培力与位移x成正比,故画出如图所示的安培力—位移图象.考虑到MN受的安培力与位移方向相反,故安培力与位移图象包围的面积等于克服安培力做的功,故安培力对MN做功W A=-12·0.4x1B21L2R MN+R PQx1=-0.625 J当x1=5 m时,速度v1=0.4x1=0.4×5 m/s=2 m/s对MN棒由动能定理:W F-μmgx1+W A=12m v21-0故W F=12m v21+μmgx1-W A=⎝⎛⎭⎫12×0.2×22+0.5×0.2×10×5+0.625J=6.025 J.[答案](1)48 m(2)12 C(3)6.025 J三、倾斜导轨:两杆不受外力作用注意双杆之间的制约关系,即“主动杆”与“被动杆”之间的关系,因为两杆都有可能产生感应电动势,相当于两个电源,并且最终两杆的收尾状态的确定是分析问题的关键.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题点睛] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解.[解析] (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有 I =ER 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案] (1)由a 流向b (2)5 m/s (3)1.3 J 四、倾斜导轨:一杆受到外力作用(2016·浙江金华高三质检)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?[解析] (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30° 代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c . (2)棒ab 与棒cd 受到的安培力大小相等,F ab =F cd 对棒ab ,由受力平衡知F =mg sin 30°+IlB 代入数据解得F =0.2 N.(3)设在时间t 内棒cd 产生Q =0.1 J 的热量,由焦耳定律知Q =I 2Rt设棒ab 匀速运动的速度大小为v ,其产生的感应电动势E =Bl v ,由闭合电路欧姆定律知,I =E2R由运动学公式知在时间t 内,棒ab 沿导轨的位移 x =v t力F 做的功W =Fx综合上述各式,代入数据解得W =0.4 J. [答案] (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J 五、竖直导轨如图是一种电磁驱动电梯的原理图,竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B 1和B 2,B 1=B 2=1 T ,且B 1和B 2的方向相反,两磁场始终竖直向上做匀速运动.电梯桥厢(未在图中画出)固定在一个用超导材料制成的金属框abdc 内,并且与之绝缘.电梯载人时的总质量为5×103 kg ,所受阻力f =500 N ,金属框垂直轨道的边长L cd =2m ,两磁场沿轨道的宽度均与金属框的竖直边长L ac 相同,金属框整个回路的电阻R =9.5×10-4Ω,若设计要求电梯以v 1=10 m/s 的速度向上匀速运动,取g =10 m/s 2,那么 (1)磁场向上运动速度v 0应该为多大?(2)在电梯向上做匀速运动时,为维持它的运动,外界对系统提供的总功率为多少?(保留三位有效数字)[解析] (1)当电梯向上做匀速运动时,安培力等于重力和阻力之和,所以 F A =mg +f =50 500 N金属框中感应电流大小为 I =2B 1L cd (v 0-v 1)R金属框所受安培力F A =2B 1IL cd 解得v 0=13 m/s.(2)当电梯向上做匀速运动时,由第(1)问中的I =2B 1L cd (v 0-v 1)R ,求出金属框中感应电流I =1.263×104 A金属框中的焦耳热功率P 1=I 2R =1.51×105 W 有用功率为克服电梯重力的功率 P 2=mg v 1=5×105 W阻力的功率为P 3=f v 1=5×103W电梯向上运动时,外界提供的能量,一部分转变为金属框内的焦耳热,另一部分克服电梯的重力和阻力做功.因而外界对系统提供的总功率P 总=P 1+P 2+P 3=6.56×105W. [答案] (1)13 m/s (2)6.56×105 W1.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.2.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错,B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确,D 项错.3.(多选)如图所示,光滑平行的金属导轨宽度为L ,与水平方向成θ角倾斜固定,导轨之间充满了垂直于导轨平面的足够大的匀强磁场,磁感应强度为B ,在导轨上垂直导轨放置着质量均为m 、电阻均为R 的金属棒a 、b ,二者都被垂直于导轨的挡板挡住保持静止,金属导轨电阻不计,现对b 棒施加一垂直于棒且平行于导轨平面向上的牵引力F ,并在极短的时间内将牵引力的功率从零调为恒定的功率P .为了使a 棒沿导轨向上运动,P 的取值可能为(重力加速度为g )( )A.2m 2g 2RB 2L 2·sin 2θB .3m 2g 2RB 2L 2·sin 2θC.7m 2g 2RB 2L2·sin 2θ D .5m 2g 2RB 2L2·sin 2θ解析:选CD.以b 棒为研究对象,由牛顿第二定律可知F -mg sin θ-BL v2R BL =ma ,以a 棒为研究对象,由牛顿第二定律可知BL v 2R BL -mg sin θ=ma ′,则F >2mg sin θ,v >2Rmg sin θB 2L 2,故P =F v >4m 2g 2R B 2L 2sin 2θ,由此可得选项C 、D 正确,选项A 、B 错误.4.如图所示,竖直平面内有平行放置的光滑导轨,导轨间距为l =0.2 m ,电阻不计,导轨间有水平方向的匀强磁场,磁感应强度大小为B =2 T ,方向如图所示,有两根质量均为m =0.1 kg ,长度均为l =0.2 m ,电阻均为R =0.4 Ω的导体棒ab 和cd 与导轨接触良好,当用竖直向上的力F 使ab 棒向上做匀速运动时,cd 棒刚好能静止不动,则下列说法正确的是(g 取10m/s 2)( )A .ab 棒运动的速度是5 m/sB .力F 的大小为1 NC .在1 s 内,力F 做的功为5 JD .在1 s 内,cd 棒产生的电热为5 J解析:选A.对导体棒cd 由B Bl v2R l =mg ,得到v =5 m/s ,选项A 正确;再由F =mg +F 安=2 N 知选项B 错误;在1 s 内,力F 做的功W =F v t =10 J ,选项C 错误;在1 s 内,cd 棒产生的电热Q =⎝⎛⎭⎫Bl v2R 2Rt =2.5 J ,选项D 错误.5.(2016·合肥一中高三检测)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑.K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小; (2)Q 杆所受拉力的瞬时功率.解析:(1)设小环受到的摩擦力大小为F f ,由牛顿第二定律,有m 2g -F f =m 2a 代入数据,得F f =0.2 N.(2)设通过K 杆的电流为I 1,K 杆受力平衡, 有F f =B 1I 1l设回路总电流为I ,总电阻为R 总,有I =2I 1 R 总=32R设Q 杆下滑速度大小为v ,产生的感应电动势为E ,有I =ER 总E =B 2l vF +m 1g sin θ=B 2Il拉力的瞬时功率为P =F v联立以上方程,代入数据得P =2 W. 答案:(1)0.2 N (2)2 W6.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线m 、n 间有一方向垂直于导轨所在平面向下、磁感应强度为B 的匀强磁场.导体棒a 的质量为m a =0.4 kg ,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg ,电阻R b =6 Ω.导体棒a 、b 分别垂直导轨放置并始终与导轨接触良好.a 、b从开始相距L 0=0.5 m 处同时由静止释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场,g 取10 m/s 2,不计a 、b 之间电流的相互作用,sin 53°=0.8,cos 53°=0.6.求:(1)在a 、b 分别穿越磁场的过程中,通过R 的电荷量之比;(2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个运动过程中,产生的总焦耳热. 解析:(1)由q 总=I Δt ,I =E R 总,E =ΔΦΔt ,得q 总=ΔΦR 总在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=8 Ω 通过R 的电荷量为q Rb =13q 总1=13·ΔΦR 总1同理,a 在磁场中匀速运动时,R 总2=6 Ω,通过R 的电荷量为q Ra =12q 总2=12·ΔΦR 总2,可得q Ra ∶q Rb =2∶1.(2)设a 、b 穿越磁场的过程中的速度分别为v a 和v b ,则b 中的电流I b =BL v bR 总1由平衡条件得B 2L 2v bR 总1=m b g sin 53°同理,a 在磁场中匀速运动时有 B 2L 2v aR 总2=m a g sin 53°, 解得v a ∶v b =3∶1.(3)设b 在磁场中穿越的时间为t ,由题意得: v a =v b +gt sin 53°,d =v b t因为v 2a -v 2b =2gL 0sin 53°,v a ∶v b =3∶1所以d =0.25 m.(4)a 穿越磁场时所受安培力F 安=m a g sin 53° 克服安培力所做的功W a =m a gd sin 53°=0.8 J 同理,b 穿越磁场时克服安培力所做的功 W b =m b gd sin 53°=0.2 J由功能关系得,在整个过程中,电路中产生的总焦耳热Q =W a +W b =1 J. 答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J。
法拉第电磁感应定律考察的三类五个模型

法拉第电磁感应定律考察的三类五个模型电磁感应现象考查的知识重点是法拉第电磁感应定律,根据法拉第电磁感应定律的表达式tBS ntnE ∆∆=∆∆Φ=)(,有下列三类五个模型转换:一.B 变化,S 不变 (1)B 均匀变化 ①B 随时间均匀变化如果B 随时间均匀变化,则可以写出B 关于时间t 的表达式,再用法拉第电磁感应定律解题,如例1第(1)问.②B 随位置均匀变化B 随位置均匀变化的解题方法类似于B 随时间均匀变化的情形. (2)B 非均匀变化B 非均匀变化的情况在高中并不多见,如例1第(3)问.如果题目给出了B 非均匀变化的表达式,也可用后面给出的求导法求解.【例1】如图1所示,固定于水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长为l 的正方形,棒的电阻为r ,其余部分电阻不计.开始磁感强度为B 0.(1)若从t =0时刻起,磁感强度均匀增加,每秒增量为k ,同时棒保持静止.求棒中的感应电流.在图上标出感应电流的方向;(2)在上述(1)情况中,始终保持棒静止,当t =t 1末时需加的垂直于棒的水平拉力为多大?(3)若t =0时刻起,磁感强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B 与t 的关系式)?解析:将加速度的定义式和电磁感应定律的表达式类比,弄清k 的物理意义,写出可与at v v t +=0相对照的B 的表达式kt B B +=0;第(3)问中B 、S 均在变化,要能抓住产生感应电流的条件(①回路闭合;②回路中有磁通量的变化)解题.(1)磁感强度均匀增加,每秒增量为k ,得k tB =∆∆∵感应电动势2S kl tB tE =∆∆=∆∆Φ=∴感应电流rkl rE I 2==d图1由楞次定律可判定感应电流方向为逆时针,棒ab 上的电流方向为b→a . (2)t=t 1时,B=B 0+kt 1 又∵F=BIl ∴rkl kt B F 310)(+=(3)∵棒中不产生感应电流 ∴回路中总磁通量不变 ∴Bl (l+vt )=B 0l 2 得vtl l B B +=0二.B 不变,S 变化 (1)金属棒运动导致S 变化金属棒在匀强磁场中做切割磁感线的运动时,其感应电动势的常用计算公式为BLv E =,此类题型较常见,如例2.【例2】如图2所示,两条互相平行的光滑金属导轨位于水平面内,距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T .一质量为m =0.1kg的金属直杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下做匀变速直线运动,加速度大小为a =2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系.解析:杆在水平外力F 和安培力的共同作用下做匀变速直线运动,加速度a 方向向左.杆的运动过程:向右匀减速运动→速度为零→向左匀加速运动;外力F 方向的判断方法:先假设,再根据结果的正负号判断.(1)感应电动势E=Blv ,感应电流I=RBlv RE =∴I=0时v=0 ∴x =av 22=1(m )(2)当杆的速度取最大速度v 0时,杆上有最大电流I m =RBlv 0RBlv I I m 22'0==安培力F 安=BI ’l=Rv l B 2022=0.02(N )向右运动时F+F 安=ma ,得F=ma- F 安=0.18(N ),方向与x 轴相反 向左运动时F- F 安=ma ,得F=ma+F 安=0.22(N ),方向与x 轴相反 (3)开始时v=v 0,F 安=BI m l=R v l B 022F+F 安=ma ,F=ma- F 安=ma-Rv l B 022∴当v 0< 22lB maR=10m/s 时,F >0,方向与x 轴相反当v 0>22lB maR =10m/s 时,F <0,方向与x 轴相同(2)导轨变形导致S 变化常常根据法拉第电磁感应定律解题,如例3.【例3】如图3所示,半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ’的瞬时(如图所示),MN 中的电动势和流过灯L 1的电流.(2)撤去中间的金属棒MN 将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为π4=∆∆tB (T/s ),求L 1的功率. 解析:(1)当棒滑过圆环直径OO ’的瞬时,棒的有效长度为2a ,灯L 1、L 2是并联的.E 1=B 2av =0.2×0.8×5 =0.8(V ) 4.028.011===R E I (A )(2)将右面的半圆环OL 2O’以OO’为轴向上翻转90º后,圆环的有效面积为半圆.其图3中B 随时间是均匀变化的,注意此时灯L 1、L 2是串联的.32.0222=⨯∆∆=∆∆Φ=a tB t E π (V )R E P 221)2(==1.28×102(W )另外还可在S 不规则变化上做文章,如金属棒旋转、导轨呈三角形等等. 三.磁场变化的同时导体棒切割磁感线【例4】如图4所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m ,导轨的端点P 、Q 用电阻可以忽略的导线相连,两导轨间的距离l =0.20m 。
电磁感应双杆模型总结归类
同学们,咱们今天来聊聊电磁感应双杆模型。
先来说说平行等距型双杆。
就像两辆并排跑的车,速度可能不一样,但它们受到的磁场力会影响它们的运动。
比如说,两根平行的金属杆放在磁场里,给其中一根杆一个初速度,另一根杆就会在磁场力的作用下也动起来。
再讲讲平行不等距型双杆。
这就好比两个腿不一样长的人跑步,受到的影响也不同。
不等距的双杆在磁场中,电流大小可能不一样,运动情况也就更复杂啦。
还有垂直型双杆。
想象一下两根杆交叉摆放,像个十字,磁场一作用,它们的运动就相互关联起来。
比如说,在一个实际的物理实验中,我们通过改变磁场强度、杆的长度和电阻等因素,就能观察到双杆运动的不同变化。
同学们,只要多做实验,多思考,这个电磁感应双杆模型就不难理解啦!嘿,各位物理爱好者!今天咱们好好唠唠电磁感应双杆模型。
你看啊,有一种情况是双杆都有动力在跑。
就好比两个人比赛跑步,都拼命往前冲。
比如说,给两根杆都加上电源,它们在磁场里就会“奋勇向前”。
还有一种是一根杆主动,另一根被动。
这就像一个人拉着另一个人跑,主动的那个出力,被动的跟着动。
比如说,给一根杆初速度,另一根就被带着跑起来。
另外,双杆还可能受到不同方向的力。
这就像两个人在迷宫里,一个想往左,一个想往右,结果就很有趣啦。
给大家举个例子,在一个电磁感应装置中,通过调整双杆的位置和磁场方向,就能看到各种奇妙的运动现象。
怎么样,是不是觉得很有意思?亲爱的家长们,今天和您讲讲电磁感应双杆模型。
您就想象一下,有两根金属棒在一个有磁力的地方。
比如说,就像两根铅笔在一个有吸力的盒子里。
有一种情况是两根棒一起动,就好像两个人一起拉着一辆车。
这时候它们的运动速度、方向都会相互影响。
还有的时候,只有一根棒先动,另一根被带着动,就像大孩子带着小孩子跑。
比如说,您可以想象家里的两个孩子一起玩滑梯,一个先滑下去,另一个跟着。
这和双杆在磁场里的运动有点像呢。
了解了这些,您就能更好地理解孩子学习物理的难处啦。
老师们,咱们一起来看看电磁感应双杆模型。
高考复习专题九—电磁感应中的“双杆模型”(解析版)
微讲座(九)——电磁感应中的“双杆模型”一、“单杆切割”类常见情况是一杆静止、另一杆做切割磁感线运动,其实质是单杆问题.解决该问题的思路是:对静止的杆用平衡条件列方程,对运动杆用E =Bl v 求感应电动势,进而求电流、安培力等.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向; (2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题突破] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解. [解析] (1)由右手定则可知cd 中的电流方向由d 到c ,故ab 中的电流由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F fm ,有F fm =m 1g sin θ①设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有I =E R 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F fm 综合①②③④式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q总+12m 2v 2 又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案](1)由a流向b(2)5 m/s(3)1.3 J二、“双杆切割”类1.初速度不为零,不受其他水平外力的作用光滑的平行导轨光滑不等距导轨装置图运动规律杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动2.初速度为零,一杆受到恒定水平外力的作用光滑的平行导轨不光滑平行导轨装置图运动规律开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀加速运动开始时,若f QP<F≤f QP+f MN,则PQ杆先做变加速运动后做匀速运动;MN杆静止.若F>f QP+F MN,PQ杆先做变加速运动后做匀加速运动,MN杆先静止后做变加速运动最后和PQ杆同时做匀加速运动,且加速度相同如图,ab和cd是两条竖直放置的光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m.竖直向上的外力F作用在杆MN上,使两杆水平静止,两杆的总电阻为R,导轨间距为l.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与两导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好,且两金属杆始终水平.求:(1)细线烧断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度.[解析](1)设某时刻MN和M′N′速度分别为v1、v2细线烧断前,对整体有F=3mg细线烧断后,对MN有F-mg-F安=ma1对M′N′有2mg-F安=2ma2得a 1a 2=2,又v =a Δt 得v 1∶v 2=2∶1.①(2)当MN 和M ′N ′的加速度为零时,速度最大 对M ′N ′受力平衡:BIl =2mg ② 又I =E R ③E =Bl v 1+Bl v 2④由①②③④得v 1=4mgR 3B 2l 2,v 2=2mgR3B 2l 2.[答案] (1)2∶1 (2)4mgR 3B 2l 2 2mgR3B 2l 2两杆同时做切割磁感线运动时,产生两个感应电动势,回路中的电流是由这两个电动势共同决定.因此弄清回路中的总电动势是等于两电势之和,还是等于两电动势之差,是解决问题的关键.1.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后做匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错误、B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确、D 项错误.2.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.3.(2016·泸州模拟)如图所示,两条足够长的平行金属导轨相距L ,与水平面的夹角为θ,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度大小均为B ,虚线上方轨道光滑且磁场方向向上,虚线下方轨道粗糙且磁场方向向下.在导体棒EF 以初速度v 0沿导轨上滑至最大高度的过程中,导体棒MN 一直静止在导轨上.若两导体棒质量均为m 、电阻均为R ,导轨电阻不计,重力加速度为g ,在此过程中导体棒EF 上产生的焦耳热为Q ,求:(1)导体棒MN 受到的最大摩擦力; (2)导体棒EF 上升的最大高度.解析:(1)EF 获得向上的初速度v 0时,感应电动势 E =BL v 0电路中电流为I ,由闭合电路欧姆定律得I =E 2R此时对导体棒MN 进行受力分析,由平衡条件得 F A +mg sin θ=F f F A =BIL解得F f =B 2L 2v 02R+mg sin θ.(2)导体棒EF 上升过程中MN 一直静止,对系统,由能的转化和守恒定律,有 12m v 2=mgh +2Q , 解得h =m v 20-4Q2mg.答案:(1)B 2L 2v 02R +mg sin θ (2)m v 20-4Q2mg4.(2016·德阳市二诊)如图所示,质量均为m 的物体A 、B 之间用劲度系数为k 的轻弹簧连接,静止于倾角为θ的光滑斜面上,物体A 与挡板接触而不粘连.物体B 用平行于斜面的轻质细线绕过光滑的滑轮与水平导轨上的金属杆ab 连接.金属杆ab 、cd 的质量都为m 0,电阻都为R .金属杆长度及导轨的宽度均为d ,金属杆与导轨的接触良好,水平导轨足够长且光滑,电阻不计,导轨间有垂直于导轨平面向上的匀强磁场(图中未画出),磁感应强度为B .开始时整个系统处于静止状态,与杆连接的细线水平,细线刚好拉直而无作用力.现用恒定的水平力作用于cd 杆的中点,使杆cd 由静止开始向右运动,当杆cd 开始匀速运动时,物体A 恰好与挡板间无弹力.求:(1)从杆cd 开始运动到匀速运动过程中物体B 运动的距离L ; (2)cd 杆匀速运动的速度大小v ;(3)从cd 杆开始运动到匀速运动过程中,cd 杆产生的焦耳热为Q ,水平恒力做的功W 为多大?解析:(1)弹簧开始压缩量x 1=mg sin θk挡板对物体A 恰无弹力时弹簧伸长量x 2=mg sin θkB 移动距离L =x 1+x 2=2mg sin θk .(2)cd 杆匀速运动时有F =F A =2mg sin θ F A =BIL I =BL v2R得v =4mgR sin θB 2L 2.(3)由功能关系得W =12m 0v 2+mgL sin θ+Q 热Q 热=2QW =8m 0m 2g 2R 2sin 2 θB 4L 4+2m 2g 2sin 2θk +2Q .答案:(1)2mg sin θk (2)4mgR sin θB 2L 2(3)8m 0m 2g 2R 2sin 2 θB 4L 4+2m 2g 2sin 2θk+2Q5.如图甲,电阻不计的轨道MON 与PRQ 平行放置,ON 及RQ 与水平面的倾角θ=53°,MO 及PR 部分的匀强磁场竖直向下,ON 及RQ 部分的磁场平行轨道向下,磁场的磁感应强度大小相同,两根相同的导体棒ab 和cd 分别放置在导轨上,与导轨垂直并始终接触良好.棒的质量m =1.0 kg ,R =1.0 Ω,长度L =1.0 m 与导轨间距相同,棒与导轨间动摩擦因数μ=0.5,现对ab 棒施加一个方向水平向右,按图乙规律变化的力F ,同时由静止释放cd 棒,则ab 棒做初速度为零的匀加速直线运动,g 取10 m/s 2.(1)求ab 棒的加速度大小; (2)求磁感应强度B 的大小;(3)若已知在前2 s 内F 做功W =30 J ,求前2 s 内电路产生的焦耳热; (4)求cd 棒达到最大速度所需的时间. 解析:(1)对ab 棒:F f =μmg v =atF -BIL -F f =ma F =m (μg +a )+B 2L 2at2R由题图信息,代入数据解得:a =1 m/s 2. (2)当t 1=2 s 时,F =10 N ,由(1)知 B 2L 2at2R=F -m (μg +a ),得B =2 T. (3)0~2 s 过程中,对ab 棒,x =12at 21=2 mv 2=at 1=2 m/s由动能定理知:W -μmgx -Q =12m v 22代入数据解得Q =18 J.(4)设当时间为t ′时,cd 棒达到最大速度, F N ′=BIL +mg cos 53° F f ′=μF N ′mg sin 53°=F f ′mg sin 53°=μ⎝⎛⎭⎫B 2L 2at ′2R +mg cos 53° 解得t ′=5 s.答案:(1)1 m/s 2 (2)2 T (3)18 J (4)5 s 6.(2016·安徽蚌埠三县联谊校联考)如图所示,两根足够长且平行的光滑金属导轨所在平面与水平面成α=53°角,导轨间接一阻值为3 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线间有一与导轨所在平面垂直的匀强磁场,磁场区域的宽度为d =0.5 m .导体棒a 的质量为m 1=0.1 kg 、电阻为R 1=6 Ω;导体棒b 的质量为m 2=0.2 kg 、电阻为R 2=3 Ω,它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M 、N 处同时将a 、b 由静止释放,运动过程中它们都能匀速穿过磁场区域,且当a 刚出磁场时b 正好进入磁场.(sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2,a 、b 电流间的相互作用不计),求:(1)在b 穿越磁场的过程中a 、b 两导体棒上产生的热量之比;(2)在a 、b 两导体棒穿过磁场区域的整个过程中,装置上产生的热量; (3)M 、N 两点之间的距离.解析:(1)在b 穿越磁场的过程中,b 相当于电源,a 与R 是外电路,则有I b =I a +I R . a 与R 是并联关系,则有I a R 1=I R R ,a 产生的热量为Q a =I 2a R 1t ,b 产生的热量为Q b =I 2b R 2t . 则Q a ∶Q b =I 2a R 1∶I 2b R 2,代入数据可解得Q a ∶Q b =2∶9. (2)a 、b 穿过磁场区域的整个过程中,由能量守恒可得, Q =m 1g sin α·d +m 2g sin α·d ,代入数据解得Q =1.2 J. (3)设a 进入磁场的速度大小为v 1,此时电路中的总电阻R 总1=R 1+RR 2R +R 2=⎝ ⎛⎭⎪⎫6+3×33+3 Ω=7.5 Ω设b 进入磁场的速度大小为v 2,此时电路中的总电阻R 总2=R 2+R 1R R 1+R =⎝ ⎛⎭⎪⎫3+6×36+3 Ω=5 Ω由m 1g sin α=B 2L 2v 1R 总1和m 2g sin α=B 2L 2v 2R 总2,可得v 1v 2=m 1R 总1m 2R 总2=34.设a 匀速运动时,m 2g sin α=m 2a 0,v 2=v 1+a 0d v 1,联立并代入数据解得v 21=12 m 2/s 2,则v 22=169v 21. M 、N 两点之间的距离Δs =v 222a 0-v 212a 0=712 m.答案:(1)2∶9 (2)1.2 J (3)712 m。
电磁感应中的“杆+导轨”模型
电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)
电磁感应中的双杆模型问题与强化训练(附详细参考答案)一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止,受力平衡。
另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。
2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。
对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。
题型一:一杆静止,一杆运动【题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。
现用一平行于导轨的恒力F作用在a的中点,使其向上运动。
若b始终保持静止,则它所受摩擦力可能A.变为0 B.先减小后不变C.等于F D.先增大再减小【答案】AB【题2】如图所示,两条平行的金属导轨相距L =1 m ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。
金属棒MN 和PQ 的质量均为m =0.2 kg ,电阻分别为R MN =1 Ω和R PQ =2 Ω。
MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。
从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态。
t =3 s 时,PQ 棒消耗的电功率为8 W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动。
求:(1)磁感应强度B 的大小;(2)t =0~3 s 时间内通过MN 棒的电荷量;(3)求t =6 s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移 x 满足关系:v =0.4x ,PQ 棒仍然静止在倾斜轨道上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v
Q
•注意有效长度的变化
E= 3 Bv 2 t 3
P N
因此
例3、如图所示,半径为r的金属圆盘在垂直于盘面的匀 强磁场B中,绕O轴以角速度ω沿逆时针方向匀速转动, 则通过电阻R的电流的方向和大小是(金属圆盘的电阻不 计) ( )
3 Q 4
E 电流 I= R+r
解题小结:
•注意受力分析 •注意回路中总电阻 •注意W安=-Q总
即 QR=0.075 J.
常见变式
② l变化 v0
v0
多边形
圆
课本原题(选修3-2 P30 9题)例2、如图所示,一“∠”型金
属导轨与金属棒MN接触良好,MN ⊥PO,整个框架平面与磁场方 向垂直,处于磁感应强度为B的匀强磁场中.现将MN以速度V沿图 示方向从O点开始匀速向右拉,∠POQ=300,写出回路中感应电动 势随时间变化 的关系式
高考习题集锦欣赏
(2009宁夏19)如图所示,一导体圆环位于纸面内,O为圆心。
环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁 感应强度的大小相等,方向相反且均与纸面垂直。导体杆OM可绕O 转动,M端通过滑动触点与圆环良好接触。在圆心和圆环间连有电 阻R。杆OM以匀角速度 逆时针转动,t=0时恰好在图示 位置。规定从a到b流经电阻R的电流方向为正,圆环和导体杆的电 阻忽略不计,则杆从t=0开始转动一周的过程中,电流 随 变化的图象是
(1)小滑块通过p2位置时的速度大小。 (2)电容器两极板间电场强度的取值范围。 (3)经过时间t,磁感应强度变化量的取值范 围。
高考习题集锦欣赏
(2010浙江理综,19)半径为r带缺口的刚性金属圆环在纸
面上固定放置,在圆环的缺口两端引出两根导线,分别与两 块垂直于纸面固定放置的平行金属板连接,两板间距为d,如 图甲所示.有一变化的磁场垂直于纸面,规定向内为正,变 化规律如图乙所示.在t=0时刻平板之间中心有一重力不计, 电荷量为q的静止微粒.则以下说法正确的是 ( ) A.第2秒内上极板为正极 B.第3秒内上极板为负极 C.第2秒末微粒回到了原来位置 0.2πr 2 D.第2秒末两极板之间的电场强度大小为 d
B/T
6 4 2 0
t/s
1 2 3 4 5 6
解析:由题意可知磁感应强度在均匀增加引起圆环磁通量的 变化电动势 E n ΔBS
Δt
又由B-t图像可知 ΔB 6 2 2 T / s
2 V 所以 E 300
电容中电量Q=CU 即Q =4×10-7c
Δt
6
3
B/T
6
4
2
解题小结:
t/s
B变
ΔBS 即 E= n E= Δt (一般用于求平均值)
n
t
(常见于计算q,q=It )
二、模型分析
1、“切割”模型
①运动特点:
(1) 阻尼式
v0
a 减小 ; v 减小 何变化)
运动(填如
F安
B 2 L2v F安= R总
②最终特征:
a= 0 ; v = 0 ; I= 0 .
③能量转化:
1 2 mv0 0Q 2
高考习题集锦欣赏
(2011 四川第 24 题)如图所示,间距 l=0.3m 的平行金属导轨 a b c
1 1 1
和 a2b2c2 分别固定在两个竖直面内,在水平面 a1b1b2a2 区域内和倾角 = 37 的斜面 c1b1b2c2 区域内分别有磁感应强度 B1=0.4T、方向竖直向上和 B2=1T、方向垂直于斜面 向上的匀强磁场。电阻 R=0.3 、质量 m1=0.1kg、长为 l 的相同导体杆 K、S、Q 分 别放置在导轨上,S 杆的两端固定在 b1、b2 点,K、Q 杆可沿导轨无摩擦滑动且始终 接触良好。一端系于 K 杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有 2 质量 m2=0.05kg 的小环。已知小环以 a=6 m/s 的加速度沿绳下滑,K 杆保持静止, Q 杆在垂直于杆且沿斜面向下的拉力 F 作用下匀速运动。不计导轨电阻和滑轮摩擦, 2 绳不可伸长。取 g=10 m/s ,sin 37 =0.6,cos 37 =0.8。求 (1)小环所受摩擦力的大小;
(2)Q 杆所受拉力的瞬时功率。
高考习题集锦欣赏
(2012年四川卷)
20.半径为 右端开小口的导体圆 环和长为2 的导体直杆,单位长度电阻均为R0。圆环水平固定 放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度 为B。杆在圆环上以速度 平行于直径CD向右做匀速直线运动, 杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置 由 确定,如图所示。则
v
高考习题集锦欣赏
(2010四川20 ) 如图所示,电阻不计的平行金属
导轨固定在一绝缘斜面上,两相同的金属导体棒a、 b垂直于导轨静止放置,且与导轨接触良好,匀强 磁场垂直穿过导轨平面。现用一平行于导轨的恒力 F作用在a的中点,使其向上运动。若b始终保持静 止,则它所受摩擦力可能 A.变为0 B . 先减小后不变 C . 等于F D.先增大再减小
(1)磁感应强度B的大小. (2)杆在磁场中下落0.1 s的过程中电阻R产生的热量.
解: (1)由图象知,杆进入磁场0.1 s内v=1.0 m/s做匀速运动 的电动势 E=BLv
安培力F安=BIL 由平衡条件得mg=F安 得B=2 T. (2)电阻R产生的热量Q=I2Rt=0.075 J. 另解(2)根据能量守恒: Q=mgh ∴Q= 0.1J QR =
教材选修3-2
16页例2
教材选修3-2
30页练习
磁感应强度均匀变化引起 磁变 磁通量变化
电磁感应综合应用中的两种模型
切割 与 磁变
一、常见模型
1、切割
v0 F
ω
1 (0 2 L ) 转动:E BL BL 2 2
(一般用于求瞬时值)
平动: E = BLv
(适用于B⊥v)
2、磁变
Br2ω A.由 c 到 d,I= R Br2ω C.由 c 到 d,I= 2R Br2ω B.由 d 到 c,I= R Br2ω D.由 d 到 c,I= 2R
答案:D
解题小结:
•注意单杆速度计算
2、“磁变”模型
B变
一般是均匀变化 B=B0+kt
B k t
课本原题(选修3-2 P30 8题)例4、回路中有一个 C=60μF的电容器,已知回路的面积1.0×10-2m2,垂 直穿过回路的磁场的磁感应强度B随时间变化的图像 如图所示,则t=5s时,电容器上的电荷量是多少?
t
单杆切割 切割
高考习题集锦欣赏
(2009四川24题)如图所示,直线形挡板p1p2p3与半径为r的圆弧形挡板
p3p4p5平滑连接并安装在水平台面b1b2b3b4上,挡板与台面均固定不动。线圈 c1c2c3的匝数为n,其端点c1、c3通过导线分别与电阻R1和平行板电容器相连, 电容器两极板间的距离为d,电阻R1的阻值是线圈c1c2c3阻值的2倍,其余电阻 不计,线圈c1c2c3内有一面积为S、方向垂直于线圈平面向上的匀强磁场,磁 场的磁感应强度B随时间均匀增大。质量为m的小滑块带正电,电荷 量始终保持为q,在水平台面上以初速度v0从p1位置出发,沿挡板运动并通过p5 位置。若电容器两板间的电场为匀强电场,p1、p2在电场外,间距为L,其间 小滑块与台面的动摩擦因数为μ,其余部分的摩擦不计,重力加速度为g.
电磁感应中
的
彭州一中 贺龙江
高考习题集锦欣赏
(2007四川23)如图所示,P、Q为水平面内平行放置的光 滑金属长直导轨,间距为L1,处在竖直向下、磁感应强度 大小为B1的匀强磁场中。一导体杆ef垂直于P、Q放在导轨 上,在外力作用下向左做匀速直线运动。质量为m、每边 电阻均为r、边长为L2的正方形金属框abcd置于竖直平面内, 两顶点a、b通过细导线与导轨相连,磁感应强度大小为B2 的匀强磁场垂直金属框向里,金属框恰好处于静止状态。 不计其余电阻和细导线对a、b点的作用力。 (1)通过ab边的电流Iab是多大? (2)导体杆ef的运动速度 是多大
(2) 发电式
① 运动特点: a 减小 ; v 增加 运动(填如何变化) F恒力
②最终特征:Βιβλιοθήκη 0;F安B 2 L2v F安= R总
a=
v 不变 ;I 不变 (填如何变化)
③能量转化:
Fx = Ek Q
常见变式
① l不变
竖直轨道
倾斜轨道
例1、如图甲所示,不计电阻的平行金属导轨竖直放置,导
轨间距为L=1 m,上端接有电阻R=3 Ω ,虚线OO′下方是垂直 于导轨平面的匀强磁场.现将质量m=0.1 kg、电阻r=1 Ω 的 金属杆ab,从OO′上方某处垂直导轨由静止释放,杆下落过 程中始终与导轨保持良好接触,杆下落过程中的v-t图象如图 乙所示(取g=10 m/s2).求: (1)磁感应强度B的大小. (2)杆在磁场中下落0.1 s的过程中电阻R产生的热量.
1 2 3 4 5 6
B •注意 t k 的计算
0
解题思路:
切割、磁变
电源--电动势
E = Blv ΔΦ E=n Δt
电路---电流
受力分析
I=E/R总
画平面图
状态过程分析
动态变化
列方程求解
Bl v F安 = R总
2 2
原式 W安=-Q总