图形旋转
图形的旋转

图形的旋转知识要点1、旋转:将一个图形绕着某点O转动一个角度的变换叫做旋转。
其中,O叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质①旋转后的图形与原图形全等②对应线段与O形成的角叫做旋转角③各旋转角都相等3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。
其中,该直线的方向叫做平移方向,该距离叫做平移距离。
4、平移性质①平移后的图形与原图形全等②两个图形的对应边连线的线段平行相等(等于平行距离)③各组对应线段平行且相等5、中心对称与中心对称图形①中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。
其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。
②中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。
其中,这个点叫做该图形的对称中心。
6、轴对称与轴对称图形(1)轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。
其中,这条轴叫做对称轴。
注:轴对称的性质:①两个图形全等;②对应点连线被对称轴垂直平分(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。
7、点的对称变换(1)、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)(2)、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x 轴的对称点为P'(x,-y)(3)、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y 轴的对称点为P'(-x,y)注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。
综合练习1(1)将一个平面图形F上的每一点,绕这个平面一_____ 点旋转,得到图形F’,图形的这种变换就叫做旋转。
《图形的旋转》教案14篇

《图形的旋转》教案14篇《图形的旋转》教案篇1一、游戏创设情景,导入新课。
幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?师:盼望每个同学都能拥有健康的身体,学会聪慧地思索,在学习数学的过程中体验胜利的欢乐。
转盘上指针的运动方式,在三班级我们已经有肯定了解,叫旋转。
请看大屏幕〔转杆的关和合〕,在小区门口看过这个转杆吗?转杆的运动方式是〔同学一起说〕师:对了,转杆的打开和关闭也是旋转。
今日我们一起来讨论旋转。
〔揭示课题:旋转〕二、探究线段旋转,体会旋转三要素1、对比讨论转杆的运动〔1〕用手势来比划转杆的运动转杆的打开、关闭是旋转运动,今日我们就以这个为例来讨论。
举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。
〔2〕争论:转杆的打开与关闭这两次旋转运动的相同点与不同点。
你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。
哪些地方是不同的?同桌沟通。
不同点:这两次旋转的方向不同。
你们知道转杆关闭的方向叫〔顺时针方向〕为什么叫顺时针方向呢?〔显示钟面是时针的运动〕那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。
相同点:都围着一个点在旋转,这个点就是旋转的中心点。
都旋转了90度。
〔3〕小结刚才我们学了旋转重要的三个特点:中心、方向、角度。
其实全部的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有肯定的角度,角度有大有小〔显示旋转的图片时钟、折扇、风车〕2.巩固练习刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。
〔演示将一袋盐放入盘中〕取出物品指针又是怎样旋转的呢?b、请看,老师这里还有一个转盘呢!谁情愿和老师合作玩“我说你转”的游戏:〔老师提要求,同学转动转盘〕请把指针从A点顺时针旋转90,转到〔〕,再把指针从B点逆时针旋转90,转到〔〕。
要想清晰地知道一个物体是怎样旋转的,就得把这三方面说清晰。
图形的旋转知识点总结

图形的旋转知识点总结基本概念首先,我们来了解一下图形的旋转基本概念。
图形的旋转是指以某一点为中心,按一定的角度将图形绕这一点旋转。
旋转中心通常是坐标系中的原点,也可以是其他点,旋转角度可以是正数也可以是负数,正数表示逆时针旋转,负数表示顺时针旋转。
图形的旋转可以是平面内的旋转,也可以是空间内的旋转,平面内的旋转通常是二维的旋转,空间内的旋转通常是三维的旋转。
旋转规律在进行图形的旋转时,有一些基本的旋转规律需要遵循。
首先,图形绕原点旋转180度后,与原始图形位置相反;绕原点旋转360度后,回到原来的位置。
其次,图形绕原点旋转90度,对应的坐标点(x,y)变为(-y,x);绕原点旋转270度,对应的坐标点(x,y)变为(y,-x)。
此外,对于多边形的旋转,可以将多边形的旋转分解成各个顶点的旋转,以此来进行计算和描述。
旋转定理除了旋转规律外,还有一些关于图形旋转的重要定理。
其中最重要的是旋转定理,旋转定理表明,在平面内,图形旋转前后的距离不变,即旋转变换是等距变换。
这一定理在解决问题和证明定理时有着重要的应用。
另外,还有一些与旋转相关的重要定理,如旋转对称定理、旋转复合定理等,这些定理在解决相关问题时也会发挥很大的作用。
图形的旋转在几何学中有着广泛的应用,特别是在解决几何问题和证明定理时。
通过对图形的旋转规律和旋转定理的研究,可以更好地理解图形的性质和特点,为几何学的学习和研究提供了很大的帮助。
总而言之,图形的旋转是几何学中的一个重要知识点,通过对旋转的基本概念、旋转规律和旋转定理等方面的掌握,可以更好地理解和应用图形的旋转,为解决几何问题和证明定理提供了很好的工具和方法。
希望通过本文的总结和讨论,读者可以对图形的旋转有一个更加深入和全面的认识。
23-1 图形的旋转 课件(共20张PPT)

按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在
同一条直线上,那么旋转角等于(C )。
A.55° B.70°
C.125° D.145°
解析:知道∠B=35°,∠C=90°,所以∠BAB1=55°。 也就是旋转角是180°-55°=125°。
教学新知
知识点2:旋转的性质特征。 (1)对应点对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 (3)旋转前、后的图象全等。
BC=5,BD=4。则下列结论错误的是( B )。
A.AE//BC
B.∠ADE=∠BDC
C.△BDE是等边三角形 D.△ADE的周长是9
小练习
解析:∵△ABC是等边三角形,∴∠ABC=∠C=60°, ∵将△BCD绕点B逆时针旋转60°,得到△BAE, ∴AEB=∠C=60°,∴AE//BC,故选项A正确; ∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE由△BCD逆时针旋转60°得 出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°, BE=BD,∴△BDE是等边三角形,故选择C正确;∴DE=BD=4,∴△AED的周长 =AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴ 结论错误的是B。
小练习
如图所示,已知△ABC是直角三角形,∠ACB=90°, AB=5cm,BC=3cm,△ABC绕点C逆时针方向旋转90°
后得到△DEC,则∠D=∠__A__,∠B=_∠_D__EC___, DE=__5__cm,EC=__3__cm,AE=_1__cm,DE与AB的 位置关系为_垂__直__。
旋转的性质有哪些

旋转的性质有哪些
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。
本文整理了旋转相关性质,欢迎阅读。
旋转性质
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,
①对应点到旋转中心的距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前、后的图形全等,即旋转前后图形的大小和形状没有改变。
④旋转中心是唯一不动的点。
⑤一组对应点的连线所在的直线所交的角等于旋转角度。
旋转三要素
①定点—旋转中心;
②旋转方向;
③旋转角。
注意:三要素中只要任意改变一个,图形就会不一样。
旋转角定义
旋转角是指以图形在作旋转运动时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线这两条线的夹角。
旋转角性质
经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。
23.1图形的旋转教学课件(共35张PPT)

线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。
图形旋转知识点总结

图形旋转知识点总结1. 旋转的定义图形旋转是指将一个图形以一个固定的点为中心按照一定的角度旋转,得到一个新的图形的过程。
在二维空间中,图形旋转可以通过坐标变换的方式来实现。
假设一个点的坐标为(x, y),以原点为中心逆时针旋转α度后的坐标为(x', y'),那么可以通过下面的公式来计算新的坐标:x' = x * cos(α) - y * sin(α)y' = x * sin(α) + y * cos(α)这就是二维空间中点的坐标旋转公式。
2. 旋转的性质图形旋转具有一些性质,这些性质对于理解和应用图形旋转很重要。
(1) 旋转不改变图形的大小:无论图形怎么旋转,它的面积和周长不会发生变化,只是位置不同。
(2) 旋转的性质与旋转的方向有关:逆时针旋转与顺时针旋转的性质是不同的,虽然它们都是按照一定的角度进行的旋转。
(3) 旋转的次序不影响结果:如果一幅图形先绕某一点逆时针旋转α度,再绕同一点逆时针旋转β度,结果与先绕同一点逆时针旋转α+β度后的结果相同。
(4) 以旋转中心对称的图形旋转后保持不变:如果一个图形存在一个旋转中心,且该图形以该旋转中心为对称中心,则该图形可以在该旋转中心旋转任意角度后保持不变。
3. 旋转的应用图形旋转有很多实际的应用,以下列举几个常见的应用:(1) 计算机图形学:在计算机图形学中,图形的旋转是一个非常重要的概念。
通过图形旋转,可以展现出图形在二维或者三维场景中的变化和运动,为图形的展示和动画提供了一种重要的手段。
(2) 工程学:在工程学中,图形旋转可以用来描述零件在机械装配中的相对位置关系,这对于工程设计和加工具有重要的意义。
(3) 物理学:在物理学中,图形的旋转常常用来描述物体的运动和旋转。
比如在刚体力学中,对刚体的旋转运动也可以通过图形旋转来进行描述。
4. 旋转的相关定理和定律在几何学中,对于图形旋转有很多相关的定理和定律。
这些定理和定律有助于我们在应用图形旋转时更好地理解和利用它。
3.旋转作图课件

知1-讲
导引:抓住“关键点”A,B,C,D,旋转中心O,旋转 角∠AOD这些要素,按步骤“连——转——截— —连”即可得出所求作的三角形.
解:作法:(1)连接OA,OB,OC,OD; (2)分别以OB,OC为边作 ∠BOM=∠CON=∠AOD; (3)分别在OM,ON上截取 OE=OB,OF=OC; (4)依次连接DE,EF,FD; 则△DEF就是所求作的三角形,如图所示.
知1-讲
3.简单旋转作图的一般步骤: (1)找出图形的关键点; (2)确定旋转中心、旋转方向和旋转角; (3)将关键点与旋转中心连接起来,然后按旋转方向
分别将它们旋转一个角度,得到关键点的对应点; (4)按照原图形的顺序连接这些对应点,所得到的图
形就是旋转后的图形.
知1-讲
例1 在图1中,画出线段AB绕点A按顺时针方向旋转 60°后的线段.
取等于对应线段长度的线段; 五画:顺次连接所得的点,从而画出旋转得到的图形.
1.必做: 完成教材习题3.5T1-4. 2.补充: 请完成练习册剩余部分习题.
知2-讲
导引:根据图形可知∠BAE=120°,AB边绕点A顺时 针旋转120°得到AE边,所以菱形AEFG可以看 成是把菱形ABCD以A为旋转中心顺时针旋转120° 得到的.
知2-练
1 将如图所示的五边形绕点O按顺时针方向旋转90°, 画出旋转后的图形
知2-练
2 如图所示的4个图案,能通过基本图形旋转得到的 有( )
知1-练
1 在图中画出线段AB绕点O按顺时针方向旋转50° 后的线段.
知1-练
2 如图,将线段AB绕点O顺时针旋转 90°得到线段A′B′,那么点A(-2,5)的对应点 A′的坐标是________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言动态几何题已成为中考试题的一大热点题型。
动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等。
在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力。
解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。
通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。
1、动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.本专题集四边形、三角形相似、三角形全等和图形的平移、旋转于一体,考查的知识点较多,综合性较强,需要学生有扎实的基础和熟练运用各类知识的能力。
1、如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40°2、如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根 号)。
3、如图3,P 是正△ABC 内的一点,若将△PAB 绕点A 逆时针旋转到△P ′AC ,则∠PAP 的度数为________.4、如图,直角梯形ABCD 中,∠BCD=90°,AD∥BC,BC =CD ,E 为梯形内一点,且∠BEC=90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( )A.5:3B.3:5C.4:3D.3:4C (F )D 图(2) C B B 'A 'P′PCBA图 75、如图,已知Rt △ABC ≌Rt △DEC ,∠E =30°,D 为AB 的中点,AC =1,若△DEC 绕点D 顺时针旋转,使ED 、CD 分别与Rt △ABC 的直角边BC 相交于M 、N ,则当△DMN 为等边三角形时,AM 的值为A.3B .233C .33D .16、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .7、将直角边长为5cm 的等腰直角ΔABC 绕点A 逆时针旋转15°后,得到ΔAB’C’,则图中阴影部分的面积是 cm 28、在矩形ABCD 中,2AD AB =,E 是AD 的中点,一块三角板的直角顶点与点E 重合,将三角板绕点E 按顺时针方向旋转.当三角板的两直角边与AB BC ,分别交于点M N ,时,观察或测量BM 与CN 的长度,你能得到什么结论?并证明你的结论.NCDEA M B(8题图)FC B C 'D 'B 'E9、在矩形ABCD 中,AB =2,AD =3.(1)在边CD 上找.一点E ,使EB 平分∠AEC ,并加以说明;(3分) (2)若P 为BC 边上一点,且BP =2CP ,连接EP 并延长交AB 的延长线于F .①求证:点B 平分线段AF ;(3分)②△P AE 能否由△PFB 绕P 点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.(4分)10、如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(80)-,,直线BC 经过点(86)B -,,(06)C ,,将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA B C ''',此时直线OA '、直线B C ''分别与直线BC 相交于点P 、Q . (1)四边形OABC 的形状是 , 当90α=°时,BPBQ的值是 ; (2)①如图2,当四边形OA B C '''的顶点B '落在y 轴正半轴时,求BPBQ的值; ②如图3,当四边形OA B C '''的顶点B '落在直线BC 上时,求OPB '△的面积.(3)在四边形OABC 旋转过程中,当0180α<≤°时,是否存在这样的点P 和点Q ,使12BP BQ =?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(Q )BAO x PA 'C '(图3)yB ' QC B AO x P A 'B 'C '(图2)y CB AOyx(备用图)(第26题)11、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.12、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)A EC FB D 图1图3ADFECBADBCE 图2FD图①DE图②图③13、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由;(3)在(2)的情况下,求ED 的长.14、含30°角的直角三角板ABC (∠B=30°)绕直角顶点C 沿逆时针方向旋转角α(90α∠<),再沿A ∠的对边翻折得到A B C ''△,AB 与B C '交于点M ,A B ''与BC 交于点N ,A B ''与AB 相交于点E . (1)求证:ACM A CN '△≌△.(2)当30α∠=时,找出ME 与MB '的数量关系,并加以说明.EBMACA 'NB 'ADBECF 1A1CADBECF 1A1C15、复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC 中,AB =AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ ,使∠QAP =∠BAC ,连接BQ 、CP ,则BQ =CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ ≌△ACP ,从而证得BQ =CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ =CP ”仍然成立,请你就图②给出证明.16、如图所示,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE DG ,. (1)求证:BE DG =.(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由.17、已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.E F GD A BC图①QPCBAAQBPC图②BBMBCNCNCNM 图1图2图3A A A D D D18、已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形?并说明理由.19、如图9,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.(1)当把△ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(4分)(2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给(6出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.分)图9 图10 图1120、如图,在Rt△ABC中,∠ACB=90°, ∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB 交直线l于点E,设直线l的旋转角为α.(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.21、在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.O ABCMNy x=xy图形的旋转部分习题答案: 3、【答案】60°;4:C 5、 B 【解析】本题考查了三角形相似、三角形旋转。