最优化之最速下降法

合集下载

最优化方法第二章_线搜索算法_最速下降法

最优化方法第二章_线搜索算法_最速下降法

f x1 , x2 c, c>0,
2
改写为:
x12 2c 1

2 x2

2c 2
2
1
二、最速下降法
x2
这是以
2c
1

2c
2
为半轴的椭圆
2c
2c
2
2
从下面的分析可见 两个特征值的相对
x1
大小决定最速下降法的收敛性。
(1)当 1 2 时,等值线变为圆
2 2
4 f x , 2
2 x1 2 x2 4 f ( x) , 2 x1 +4x2
4 d = f x , 2
0 0
=40 2 20 3 令 0= ' ( ) 80 20, 得 0 =1/4,

一维搜索
二 三 四
下 降 算 法

最速下降法 Newton法 共轭梯度法
多尺度法 (拟Newton法)
二、最速下降法 假设 f 连续可微,取 线搜索方向
k
d f ( x )
k
步长k 由精确一维搜索得到。 从而得到第 k+1次迭代点,即
f ( x k k d k ) min f ( x k d k )


(推论)在收敛定理的假设下,若f (x)为凸函数,则最速下降 法或在有限迭代步后达到最小点;或得到点列 x k ,它的任 何聚点都是 f (x)的全局最小点。
二、最速下降法

最速下降法特征:相邻两次迭代的方向互相垂直。

( ) f ( x d ), 利用精确一维搜索,可得

最速下降法简介

最速下降法简介

的梯度,记作
函数的梯度是一个向量,

处的梯度向量为:
梯度方向是函数在该点增长最快的方向,负梯度方向是函数 在该点减少最快的方向。 如下示意图:
令 p ( k ) ( x ( k ) ) , k 为在 x
(k )
点沿最速下降
方向 p ( k ) 所走的距离,最优步长。 可有最速下降法的迭代公式:
x(2) x(1) 1 p1 ( 36 8 T , ) 31 31
13 62
关于相邻连个梯度的关系
n 1 1 n n 函数 : R R ; ( x) ( Ax, x) (b, x) aij xi x j b j x j 2 2 i 1 j 1 j 1
p1 f ( x (1) ) (4, 6)T x(1) p1 (2 4 ,1 6 )T
( ) f ( x(1) p1 ) (2 4 )2 3(1 6 ) 2
min ( x)


' ( ) 8(2 4 ) 36(1 6 ) 0 1
谢谢

最速下降法基本思想
从当前点 出发,取函数在该点 处下降最快的 方向作为搜索方向 。 任一点的负梯度方向是函数值在该点下降最快 的方向。 将n维问题转化为一系列沿负梯度方向用一维 搜索方法寻优的问题。

定义函数:

可微。
梯度的概念: 是定义在 量为 即 上的可微函数,称以 的 n 个偏导数为分量的向
( p ( k 1) , p ( k ) ) (b A( x ( k ) p ( k ) ), p ( k ) ) ( p ( k ) , p ( k ) ) k ( Ap ( k ) , p ( k ) ) 0

最速下降法原理及例题实例

最速下降法原理及例题实例
表 1-1 迭代次 数k
Xk (0.00,3.00)T (2.70,1.51)T (2.52,1.20)T (2.43,1.25)T (2.37,1.16)T (2.33,1.18)T (2.30,1.14)T (2.28,1.15)T
f (X k ) 52.00
0.34 0.09
∇f ( X k ) (−44, 24)T (0.73,1.28)T (0.80, −0.48)T (0.18, 0.28)T (0.30, −0.20)T (0.08, 0.12)T (0.15, −0.08)T (0.0算目标函数的梯度和 Hesse 阵
设d
(k )
= [ d1 , d 2 ] , ∇f ( X ( k ) ) = [ g1 , g 2 ] 得到精确一维搜索步长 αk = g1d1 + g 2 d 2 3d + d 2 2 − 2d1d 2
2 1
取X
(1)
= (0, 0)T ,则 ∇f ( X (1) ) = [ −2, 0] ,所以 d (1) = −∇f ( X (1) ) = [ 2, 0 ] ,
求单变量极小化问题:
min f ( x 0 + tp 0 ) = min f (44t , 3 − 24t )
t ≥0 t ≥0
= min(44t − 2)4 + (92t − 6)2
t ≥0
的最优解 t 0 ,由 0.618 法可得 t 0 = 0.06 ,于是
X 1 = x 0 + t 0 p 0 = (2.70,1.51)T ∇f ( X 1 ) = (0.73,1.28)T ∇f ( X 1 ) = 1.47 > ε
10 −2 ,停止计算,所以 X (9) = [ 0.988, 0.988] 作为问题的最优解。

无约束常用优化方法

无约束常用优化方法

步长 ,作前进(或后退)试探.如试探成功(目
标函数值有所减小),则按步长序列
,加
大步长(注意每次加大步长都是由初始点算起),直
至试探失败(目标函数值比前一次的有所增加)时,
则取其前一次的步长作为沿这个坐标轴方向搜索的最
优步长,并计算出该方向上的终止点,而后以这个终
止点为始点再进行下一坐标轴方向的搜索,并重复上

显然 是二次函数,并且还是正定二次函数,所以 是凸函数且存在唯一全局极小点.为求此极小点,令
即可解得

(5.9)
对照基本迭代公式,易知,式(5.9)中的搜索方向
步长因子
方向
是直指点 处近似二次函数
的极小点的方向.此时称此方向为从点 出发的
Newton方向.从初始点开始,每一轮从当前迭代点出发,
沿Newton方向并取步长 的算法称为Newton法.
另外,共轭梯度法不要求精确的直线搜 索.但是,不精确的直线搜索可能导致迭代 出来的向量不再共轭,从而降低方法的效 能.克服的办法是,重设初始点,即把经过 n次迭代得到的Xn作为初始点重新迭代.
五、坐标轮换法
在坐标轮换法中,沿各个坐标轴方向进行一维搜索
时,常选用最优步长法或加速步长法.加速步长法从
初始点出发,沿搜索(坐标轴)方向先取一个较小的
三、共轭方向法
1、概念
通常,我们把从任意点
出发,依次沿某组共轭
方向进行一维搜索的求解最优化问题的方法,叫做共
轭方向法.
2、特点
• 一般地,在n维空间中可以找出n个互相共轭的方向,对于n元正 定二次函数,从任意初始点出发,顺次沿这n个共轭方向最多作n 次直线搜索就可以求得目标函数的极小点.这就是共轭方向法的 算法形成的基本思想.

最优化方法-最速下降法

最优化方法-最速下降法
s.t. 0
计算步骤
设f (X )是可微函数,精度要求为
X f ( ) K 1

X 0 为初始点。
(1)计算梯度
f
(
X
)
k
,初始k=0;
(2)
Pk

f
(
X
)
k
(3)求解 k
min f ( X k Pk)
s.t. 0
设 k 是一维搜索的最优解;
(4)求下一个点
评价
由例题中可以发现两次迭代的搜索方向满足:
P P P P T 0, T 0,...,
01
12
即相邻两个搜索方向 PK 与 PK1 正交,这是最速下降
法的搜索方向的基本形质。因此,最速下降法的迭代
路线呈锯齿形,尤其是在极小点附近,锯齿现象尤为
严重,从而影响了迭代速度。
评价
锯齿现象
最优化技术
第三章 7节 最速下降法
主要内容
1原 理
2 计算步骤
3 例题分析 4评 价
原理
定义:用来求解无约束多元函数 min f(x)
极小化问题的一种迭代算法。
拓展:
最速下降法又称梯度法,是 1847 年由著名数学家
Cauchy 给出的,它是解析法中最古老的一种,其他解析 方法或是它的变形,或是受它的启发而得到的,因此它是 最优化方法的基础。
X
)
0

(1,1)T
3-最优步长
2
X P ( ) f 5
0
0 2
1
0
应用一维搜索技术,解得函数最小值点 0 =0.2
举例分析
4-下一搜索点
X1

最优化方法与应用大作业(一)最速下降法

最优化方法与应用大作业(一)最速下降法

最优化方法与应用大作业(一)
---最速下降法部分:
1.问题描述:
用梯度下降法求解以下优化问题
min f(x)=(x1+10*x2)^2+5(x3-x4)^2+(x2-2*x3)^4+10*(x1-x4)^4
2.编程感想:
该算法需要计算Hesse矩阵,C语言在向量运算时没有Matlab方便,所以手工完成了理论计算,再输入,破坏了程序的移植性。

同时,实验表明当初始值离理想点较远且精度要求较高时,最速下降法的收敛速率极慢,迭代几乎不可能完成,这对初值的选取提出了一定限制。

3.结果分析:
编译界面(Mac os X,Xcode环境)
输入参数(设定为(0.1,0.2,0.3,0.4)):
结果(此处列出每次迭代结果)。

明显的看到,最速下降法的收敛较慢,最终结果接近理论值(F(0,0,0,0)=0)所以该结果可以满意。

4.算法代码见下页
西安电子科技大学电子工程学院020951
李骏昊02095005。

最速下降法-最优化方法


(4)f
(
X
)
3

(0.04,0.04)T
,
f ( X 3) 2 0.0032 0.01
X 3 已达到预定精度要求,迭代终止。
故f(x)的无约束近似极小点为
X X 3 (0.96,1.44)T
注:原问题的精确极小点为
X (1,1.5)T
3. 最速下降法性质与评价
x1 x1

2 2
x2 x2
1 1
(1) X 0 (1,1)T
,
f
(
X
)
0

(1,1)T
,
P0

f
(
X
)
0

(1,1)T
X P (t ) f( 0 t
)
0

5t 2

2t
1
,t>0
ቤተ መጻሕፍቲ ባይዱ
应用一维搜索技术,可解得 (t) 的极小点为t0=0.2
所以 X 1 X 0 t0 P0 (1,1)T 0.2(1,1)T (0.8,1.2)T
X X P
Y f (X ) N 输出X
停止
例3.18 用最速下降法求解无约束优化问题:
x x x x x x min f (X ) 2 2 2
2
1
12
2
1
2
初始点 X 0 (1,1)T
,迭代终止准则为
f
(X k)
2
0.01

解:
f
(
X
)

4 2
1. 最速下降法原理 2. 最速下降法算法 3. 最速下降法性质与评价

最优化:最速下降法和Newton法


定理 3.1.1 设假设 2.4.1的条件成立 , 那么采用精确搜索 , 或 Armijo搜索或 Wolfe- P owell搜索的最速下降法产生 的迭 代序列{xk }满足 lim || f ( xk ) || 0
k
由前面的例子看到, 最速下降法的收敛速度至多是线性的, 具体 见下面的两个定理.
第一节
最速下降法
最古老的优化方法,十九世纪中叶由Cauchy提出
1、 思想 :每次沿负梯度方向进行搜索

x*
xk 1
等值线(面)

xk

f ( xk )
负梯度方向也称为最速下降方向:
事实上,对任意p R n 且 || p || , 由Cauchy - Schwarz 不等式得 f ( xk ) T P - || f ( xk ) || || P || - || f ( xk ) || - f ( xk ) - f ( xk ) 当取p 时等号成立,即 p 是下列问题 || f ( xk ) || || f ( xk ) || 的解 min f ( xk ) T P
从上面的例子看到, 对于简单的二元二次函数极小化问题, 最速下降法在有限次迭代并没有求出其精确最优解, 但能 以较慢的速度无限接近最优解.
事实上,上面的例子刻画了最速下降法的所有收 敛特征
3、 最速下降法的收敛性 全局收敛性
由于最速下降法的搜索方向与负梯度方向一致, 即 k 0, 且 || f ( xk ) || || d k || 所以, 由定理2.4.1 - 2.4.3, 我们很容易得到最速下降算法的全 局收敛性.
2
max 其中 , 且max 和min分别是 f ( x * )的最大和最小特征值 . min

最优化Armijo算法确定步长的最速下降法资料

最优化Armijo算法确定步长的最速下降法资料最速下降法是最优化算法中最简单、最基础的一种方法,但其收敛速度较慢且容易陷入局部最优解。

因此,在最速下降法的基础上,可以通过引入步长的方法来提高算法的收敛速度。

而Armijo算法就是一种常见的用于确定步长的方法。

最速下降法基础假设我们要最小化目标函数f(x),那么最速下降法的思路就是从一个初始点x0开始,不断朝着负梯度方向进行迭代,直到找到最优解x∗,即:$x_{k+1} = x_k - \\alpha_k \ abla f(x_k)$其中,ablaf(x k)是f(x)在x k处的梯度,$\\alpha_k$ 是步长(也称为学习率),表示每次迭代的步长大小。

但这里还有一个问题:如何确定每次迭代的步长呢?Armijo算法Armijo算法是一种基于梯度下降法的步长确定方法。

它的思路是,每次迭代的步长不应该过大,否则容易导致超出收敛区域。

同时,步长也不应该过小,否则收敛速度会变得非常缓慢。

因此,步长的大小应该恰到好处,即在一定范围内找到一个最优的步长大小。

具体地,Armijo算法通过二分搜索的方法,在可行步长范围内找到一个最优的步长 $\\alpha_k$。

具体过程如下:1.首先初始化 $\\alpha_0$,并设定一些参数,如尝试步长大小t、可行步长下界 $\\tau$ 和函数下降的最小比例 $\\gamma$。

2.计算目标函数f(x k−t ablaf(x k)),以及根据一定准则确定下一个$\\alpha$。

3.如果 $f(x_k - \\alpha_k\ abla f(x_k))$ 函数值比f(x k)减小了一些比例$\\gamma$,则认为当前 $\\alpha_k$ 是可行的步长。

4.如果当前 $\\alpha_k$ 不是可行的步长,则将其折半,即 $\\alpha_k\\leftarrow \\alpha_k/2$,直到找到一个可行的步长为止。

最优化方法(刘)第四章


阻尼牛顿法收敛定理
定理2: 设 f ( x) 二阶连续可微, 又设对任意的x0 ∈Rn , 存在常数m > 0, 使得 f ( x) 在 L ={x f (x) ≤ f (x0 )} 2 T 2 上满足: ∇ f ( x)µ ≥ m µ ,∀ ∈Rn , x∈L( x0 ) µ µ 则在精确线搜索条件下, 阻尼牛顿法产生的点列 {xk } 满足: (1) 当{xk } 是有限点列时, 其最后一个点为 f ( x) 的唯一极小点. (2)当{xk } 是无限点列时, 收敛到 f (x) 的唯一极小点.
) x0 = (9,1
T
g0 = ∇ ( x0 ) = (9,9) f
T
T 7.2 7.2 g0 g0 x = x0 − T g0 = 1 −0.8 g1 = −7.2 g0 G 0 g T 9×0.82 g1 g1 x2 = x − T g1 = 1 2 (−1 ×0.82 g1 G 1 g )
9 1 0 x = x0 −G g0 = − 1 1 0 9
1 − 0 −1
9 0 = = x* 9 0
牛顿法收敛定理
定理1: 设 f ( x) 二次连续可微, *是 f ( x) 的局 x 部极小点, f (x* ) 正定. 假定 f ( x) 的海色阵 ∇
gk →0 .
证明: 对于最速下降法, k = 0, 由以上定理立得. θ
收敛性分析
定理2: 设 f ( x) 二次连续可微, ∇2 f ( x) ≤ M, 且 其中 M是个正常数, 对任何给定的初始点 x0, 最速下降算法或有限终止, 或者lim f ( xk ) = −∞ ,
k→ ∞
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x (2)
O
x (4) x (3)
2015/12/10
LOGO
谢谢各位
2015/12/10
程序图
开始
LOGO
求k 使其满足
给定初始点, x0 E , n 0
min f ( x k p k ) f ( x k k p k )
0
k : 0

计算
pk f ( xk )

xk 1 xk k pk
p
k
2015/12/10
最速下降法的由来
• 其主要思想
LOGO
每次沿负梯度方向进行搜索

x*
x k 1
等值线(面)

xk

f ( xk )
2015/12/10
最速下降法的方向选择
LOGO LOGO
最速下降法用负梯度为方向
d k f xk
作为搜索方向。设 f(x) 在XK附近连续可微,dk为搜索方向向量,
输出:
xmin xk

结束
matlab仿真实例
LOGO
2015/12/10
matlab仿真实例
LOGO
2015/12/10
最速下降法的优缺点
LOGO
• 由于沿负梯度方向目标函数的最速下降性,很容易使人们误认为负梯 度方向是最理想的搜索方向,最速下降法是一种理想的极小化方法。 必须指出的是,某点的负梯度方向,通常只是在该点附近才具有这种 最速下降的性质。在一般情况下,当用最速下降法寻找极小点时,其 搜索路径呈直角锯齿状,在开头几步,目标函数下降较快;但在接近 极小点时,收敛速度长久不理想了。特别适当目标函数的等值线为比 较扁平的椭圆时,收敛就更慢了。优点是:程序简单,计算量小;并 且对初始点没有特别的要求。
LOGO
• 由式
d k f xk
T
得,
即新点xk+1处的梯度是正交的,也就是说,迭代点列所走
的路线是锯齿型的,故收敛速度是很慢的。
f xk 1 f xk 0
2015/12/10
步长因子
LOGO
• 步4中,步长因子 k 的确定即可以采用精确线搜索又可以采用非精 确线搜索。 • 采用精确线搜索时
T gk d k g k d k cos
其中 为gk与dk的夹角。要使得变化率最小,只有当cos值为-1时, 才能达到,也即dk应取得负梯度方向。
J (a ) J ( a )
J (a )
ak
a
最速下降法的步骤
• 1.选取初始点 x R n 0
• 2. 计算
,容许误差
LOGO
f xk k d k lim f xk d k
0
那么 k 应该满足
' x d T f x k d k k f x k k d k d k 0 d
由此我们可以求出步长因子。
2015/2/10
LOGO
• 函数 f(x1,x2)=(1-x2)^2+100*(x2-x1^2)^2,它叫罗森布罗克方程。
2015/12/10
罗森布罗克方程的三维图
LOGO
• 它的全局最优点位于一个长长的、狭窄的、抛物线形状的、扁平的“山谷” 中。找到“山谷”并不难,难的是收敛到全局最优解(全局最优解在 (1,1) 处)。
g k f xk
.由泰勒展开式得
T f xk dk f xk gk dk , 0,
那么目标函数 f(x)在Xk处沿方向dk下降的变化率为
最速下降法的方向选择
LOGO LOGO
lim
0
T f xk d k f x k g k d k lim 0
最优化—最速下降法
主讲人:王俊俊
最速下降法
LOGO
最速下降法的由来
最速下降法的方向选择
最速下降法的算法步骤
最速下降法的实例
最速下降法的由来
LOGO LOGO
考虑无约束问题
min f x, x R
n
其中,函数法f(x)具有一阶连续偏导数。
人们在处理这类问题时,总希望从某一点出发,选择 一个目标函数值下降最快的方向,以利于尽快达到极小点, 基于此种愿望,早在1847年法国数学家Cauchy提出了最速 下降法。后来,Curry等人作了进一步研究,得出现在众 所周知的一种最基本算法。
0 1 。令k:=1.
gk ,停算,输出X 作为近 k g k f xk 。若
似最优解。
• 3.取方向dk=-gk。
• 4.由线搜索技术确定步长因子 。 k
• 5.令
xk 1 : xk k dk , k : k 1,
, 转步长1。
2015/12/10
相关文档
最新文档