最速下降法

合集下载

最优化方法第二章_线搜索算法_最速下降法

最优化方法第二章_线搜索算法_最速下降法

f x1 , x2 c, c>0,
2
改写为:
x12 2c 1

2 x2

2c 2
2
1
二、最速下降法
x2
这是以
2c
1

2c
2
为半轴的椭圆
2c
2c
2
2
从下面的分析可见 两个特征值的相对
x1
大小决定最速下降法的收敛性。
(1)当 1 2 时,等值线变为圆
2 2
4 f x , 2
2 x1 2 x2 4 f ( x) , 2 x1 +4x2
4 d = f x , 2
0 0
=40 2 20 3 令 0= ' ( ) 80 20, 得 0 =1/4,

一维搜索
二 三 四
下 降 算 法

最速下降法 Newton法 共轭梯度法
多尺度法 (拟Newton法)
二、最速下降法 假设 f 连续可微,取 线搜索方向
k
d f ( x )
k
步长k 由精确一维搜索得到。 从而得到第 k+1次迭代点,即
f ( x k k d k ) min f ( x k d k )


(推论)在收敛定理的假设下,若f (x)为凸函数,则最速下降 法或在有限迭代步后达到最小点;或得到点列 x k ,它的任 何聚点都是 f (x)的全局最小点。
二、最速下降法

最速下降法特征:相邻两次迭代的方向互相垂直。

( ) f ( x d ), 利用精确一维搜索,可得

最速下降法

最速下降法

最速下降法姓名:沈东东 班级:研1404 学号:1415033005一、最速下降法的原理目标函数:(1)n f R R n →>在决策变量的当前点()k n x R ∈处的一阶Taylor 展开式为()()()()()()()k k k T f x f x g x δδοδ+=++式中,()()k n g x R ∈为f 在点()k x 处的梯度向量。

当扰动量n R δ∈充分小时,有()()()()()()k k k T f x f x g x δδ+≈+设新的迭代点为(1)()k k x x δ+=+,于是得到(1)()()()()()k k k T f x f x g x δ+-≈为了使(1)k x +处的目标函数值比()k x 处有所下降,需要满足()()0k T g x δ<此外,梯度向量()()k g x 和扰动量δ的内积可以表示为()()()()cos k T k g x g x δδθ=式中,θ为两向量之间的夹角。

若要使目标函数值的下降量尽可能大,可知δ的方向应该为梯度方向的负方向,即cos 1θ=-。

函数f 在点()k x 处的负梯度方向称为该点的最速下降方向。

在每次迭代时都取最速下降方向作为搜索方向的方法就称为最速下降法。

二、最速下降法的特点1.若()k x 不是极小点,则f 在点()k x 处的最速下降方向总是下降方向。

2.如果每次迭代时都用精确搜索方法得到最佳步长作为搜索步长,则寻优过程中相邻的最速下降方向是正交的。

3最速下降法产生的迭代点序列在一定条件下是线性收敛的,其收敛性质与极小点*x 处的Hesse 矩阵有关。

三、最速下降法的计算步骤最速下降法的计算步骤如下:步骤1:已知待求问题的目标函数()f x ,选择初始点(0)x ,并设定精度要求tol ,令:0k =。

步骤2:计算()f x 在点()k x 处的梯度向量()()k g x ,得到最速下降方向()()()k k d g x =-。

非线性方程组-最速下降法(梯度法)

非线性方程组-最速下降法(梯度法)

梯度法(又名,最速下降法)(该法总可以收敛,但是,在接近真解时收敛的速度会放慢。

) 梯度法又称为最速下降法,用于求解实系数非线性方程组12(,,,)0,1,2,,i n f x x x i n== (7-15)的一组根。

梯度法首先是定义一个目标函数212121(,,,)(,,,)nn i n i x x x f x x x =Φ=∑(7-16)使目标函数21nii f =Φ=∑达到最小的12,,,n x x x 是我们寻找的一组解,这是非线性最小二乘法问题。

如果第(0,1,2,)k k = 步求得一组解12,,,nk k k x x x ,使得12(,,,)n k k kx x x εΦ< (7-17)则认为12,,,nk k k x x x 是原方程组满足一定精度的()ε要求的一组解。

梯度法的计算过程是:(1)先给定一组不全为零的初值12000,,,nx x x ,第k 步的一组根为12,,,nk k kx x x ;(2)计算目标函数12(,,,)nk k k x x x Φ 的值;(单独子程序:fn =TargetFunction)(3)若12(,,,)nk k k x x x εΦ< ,则认为12,,,nk k k x x x 是满足一定精度()ε的一组解,否则,作如下修正计算1α+=∂Φ=-∂iki ik k ki ix x x x x (7-18)其中121212*********1111222(,,,)(,,,)(,,,)(,,,)(,,,)(,,,)(,,,)*,1,2,,α==⎫Φ=⎪⎛⎫⎪∂Φ ⎪ ⎪∂⎝⎭Φ+-Φ∂Φ=∂⎬Φ+-Φ∂Φ=∂Φ+-Φ∂Φ=∂==∑ n kj jn n n n n n k k kkn j j x x k k k k k kk k k k k k k k k k k kn n nki i x x x x x h x x x x x x h x x h x x x x x h x x x h x x x x h h H x i n ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭(7-19)H 为控制收敛的常数,通常选为(10-5~10-6),收敛精度ε选为(10-6~10-8)。

最速下降法

最速下降法

随着人工智能、模糊控制、模式识别、人工网络等新技术的应用和发展。

可以让它们与广义预测控制相结合,建立高精度、多模态的预测模型。

使广义预测控制在异常情况下可以稳定运行,推进广义预测控制的进一步发展。

2.2.1最速下降法最速下降法是无约束最优化中是比较有效的方法,它是以d}=一可(x})作为下降方向的算法。

其迭代格式为xx+i=xx一。

*Of (xk)上式中,一般通过精确线搜索准则求得步长因子。

*,当然也不排除可以利用非精确线搜索准则来求得步长因子。

*。

不管最速下降法采取何种线搜索准则,它均具有全局收敛性,但是这也不能直接就认为最速下降算法就是一个良好的优化算法。

在实际试验中,有很多优化问题利用最速下降法并不是下降的特快,反而下将的十分缓慢。

这是因为出现了锯齿现象:就是在计算过程中,最速下降法开始几步还是挺快的,但是当目标函数f (x)的等高线接近于一个球的时候,就出现了类似锯齿现象,前进十分缓慢,降低了算法的效能。

2.2.12.2.2牛顿法牛顿法也是无约束最优化问题中的一种经典算法,它是利用目标函数.f (x)的二次泰勒展开式,并将二次泰勒展开式进行极小化。

其迭代格式为x}+}=xA十d}(2-5)其中步长因子。

、=l} d、为02f (x} )d + Of (xA ) = 0的解。

当目标函数f(x)是正定二次函数的时候,牛顿法可以一步达到最优解;当目标函数f (x)是非二次函数的时候,牛顿法经过有限次迭代之后就不能确保求得目标函数f (x)的最优解。

我们知道目标函数f (x)在极小点附近是很接近于二次函数的,所以,假如初始点非常靠近无约束最优化问题((1-1)的最优解x的时候,并且}Z.f (x.)正定的时候,那么牛顿法就会有很快的收敛速度,而由此算法产生的点列也具有了超线性收敛速度,同时还在一定条件下具有二次收敛性;假如初始点与无约束最优化问题(1-1)的最优解x’相距比较远的时候,这时的}Z.}(x})就不一定是正定的了,也就存在了一个问题,那就是此时的牛顿方向就不一定是下降方向,有可能是上升方向,此时由此算法产生的点列可能也就不收敛于无约束最优化问题((1-1)的最优解了。

最速下降法

最速下降法

一、最速下降法基本原理(一)无约束问题的最优性条件无约束问题的最优解所要满足的必要条件和充分条件是我们设计算法的依据,为此我们有以下几个定理。

定理1 设f :1n R R →在点nx R ∈处可微。

若存在n p R ∈,使()0T f x p ∇<则向量p 是f 在点x 处的下降方向。

定理2 设1:nf R R →在点n x R *∈处可微。

若x *是无约束问题的局部最优解,则()0f x *∇=由数学分析中我们已经知道,使()0f x ∇=的点x 为函数f 的驻点或平稳点。

函数f 的一个驻点可以是极小点;也可以是极大点;甚至也可能既不是极小点也不是极大点,此时称它为函数f 的鞍点。

以上定理告诉我们,x *是无约束问题的的局部最优解的必要条件是:x *是其目标函数f 的驻点。

现给出无约束问题局部最优解的充分条件。

定理3 设1:nf R R →在点nx R *∈处的Hesse 矩阵2()f x *∇存在。

若()0f x *∇=,并且2()f x *∇正定则x *是无约束问题的严格局部最优解。

一般而言,无约束问题的目标函数的驻点不一定是无约束问题的最优解。

但对于其目标函数是凸函数的无约束凸规划,下面定理证明了,它的目标函数的驻点就是它的整体最优解。

定理4 设1:nf R R →,n x R *∈,f 是nR 上的可微凸函数。

若有()0f x *∇=则x *是无约束问题的整体最优解。

(二)最速下降法的基本思想和迭代步骤最速下降法又称为梯度法,是1847年由著名数学家Cauchy 给出的。

他是解析法中最古老的一种,其他解析方法或是它的变形,或是受它的启发而得到的,因此它是最优化方法的基础。

设无约束问题中的目标函数1:nf R R →一阶连续可微。

最速下降法的基本思想是:从当前点k x 出发,取函数()f x 在点kx 处下降最快的方向作为我们的搜索方向kp .由()f x 的Taylor 展式知()()()(k k k k T k k f x f x tp t f x p o tp -+=-∇+‖‖)略去t 的高阶无穷小项不计,可见取kp =()kf x -∇时,函数值下降得最多。

最优化方法-最速下降法

最优化方法-最速下降法
s.t. 0
计算步骤
设f (X )是可微函数,精度要求为
X f ( ) K 1

X 0 为初始点。
(1)计算梯度
f
(
X
)
k
,初始k=0;
(2)
Pk

f
(
X
)
k
(3)求解 k
min f ( X k Pk)
s.t. 0
设 k 是一维搜索的最优解;
(4)求下一个点
评价
由例题中可以发现两次迭代的搜索方向满足:
P P P P T 0, T 0,...,
01
12
即相邻两个搜索方向 PK 与 PK1 正交,这是最速下降
法的搜索方向的基本形质。因此,最速下降法的迭代
路线呈锯齿形,尤其是在极小点附近,锯齿现象尤为
严重,从而影响了迭代速度。
评价
锯齿现象
最优化技术
第三章 7节 最速下降法
主要内容
1原 理
2 计算步骤
3 例题分析 4评 价
原理
定义:用来求解无约束多元函数 min f(x)
极小化问题的一种迭代算法。
拓展:
最速下降法又称梯度法,是 1847 年由著名数学家
Cauchy 给出的,它是解析法中最古老的一种,其他解析 方法或是它的变形,或是受它的启发而得到的,因此它是 最优化方法的基础。
X
)
0

(1,1)T
3-最优步长
2
X P ( ) f 5
0
0 2
1
0
应用一维搜索技术,解得函数最小值点 0 =0.2
举例分析
4-下一搜索点
X1

最速下降法的基本思路

最速下降法的基本思路最速下降法是一种求解无约束优化问题的迭代算法,其基本思路是从当前点出发,沿着当前点到最优解的方向进行移动,并以一定的步长进行迭代更新,直到达到最优解或者满足一定的停止准则。

本文将从以下几个方面详细介绍最速下降法的基本思路。

一、最速下降法的数学模型在介绍最速下降法的基本思路之前,我们先来看看最速下降法所要求解的数学模型。

对于一个无约束优化问题:min f(x),x∈R^n其中f(x)为目标函数,x为自变量向量。

我们希望求出目标函数的全局最小值或局部最小值。

二、梯度和梯度方向在介绍最速下降法的基本思路之前,我们需要先了解两个概念:梯度和梯度方向。

1、梯度对于一个可微函数f(x),在点x处,它的梯度定义为:grad f(x)=[∂f/∂x1, ∂f/∂x2, …, ∂f/∂xn]T其中T表示矩阵转置。

梯度是一个向量,它指向函数在该点上升最快的方向,其模长表示该方向上函数增加的速率。

2、梯度方向对于一个可微函数f(x),在点x处,它的梯度方向定义为:-df/dx=-(∂f/∂x1, ∂f/∂x2, …, ∂f/∂xn)T梯度方向是一个向量,它指向函数在该点下降最快的方向,其模长表示该方向上函数减少的速率。

三、最速下降法的基本思路有了梯度和梯度方向的概念之后,我们就可以来介绍最速下降法的基本思路了。

最速下降法是一种基于负梯度方向进行迭代更新的优化算法。

具体来说,它的基本思路可以分为以下几个步骤:1、初始化首先需要选择一个初始点x0作为起始点。

2、计算负梯度在当前点xk处计算目标函数f(x)的负梯度-df/dx,并将其作为移动方向。

3、确定步长确定一个合适的步长αk,使得目标函数沿着移动方向能够有足够大的下降。

4、迭代更新根据当前点和移动方向以及步长进行迭代更新:xk+1 = xk + αk*(-df/dx)5、停止准则判断是否满足停止准则,如果满足,则停止迭代;否则返回步骤2。

四、最速下降法的收敛性最速下降法是一种保证收敛的优化算法,但是其收敛速度较慢。

最速下降法-最优化方法


(4)f
(
X
)
3

(0.04,0.04)T
,
f ( X 3) 2 0.0032 0.01
X 3 已达到预定精度要求,迭代终止。
故f(x)的无约束近似极小点为
X X 3 (0.96,1.44)T
注:原问题的精确极小点为
X (1,1.5)T
3. 最速下降法性质与评价
x1 x1

2 2
x2 x2
1 1
(1) X 0 (1,1)T
,
f
(
X
)
0

(1,1)T
,
P0

f
(
X
)
0

(1,1)T
X P (t ) f( 0 t
)
0

5t 2

2t
1
,t>0
ቤተ መጻሕፍቲ ባይዱ
应用一维搜索技术,可解得 (t) 的极小点为t0=0.2
所以 X 1 X 0 t0 P0 (1,1)T 0.2(1,1)T (0.8,1.2)T
X X P
Y f (X ) N 输出X
停止
例3.18 用最速下降法求解无约束优化问题:
x x x x x x min f (X ) 2 2 2
2
1
12
2
1
2
初始点 X 0 (1,1)T
,迭代终止准则为
f
(X k)
2
0.01

解:
f
(
X
)

4 2
1. 最速下降法原理 2. 最速下降法算法 3. 最速下降法性质与评价

最优化:最速下降法和Newton法


定理 3.1.1 设假设 2.4.1的条件成立 , 那么采用精确搜索 , 或 Armijo搜索或 Wolfe- P owell搜索的最速下降法产生 的迭 代序列{xk }满足 lim || f ( xk ) || 0
k
由前面的例子看到, 最速下降法的收敛速度至多是线性的, 具体 见下面的两个定理.
第一节
最速下降法
最古老的优化方法,十九世纪中叶由Cauchy提出
1、 思想 :每次沿负梯度方向进行搜索

x*
xk 1
等值线(面)

xk

f ( xk )
负梯度方向也称为最速下降方向:
事实上,对任意p R n 且 || p || , 由Cauchy - Schwarz 不等式得 f ( xk ) T P - || f ( xk ) || || P || - || f ( xk ) || - f ( xk ) - f ( xk ) 当取p 时等号成立,即 p 是下列问题 || f ( xk ) || || f ( xk ) || 的解 min f ( xk ) T P
从上面的例子看到, 对于简单的二元二次函数极小化问题, 最速下降法在有限次迭代并没有求出其精确最优解, 但能 以较慢的速度无限接近最优解.
事实上,上面的例子刻画了最速下降法的所有收 敛特征
3、 最速下降法的收敛性 全局收敛性
由于最速下降法的搜索方向与负梯度方向一致, 即 k 0, 且 || f ( xk ) || || d k || 所以, 由定理2.4.1 - 2.4.3, 我们很容易得到最速下降算法的全 局收敛性.
2
max 其中 , 且max 和min分别是 f ( x * )的最大和最小特征值 . min

最速下降法

n

收敛性问题的基本概念 最速下降法的迭代原理 最速下降法的迭代步骤 最速下降法的举例 最速下降法的收敛结论
Байду номын сангаас
无约束问题4-4
1.收敛性问题的基本概念 定义4-9
(k )
min f ( X ) n
X R
若序列 { X },对于 0 ,存在正整数 N ( ),
(k ) (k ) k N 时,有 X X ,即 X X 0, 当 k
2.迭代原理 min f ( X ) X R
n
1 0 0 min f ( X 0 p 0 ) f ( X 0 0 p 0 ), X X 0 p X , p f ( X ), 0 1 1 1 1 1 min f ( X 1 p1 ) f ( X 1 p ), X 2 X 1 1 p1 X , p f ( X ), 0 k 1 k k k k k min f ( X k p k ) f ( X k k p k ), X X k p X , p f ( X ), 0
X (k ) X
X ( k 1) X
X ( k 2) X
X ( k 3) X
X ( k 4) X
0.1
0.09
0.05
0.02
0.01
无约束问题4-4
1.收敛性问题的基本概念 定义4-10
若 X ( k ) X k 0,
( ) ( f ( X ) p )0 充分小时 0 结论: f ( X ( k ) )T p( k ) 0 时,p(k)是 f (X)在X(k) 处的下降方向。 当
(k ) T (k )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最速下降法
%% 最速下降法图示
% 设置步长为0.1,f_change为改变前后的y值变化,仅设置了一个退出条件。

syms x;f=x^2;
step=0.1;x=2;k=0; %设置步长,初始值,迭代记录数
f_change=x^2; %初始化差值
f_current=x^2; %计算当前函数值
ezplot(@(x,f)f-x.^2) %画出函数图像
axis([-2,2,-0.2,3]) %固定坐标轴
hold on
while f_change>0.000000001 %设置条件,两次计算的值之差小于某个数,跳出循环
x=x-step*2*x;
%-2*x为梯度反方向,step为步长,!最速下降法!
f_change = f_current - x^2; %计算两次函数值之差
f_current = x^2 ;
%重新计算当前的函数值
plot(x,f_current,'ro','markersize',7) %标记当前的位置
drawnow;pause(0.2);
k=k+1;
end
hold off
fprintf('在迭代%d次后找到函数最小值为%e,对应的x值为%e\n',k,x^2,x)
wolfe准则
unction [alpha, newxk, fk, newfk] = wolfe(xk, dk)
rho = 0.25; sigma = 0.75;
alpha = 1; a = 0; b = Inf;
while (1)
if ~(fun(xk+alpha*dk)<=fun(xk)+rho*alpha*gfun(xk)'*dk) b = alpha;
alpha = (alpha+a)/2;
continue;
end
if ~(gfun(xk+alpha*dk)'*dk>= sigma*gfun(xk)'*dk)
a = alpha;
alpha = min([2*alpha, (b+alpha)/2]); continue;
end
break;
end
newxk = xk+alpha*dk;
fk = fun(xk);
newfk = fun(newxk);
Armijo准则
function mk = armijo(xk, dk)
beta = 0.5; sigma = 0.2;
m = 0; mmax = 200;
while (m<=mmax)
if(fun(xk+beta^m*dk) <= fun(xk) + sigma*beta^m*gfun(xk)'*dk) mk = m; break;
end
m = m+1;
end
alpha = beta^mk
newxk = xk + alpha*dk
fk = fun(xk)
newfk = fun(newxk)。

相关文档
最新文档