等差数列知识点及经典例题
等差数列知识点及习题

第06课 等差数列1. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差.2. 等差中项:由三个数b A a ,,组成的等差数列可以看成最简单的等差数列. 这时,A 叫做b a 与的等差中项.3. 等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=4. 等差数列的性质:(1)通项公式的推广:()d m n a a m n -+= ()*N m n ∈,. (2)若{}n a 为等差数列,且n m l k +=+ ()*N m n l k ∈,,,,则n m l k a a a a +=+.(3)若{}n a 为等差数列,公差为d ,则{}n a 2也是等差数列,公差为d 2.(4)若{}n a 、{}n b 为等差数列,则{}n n qb pa +是等差数列.(5)若{}n a 为等差数列,则()*2N m k a a a m k m k k ∈⋅⋅⋅++,,,,组成公差为md 的等差数列.5.例1. 下列说法,正确的是___________(1)若{}n a 为等差数列,则{}n a 2也为等差数列; (2)若{}n a 为等差数列,则{}1++n n a a 为等差数列;(3)若正数数列{}n a 满足()5312252-=-n n a n ,则数列{}n a 是等差数列;(4)若数列{}n a 的通项公式为n n a n +=2,则数列{}n a 为等差数列.例2. 等差数列{}n a 中,13573==a a ,,求其通项公式.例3. 已知单调递增的等差数列{}n a 的前三项之和为21,前三项之积为231,求数列的通项公式.例4. 等差数列{a n }中, 3(a 3+a 5) +2(a 7+a 10+a 13) =24, 则a 4+a 10等于( )A. 3B. 4C. 5D. 12例5. 在数列{a n }中, a 1=2, a n+1=a n +2n +1.(1) 求证: 数列{a n -2n }为等差数列;(2) 设数列{b n }满足b n =2log 2(a n +1-n), 求{b n }的通项公式.【课堂训练】1. 在等差数列{a n }中, a 2=2, a 3=4, 则a 10=( )A. 12B. 14C. 16D. 182. 等差数列{a n }的首项为70, 公差为-9, 则这个数列中绝对值最小的一项为( )A. a 8B. a 9C. a 10D. a 113. 在数列{a n }中, a 1=15, 3a n+1=3a n -2, 则该数列中相邻两项乘积为负值的项是() A. a 21和a 22 B. a 22和a 23C. a 23和a 24D. a 24和a 254. 等差数列{a n }中, a 5+a 6=4, 则()1021222log 2a a a⋅⋅⋅⋅=( )A. 10B. 20C. 40D. 2+log 255. 等差数列{a n }中, a 1+a 5=10, a 4=7, 则数列{a n }的公差为( )A. 1B. 2C. 3D. 46. 已知{a n }为等差数列, a 1+a 3+a 5=105, a 2+a 4+a 6=99, 则a 20等于( )A. -1B. 1C. 3D. 77. 如果一个数列的前3项分别是1, 2, 3, 下列结论中正确的是( )A. 它一定是等差数列B. 它一定是递增数列C. 通项公式是a n =nD. 以上结论都不一定对8. 一个首项为23, 公差为整数的等差数列中, 前6项均为正数, 从第7项起为负数, 则公差d 为( )A. -2B. -3C. -4D. -59. 设数列{a n }, {b n }都是等差数列, 且a 1=25, b 1=75, a 2+b 2=100, 那么数列{a n +b n }的第37项为( )A. 0B. 37C. 100D. -3710. 已知递减的等差数列{a n }满足9212a a =, 则a 5=( )A. -1B. 0C. -1或0D. 4或511. 在等差数列{a n }中, 首项a 1=0, 公差d≠0, 若a k =a 1+a 2+a 3+…+a 7, 则k=( )A. 21B. 22C. 23D. 2412. nn n a a a 311+=+, a 1=2, 则a 4为( ) A.78 B. 58 C. 516 D. 19213. 设数列{a n }是公差不为零的等差数列, 且a 20=22, |a 11|=|a 51|, 则a n = .14. 在等差数列{}n a 中,已知9852=++a a a ,21753-=a a a ,求数列的通项公式.15. 已知数列{log 2(a n -1) }(n ∈N *) 为等差数列, 且a 1=3, a 3=9, 求数列{a n }的通项公式.16. 已知等差数列{a n }中, a 1=a, 公差d=1, 若b n =122+-n n a a(n ∈N *), 试判断数列{b n }是否为等差数列, 并证明你的结论.【强化训练】1. 已知数列{a n }满足a 1=2, a n+1-a n =a n+1a n , 那么a 31等于( ) A. 583-B. 592-C. 301-D. 602-2. 已知数列{a n }中, a 3=2, a 5=1, 若⎭⎬⎫⎩⎨⎧+n a 11是等差数列, 则a 11等于( ) A. 0 B.61 C. 31 D. 21 3. 若lg 2, lg(2x -1), lg(2x +3) 成等差数列, 则x 的值为( )A. 1B. 0或32C. 32D. log 254. 已知函数f(x)是R 上的单调增函数且为奇函数, 数列{a n }是等差数列, a 3> 0, 则f(a 1) +f(a 3) + f(a 5)的值( )A. 恒为正数B. 恒为负数C. 恒为0D. 可正可负5. 如果有穷数列a 1, a 2, …, a m (m 为正整数) 满足条件: a 1=a m , a 2=a m-1, …, a m =a 1, 则称其为“对称” 数列. 例如, 数列1, 2, 5, 2, 1与数列8, 4, 2, 4, 8都是“对称” 数列. 已知在21项的“对称” 数列{c n }中, c 11, c 12, …, c 21是 以1为首项, 2为公差的等差数列, 则c 2= .6. 数列{a n }是公差为正数的等差数列, a 1=f(x-1), a 2=0, a 3=f(x+1), 其中f(x) =x 2-4x+2, 则数列{a n }的通项公式a n = .7. 在数列{a n }中, a 1=3, 且对任意大于1的正整数n, 点()1-n n a a ,在直线x-y-3=0上, 则a n = .8. 已知无穷等差数列{a n }中, 首项a 1=3, 公差d=-5, 依次取出序号能被4除余3的项组成数列{b n }.(1) 求b 1和b 2;(2) 求{b n}的通项公式;(3) {b n}中的第503项是{a n}中的第几项?。
(完整版)等差数列知识点及类型题

等差数列知识点及类型题一、数列由n a 与n S 的关系求n a由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的形式表示为11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩。
〖例1〗根据下列条件,确定数列{}n a 的通项公式。
nn n S a a 222,0=+>分析:将无理问题有理化,而后利用n a 与n S 的关系求解。
二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。
2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列;(2)前n 项和法:若数列{n a }的前n 项和n S 是2n S An Bn =+的形式(A ,B 是常数),则{n a }是等差数列。
注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例2〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2n n n n S S S S n a ---+=≥=g (1)求证:{1nS }是等差数列; (2)求n a 的表达式。
【变式】已知数列{a n }的各项均为正数,a 1=1.其前n 项和S n 满足2S n =2pa 2n +a n-p (p ∈R), 则{a n }的通项公式为________.(二)等差数列的基本运算1、等差数列的通项公式n a =1a +(n-1)d 及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1a ,n a ,d,n, n S ,“知三求二”,体现了用方程的思想解决问题;2、数列的通项公式和前n 项和公式在解题中起到变量代换作用,而1a 和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法。
等差数列题目100道

等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列知识点、例题。练习

等差数列知识点、例题。
练习数列的概念和性质(一)练习一、定义:按一定次序排成的一列数叫做数列.:1. 从函数的角度看,数列可以是定义域为N*(或它的有限子集)的函数,当自变量从小到大依次取值时对应的一列函数值;2. 如果两个数列的数完全相同而顺序不同,则它们不是相同的数列;3. 在同一个数列中,一个数可以重复出现;4. 数列中的每一个数叫做这个数列的项,各项依次叫做第1项,第2项。
. 二、数列的表示:通项公式:an f(n)1.解析法递推公式:an 1 f(an)一、巩固提高1. 数列1,3,6,10,15,。
的通项an可以等于( ) (A)n2 (n 1) (B)n(n 1)n(n+1)2(C) (D) n 2n+2 222. 数列-1,0,-13,0,-25,0,-37,0,。
的通项an可以等于( )nn(-1)1(-1)1(6n 5) (B)(6n 5) (A)22nn(-1)1(-1)1(6n 5) (D) (6n 5) (C)223..巳知数列{an}的首项a1=1,an 1 2an 1(n 2),则a5为( )(A) 7 (B)15 (C)30 (D)31 二、能力提升5. 根据数列的前几项,写出数列{an}的一个通项公式: (1)__,,,,,。
; 3__4,,,。
; __(2)2,-6,12,-20,30,。
; (3)一、巩固提高数列的概念和性质(二)练习1.若数列{an}的前n项和Sn 2n 1,则a1与a5的值依次为( )2(A) 2,14 (B)2,18 (C)3,4 (D)3,18 2.若数列{an}的前n项和Sn 4n2 n 2,则该数列的通项公式为( ) (A)an 8n 5 (n N*) (B) an 8n 5(n N*)(n 1) 5(C)an 8n 5(n 2) (D)an *8n 5(n 2,n N)5.已知数列{an}满足a1=1,当n 2时,恒有a1a2。
等差数列的性质(完整版,配例题)

等差数列的性质等差数列通项公式:()d n a a n 11-+= 等差数列前n 项和公式:()()d n n na a a n S n n 21211-+=+=等差数列的性质:(1)等差中项:如果c b a ,,成等差数列,则称b 是a 与c 的等差中项。
即:c b a ,,成等差数列22ca b b c a +=⇔=+⇔ (2)等差数列{}n a 中,当n 为奇数时,21121+=-+=-n a d n a S S 偶奇(中间项); 21+⋅=n n a n S (项数与中间项的积);11-+=n n S S 偶奇; 当n 为偶数时,d nS S 2=-奇偶; 2122++⋅=nn n a a n S ;122+=nna a S S 偶奇。
【例1】在等差数列{}n a 中, ① 已知154533,153a a ==,求30a ;总结:已知(),且同奇偶+∈N n m a a n m ,,,可求2n m a +。
② 已知16,1086==a a ,求13S ;总结:已知()+∈N n m a a n m ,,,可求1-+n m S 。
③ 已知163a =,求31S ;总结:已知()+∈N n a n ,可求12-n S ()()n n a n S 1212-=-。
④ (2007湖北理)已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且3457++=n n B A n n ,则使得n n b a为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .5【练习1】等差数列{}n a 的前12项和为354,前12项中奇数项与偶数项的和之比为27:32,求公差d ;【练习2】在两个等差数列{}n a 和{}n b 满足327321321++=++++++++n n b b b b a a a a n n ,求55b a 。
(3)等差数列{}n a 中,()()+∈-=-N m n d m n a a m n ,;(4)如果c b a ,,成等差数列,则k mc k mb k ma +++,,也成等差数列()为常数k m ,; (5)等差数列{}n a 中,若q p n m +=+,则q p n m a a a a +=+;(6)等差数列{}n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按照原来的顺序排列,构成的新数列不一定是等差数列。
等差数列(经典)

有 G2 ab或者G ab
3、若等比数列 an 的首项是 a1 ,公比是 q ,则 an a1qn1
4、通项公式的变形:
an amqnm
5、若an 是等比数列,且 m n p q ,则 aman apaq ;( m 、 n 、 p 、 q * )
6 若an是比差数列,且 m n 2 p,则aman a2p :( m 、 n 、 p N* )
二.等比数列:
1、如果一个数列从第 2 项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等差数列,
这个常数称为等比数列的公比。用
an1 q an an q(n
表示 1)
.
an1
2、由三个数 a ,G,b 组成的等比数列可以看成最简单的等比数列,则 G 称为 a 与 b 的等比中项.则
有 2A a b,A a b . 2
3、若等差数列 an 的首项是 a1 ,公差是 d ,则 an a1 n 1d .
4、通项公式的变形:
an am n md .
5、若an 是等差数列,且 m n p q ,则 am an ap aq ;( m 、 n 、 p 、 q * )
数列知识点总结
一.等差数列:
1、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,
这个常数称为等差数列的公差.用
an an1 an1 an
常数(n 常数(n
2, 且n N*)
N
*) 表示
2、由三个数 a , ,b 组成的等差数列可以看成最简单的等差数列,则 称为 a 与 b 的等差中项.则
等差中项法 2an an-1 an(1 n 2)
只要满足一个条件
那么 an等差数例
等差数列试题

等差数列试题一、等差数列的概念与通项公式1. 已知数列{a_{n}}满足a_{n + 1}-a_{n}=3,a_{1}=2,求数列{a_{n}}的通项公式。
- 解析:因为a_{n + 1}-a_{n}=3,所以数列{a_{n}}是公差d = 3的等差数列。
根据等差数列通项公式a_{n}=a_{1}+(n - 1)d,已知a_{1}=2,d = 3,则a_{n}=2+(n - 1)×3=2 + 3n-3=3n - 1。
2. 等差数列{a_{n}}中,a_{3}=7,a_{5}=11,求a_{n}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
又a_{3}=a_{1}+2d,a_{3} = 7,d = 2,则a_{1}=a_{3}-2d=7-2×2 = 3。
所以a_{n}=a_{1}+(n - 1)d=3+(n - 1)×2=2n + 1。
3. 若数列{a_{n}}的通项公式为a_{n}=4n - 3,证明{a_{n}}是等差数列。
- 解析:对于n≥slant1,a_{n + 1}=4(n + 1)-3=4n+1。
则a_{n + 1}-a_{n}=(4n + 1)-(4n - 3)=4(常数)。
所以数列{a_{n}}是公差为4的等差数列。
4. 在等差数列{a_{n}}中,a_{1}= - 5,d = 3,n = 10,求a_{n}。
- 解析:根据等差数列通项公式a_{n}=a_{1}+(n - 1)d,将a_{1}=-5,d = 3,n = 10代入,可得a_{10}=-5+(10 - 1)×3=-5 + 27 = 22。
5. 已知等差数列{a_{n}}中a_{2}=5,a_{6}=17,求a_{14}。
- 解析:设等差数列{a_{n}}的公差为d,则a_{6}-a_{2}=4d,即17 - 5=4d,解得d = 3。
高一等差数列及其前n项和知识点+例题+练习 含答案

1.等差数列的定义 一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项如果A =a +b 2,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × )(5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________________________________________________________________________. 答案 6解析 设等差数列{a n }的公差为d ,∵a 1+a 9=a 4+a 6=-6,且a 1=-11,∴a 9=5,从而d =2.∴S n =-11n +n (n -1)=n 2-12n ,∴当n =6时,S n 取最小值.2.一个首项为23,公差为整数的等差数列,如果前6项均为正数,从第7项起为负数,则它的公差为________.答案 -4解析 a n =23+(n -1)d ,由题意知⎩⎪⎨⎪⎧ a 6>0,a 7<0, 即⎩⎪⎨⎪⎧23+5d >0,23+6d <0,解得-235<d <-236, 又d 为整数,所以d =-4.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________.答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=________.答案 (1)52 (2)210 解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)因为a 2=7,a 4=15,所以d =4,a 1=3,故S 10=10×3+12×10×9×4=210. 思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________________________________________________________________________.(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是________. 答案 (1)5 (2)2解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,得a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5. (2)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7.设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是________.①公差为3的等差数列 ②公差为4的等差数列③公差为6的等差数列 ④公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为______________. 答案 (1)③ (2)a n =1n解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2)=(a 2n -1-a 2n -3)+2(a 2n -a 2n -2)=2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.(2)由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . 题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53 =-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴a 13=0.又a 1=-20,∴a 12<0,a 14>0,∴当n =12或13时,S n 取得最小值,最小值S 12=S 13=13(a 1+a 13)2=-130. 思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ; b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m . (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为________.(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)6 (2)5或6 (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________.(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________. 思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎨⎧ 10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. (3)因为⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5.答案 (1)45 (2)-110 (3)S 5温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *;(2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.[失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练(时间:40分钟)1.(2015·课标全国Ⅰ改编)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________________________________________________________________________. 答案 192解析 ∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192. 2.(2015·北京改编)设{a n }是等差数列,下列结论中正确的是________.①若a 1+a 2>0,则a 2+a 3>0;②若a 1+a 3<0,则a 1+a 2<0;③若0<a 1<a 2,则a 2>a 1a 3;④若a 1<0,则(a 2-a 1)(a 2-a 3)>0.答案 ③解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故①错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故②错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故③正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故④错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 答案 5解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________.答案 3解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2.∵b 3=-2,∴b 1=b 3-2d =-2-4=-6.∴b 1+b 2+…+b 7=7b 1+7×62d =7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为________.答案 7或8解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.10.(2015·济南模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大, 则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,即⎩⎨⎧ a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.方法四 由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升(时间:20分钟)11.已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________. 答案 4解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212,解得k =13. 13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________.答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧ a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧ a 1=1,d =4.所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,所以2c2+c=0,所以c=-1或c=0(舍去),2时,{b n}是等差数列,经验证c=-12故c=-12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列知识点及经典例题 一、数列
由n a 与n S 的关系求n a
由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的形式表示
为11(1)(2)n n
n S n a S S n -=⎧=⎨-≥⎩。
〖例〗根据下列条件,确定数列{}n a 的通项公式。
分析:(1)可用构造等比数列法求解; (2)可转化后利用累乘法求解;
(3)将无理问题有理化,而后利用n a 与n S 的关系求解。
(一)等差数列的判定
1、等差数列的判定通常有两种方法:
第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。
2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列;
(2)前n 项和法:若数列{n a }的前n 项和n S 是2n S An Bn
=
+
的形式(A ,B 是常数),则{n a }是等差数列。
注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{
n
a }的前n 项和为
n
S ,且满足
111120(2),2
n n n n S S S S n a ---+=≥=
(1)求证:{
1n
S }是等差数列;
(2)求n a 的表达式。
分析:(1)1120n n n n S S S S ---+=→
1n
S 与
1
1n S -的关系→结论;
(2)由
1n
S 的关系式→n S 的关系式→n a
注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。