数列教案、考点、经典例题_练习
数列基础知识教案

数列基础知识教案【数列基础知识教案】教学目标:掌握数列的基本概念和性质,了解数列的分类及应用。
教学内容:数列的定义、等差数列、等比数列、递推公式、通项公式等。
教学步骤:一、引入在数学学科中,数列是一个非常基础而重要的概念。
它在各个领域都有广泛的应用,比如物理、化学、计算机科学等。
今天我们就来学习一下数列的基础知识。
二、数列的定义1. 定义:数列是按照一定顺序排列的一列数。
2. 用途:数列可以描述一系列具有规律性的数值,便于我们研究和分析。
3. 记法:常用的数列记法有{a₁, a₂, a₃, ...} 或者 (a₁, a₂, a₃, ...)。
三、等差数列1. 定义:若一个数列的相邻两项之差都相等,我们称这个数列为等差数列。
2. 表示:一般用字母 a 表示首项,d 表示公差,即 a, a+d, a+2d, ...。
3. 性质:a) 第 n 项 aₙ = a + (n-1)d,通项公式。
b) 第 n 项和 Sₙ = (a + aₙ) * n / 2。
c) 前 n 项和 Sₙ = n/2 * (2a + (n-1)d)。
4. 例题:a) 1, 3, 5, 7, ... 是一个等差数列,首项 a = 1,公差 d = 2。
b) 求等差数列 3, 6, 9, ... 的第 10 项和前 10 项和。
四、等比数列1. 定义:若一个数列的相邻两项之比都相等且不为零,我们称这个数列为等比数列。
2. 表示:一般用字母 a 表示首项,r 表示公比,即 a, ar, ar², ...。
3. 性质:a) 第 n 项 aₙ = a * r^(n-1),通项公式。
b) 第 n 项和 Sₙ = a * (r^n - 1) / (r - 1),当r ≠ 1。
c) 前 n 项和 Sₙ = a * (1 - r^n) / (1 - r),当r ≠ 1。
4. 例题:a) 2, 4, 8, 16, ... 是一个等比数列,首项 a = 2,公比 r = 2。
高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题数列是高中数学中的一个重要概念,它在许多数学问题中都起着至关重要的作用。
通过学习数列的定义、性质和求解方法,可以帮助我们更好地理解和应用数学知识。
本文将对高中数列知识点进行归纳总结,并附上相关例题供读者练习。
1. 数列的定义与性质数列是按照一定顺序排列的一组数。
其中,每一个数称为数列的项,位置称为项数,用字母a表示数列的通项。
数列的性质包括等差数列和等比数列两种常见情况:1.1 等差数列等差数列是指数列中相邻两项之差都相等的数列。
设数列为{an},公差为d,则有如下性质:(1)通项公式:an = a1 + (n-1)d(2)前n项和公式:Sn = (a1 + an) * n / 2(3)项数公式:n = (an - a1) / d + 1例题1:已知等差数列{an}的首项是3,公差是4,求第10项的值。
解析:根据等差数列的通项公式,代入a1 = 3,d = 4,n = 10,求得a10 = 3 + (10-1) * 4 = 39。
1.2 等比数列等比数列是指数列中相邻两项之比都相等的数列。
设数列为{an},公比为q,则有如下性质:(1)通项公式:an = a1 * q^(n-1)(2)前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)(3)项数公式:n = logq(an / a1) + 1例题2:已知等比数列{an}的首项是2,公比是3,求第5项的值。
解析:根据等比数列的通项公式,代入a1 = 2,q = 3,n = 5,求得a5 = 2 * 3^(5-1) = 162。
2. 数列的求和数列的求和是数学中常见的问题之一,通过找到数列的规律和应用对应的公式,可以快速求解数列的和。
下面分别介绍等差数列和等比数列的求和公式。
2.1 等差数列的求和对于等差数列{an},前n项和的计算公式为Sn = (a1 + an) * n / 2。
其中,a1为首项,an为末项,n为项数。
高中数学数列专题教案

高中数学数列专题教案
教学内容:数列的概念、等差数列、等比数列、数列的通项公式、数列的性质教学目标:
1. 理解数列的基本概念,能够区分等差数列和等比数列。
2. 掌握等差数列和等比数列的通项公式,能够计算数列的第n项和前n项和。
3. 熟练运用数列的性质解决问题,提高数学解题能力。
教学重点和难点:
重点:等差数列和等比数列的通项公式的推导和应用。
难点:数列的性质在解题中的灵活运用。
教学准备:
1. 数学教材、教学课件。
2. 白板、彩色笔。
3. 数列练习题。
教学过程:
一、导入(5分钟)
引导学生回顾数列的概念,并通过实例引出等差数列和等比数列的定义。
二、讲解(20分钟)
1. 介绍等差数列和等比数列的概念,并推导其通项公式。
2. 分别讲解等差数列和等比数列的求和公式。
三、练习(15分钟)
让学生完成若干道等差数列和等比数列的练习题,巩固知识点。
四、拓展(10分钟)
引导学生思考数列的性质,并通过实例展示数列性质在解题中的应用。
五、总结(5分钟)
总结本节课的重点内容,并鼓励学生多加练习,提高数学解题能力。
六、作业布置(5分钟)
布置相关的练习题作业,巩固今天所学知识。
教学反馈:
在下节课进行课堂练习和讲解,帮助学生理解和掌握数列的相关知识。
教学延伸:
引导学生查阅相关资料,了解数列在数学领域的应用,拓展数学知识面。
备注:本教案适用于高中数学数列专题教学,根据学生实际情况适量调整难易程度。
(完整版)职高数学复习-数列教案

第 课时教学内容:数列的定义教学目的:理解数列的定义、通项公式、Sn 的含义,掌握通项公式的求法及其应用,了解递推的含义.教学重点:数列的基本概念.教学难点:求通项公式、递推公式的应用 教学过程:一、数列的定义: 按一定顺序排列成的一列数叫做数列. 记为:{a n }.即{a n }: a 1, a 2, … , a n .二、通项公式:用项数n 来表示该数列相应项的公式,叫做数列的通项公式。
1、本质:数列是定义在正整数集(或它的有限子集)上的函数. 2、通项公式: a n =f(n)是a n 关于n 的函数关系. 三、前n 项之和:S n = a 1+a 2+…+a n 注 求数列通项公式的一个重要方法: 对于数列}{n a ,有: ⎩⎨⎧≥-==-)2()1(11n s s n s a n nn例1、已知数列{100-3n},(1)求a 2、a 3;(2)67是该数列的第几项;(3)此数列从第几项起开始为负项. 解:例2 求下列数列的通项公式:(1)1,3,5,7, ……(2)-211⨯,321⨯,-431⨯,541⨯.…… (3)9,99,999,9999,……解:(1)12-=n a n ;(2))1(1)1(+-=n n a nn ;(3)110-=nn a练习:定写出数列3,5,9,17,33,……的通项公式: 答案:a n =2n +1 。
例3 已知数列{}n a 的第1项是1,以后的各项由公式111-+=n n a a 给出,写出这个数列的前5项.解 据题意可知:3211,211,123121=+==+==a a a a a ,58,3511534==+=a a a 例4 已知数列{}n a 的前n 项和,求数列的通项公式: (1) n S =n 2+2n ; (2) n S =n 2-2n-1.解:(1)①当n ≥2时,n a =n S -1-n S =(n 2+2n)-[(n-1)2+2(n-1)]=2n+1;②当n=1时,1a =1S =12+2×1=3;③经检验,当n=1时,2n+1=2×1+1=3,∴n a =2n+1为所求. (2)①当n ≥2时,n a =n S -1-n S =(n 2-2n-1)-[(n-1)2+2(n-1)-1]=2n-3; ②当n=1时,1a =1S =12-2×1-1=-2;③经检验,当n=1时,2n-3=2×1-3=-1≠-2,∴n a =⎩⎨⎧≥-=-)2(32)1(2n n n 为所求.注:数列前n 项的和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式1n n n a S S -=-时,一定要注意条件2n ≥ ,求通项时一定要验证1a 是否适合四、提高:例5 当数列{100-2n}前n 项之和最大时,求n 的值.分析:前n 项之和最大转化为10n n a a +≥⎧⎨≤⎩.五、同步练习:1.已知:2n a n n =+,那么 (C ) (A )0是数列中的一项 (B )21是数列中的一项 (C )702是数列中的一项 (C )30不是数列中的一项2、在数列2,5,9,14,20,x ,…中,x 的值应当是 (D ) (A )24 (B )25 (C )26 (D )273、已知数列11,7,3,…,79,…且a n =179,则n 为 (C ) (A )21 (B )41 (C )45 (D )494、数列{a n }通项公式a n =log n+1(n+2),则它的前30项之积是 (B )(A )51(B )5 (C )6 (D )231log 3log 3215+ 5、已知数列1,-1,1,-1,…,则下列各式中,不是它的通项公式的为 (D ) (A )1)1(--=n n a (B )2)12(sinπ-=n a n (C ) 1 ()1()n n a n ⎧=⎨-⎩为奇数为偶数(D )n n a )1(-=6、数列 ,541,431,321,211⋅⋅-⋅⋅-的一个通项公式是 (A )(A ))1(1)1(+-=n n a n n (B ))1(1)1(1+-=+n n a n n(C )nn a nn)1(1)1(-⋅-=(D ))2()1(+-=n n a nn7、数列通项是nn a n ++=11,当其前n 项和为9时,项数n 是 (B )(A )9 (B )99 (C )10(D )100 8.数列112,223,334,445,…的一个通项公式是 (B )(A )21n n a n =+ (B )221n n n a n +=+ (C )211n n n a n ++=+ (D )221n n n a n +=+ 92,5,22,11,,则25 (B ) (A )第六项 (B )第七项 (C )第八项 (D )第九项 10.已知数列{a n }满足a 1=1,且121(2)n n a a n -=+≥,求数列的第五项a 5= 31 11、已知数列{a n }的前n 项和S n 满足log 2 (S n + 1) = n + 1,求a n .(答案: 3 n=12 n 2n n a ⎧=⎨≥⎩)12、已知数列{100-4n},(1)求a 10;(2)求此数列前10项之和; (3)当此数列前n 项之和最大时,求n 的值. 答案(1)60(2)780(3)24or2513、设数列{a n }中,S n =-n 2+24n ,(1)求通项公式; (2)求a 10+a 11+a 12+…+a 20的值; (3)求S n 最大时a n 的值.答案:(1)an=25-2n (2)-55(3)1 补充:1、已知数列{a n }满足a 1=b(b ≠1),且)(211N n a a nn ∈-=+, (1)求a 1, a 2, a 3; (2)求此数列的通项公式.2、已知数列{a n }前n 项之和S n =1nn +,求a n .3、一数列的通项公式为a n = 30 + n -n 2. ①问-60是否为这个数列中的一项. ②当n 分别为何值时,a n = 0, a n >0, a n <0第 课时教学内容:等差数列(1)教学目的:通过复习,巩固等差数列的定义、通项公式、求和公式 教学重点:等差数列 教学过程:(一)主要知识 1.等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.即:)()(1•+∈=-N n d a a n n 常数2.通项:d n a a n )1(1-+=,推广:d m n a a m n )(-+=. 3.求和:d n n na a a n S n n 2)1(2)(11-+=+=.(关于n 的没有常数项的二次函数). 4.中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c (二)主要方法: 1.等差数列的判定方法(1)定义法: )()(1•+∈=-N n d a a n n 常数 (2)中项法:212+++=n n n a a a (3)通项法:d n a a n )1(1-+= (4)前n 项和法:Bn An S n +=2 2.知三求二(n n S a n d a ,,,,1),要求选用公式要恰当.3.设元技巧: 三数:d a a d a +-,, 四数d a d a d a d a 3,,,3-+-- (二)基础题型: 讲练题:1.求等差数列8,5,2…的第20项。
数列知识点归纳总结例题

数列知识点归纳总结例题数列是数学中一个重要的概念,它由一组按照特定规律排列的数字所构成。
数列在数学的多个领域中都有应用,比如代数、几何、概率等。
本文将对数列的知识点进行归纳总结,并通过一些例题来帮助读者更好地理解数列的概念和应用。
一、数列的定义数列是由一系列有序的数字所构成的集合,这些数字按照特定的规律排列。
一般来说,数列可以用公式 an 表示,其中 n 表示数列中的第几个数字,an 表示第 n 个数字的值。
二、等差数列等差数列是指数列中的两个相邻数字之间的差保持恒定。
对于等差数列,我们可以通过以下公式来表示第 n 个数字的值:an = a1 + (n-1)d其中,a1 为数列的首项,d 为公差,n 表示第几个数字。
例题一:已知一个数列的首项为3,公差为2,求该数列的第10项的值。
解:根据等差数列的公式,可以得到:a10 = 3 + (10-1)*2= 3 + 9*2= 3 + 18= 21因此,该数列的第10项的值为21。
三、等比数列等比数列是指数列中的两个相邻数字之间的比保持恒定。
对于等比数列,我们可以通过以下公式来表示第 n 个数字的值:an = a1 * r^(n-1)其中,a1 为数列的首项,r 为公比,n 表示第几个数字。
例题二:已知一个数列的首项为2,公比为3,求该数列的第4项的值。
解:根据等比数列的公式,可以得到:a4 = 2 * 3^(4-1)= 2 * 3^3= 2 * 27= 54因此,该数列的第4项的值为54。
四、斐波那契数列斐波那契数列是一个特殊的数列,它的前两个数字是1,从第三个数字开始,每个数字都是前两个数字的和。
斐波那契数列可以通过以下递推公式来表示:an = an-1 + an-2其中,a1 = 1,a2 = 1。
例题三:求斐波那契数列的前10项的和。
解:首先列出斐波那契数列的前10项:1, 1, 2, 3, 5, 8, 13, 21, 34, 55然后将这些数字相加:1 + 1 +2 +3 + 5 + 8 + 13 + 21 + 34 + 55 = 143因此,斐波那契数列的前10项的和为143。
数列的概念 导学案 知识点+例题+练习

一、创设情景,引入问题1.国际象棋的传说:每格棋盘上的麦粒数排成一列数;2.古语:一尺之棰,日取其半,万世不竭.每日所取棰长排成一列数;3.童谣:一只青蛙,一张嘴,两只眼睛,四条腿;两只青蛙,两张嘴,四只眼睛,八条腿;三只青蛙,三张嘴,六只眼睛,十二条腿;4.中国体育代表团参加八届奥运会获得的金牌数依次排成一列数。
探究一:观察归纳,形成概念思考这四列数具有的共同特征?根据数列的特征,归纳得出等比数列概念。
1.数列的定义:2.数列的项:3.数列的一般形式探究二:对概念的理解数集中的元素具有确定性,互异性,无序性,那么数列中的项是否具有这些属性?思考:1:1,2,3,4与4,3,2,1是否为同一数列?2: -1,1,-1,1是否为一个数列?探究四:数列的分类根据数列的项,以及数列项之间的大小关系可以对数列进行怎么样分类?(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列.探究五:认识数列与函数的关系数列中的数和它的序号是什么关系?哪个是变动的量,哪个是随之变动的量?你能联想到以前学过的哪些相关内容?探究六:认识数列的通项公式数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先回忆函数的表示法:列表法,图象法,解析式法。
对应于函数的解析式法,认识数列的通项公式。
如果数列}{n a 的第n 项与项数之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。
探究七:应用巩固怎样写出已知数列的通项公式?基本思路是什么?例1根据下面数列的通项公式,写出前5项。
例2 写出下面数列的一个通项公式。
(1);41,31,21,1--(2)2,0,2,0.(3) 3, 5, 7, 9, 11,……;(4)32, 154, 356, 638, 9910, ……;函数 数列(特殊的函数) 定义域 R 或R 的子集 *N 或它的子集 解析式 )(x f y = )(n f a n =图象 点的集合 一些离散的点的集合 (2)(1);n n a n =-⋅(1);1n n a n =+例3写出数列 (13)5,104,73,42,1的一个通项公式,并判断它的增减性.例4已知数列{}na 的通项公式为2)3(log 22-+=n a n ,判断3log 2、6log 2是否是这个数列的项?例5 已知数列{a n }的第一项a 1=1,以后的各项由公式a n +1=2a n a n +2给出,写出这个数列的前5项,并归纳出数列{a n }的通项公式.例6 已知数列{a n }的通项公式为a n =n n 2+1,写出它的前5项,并判断该数列的单调性.1.观察以下数列,并写出其通项公式:(1) 0, 1, 0, 1, 0, 1,……;(2) 1,12,14,18,…….(3) 3,9,27,81,(4) 2, -6, 18, -54, 162, …….2.设数列为 ,11,22,5,2则24是该数列的第 项.3.数列{}n a 中,2n a n kn =+,且数列{}n a 为递增数列,求k 的范围.4. 已知数列{}n a 满足112a =,111n n a a +=-(n ≥2), 则6a = . 5. 已知数列{a n }满足a 1>0,a n +1a n=13(n ∈N *),则数列{a n }是________数列(填“递增”或“递减”).6. 数列{}n a 满足11a =,1+1n n a a n +=+(n ≥1),则该数列的通项n a =7.已知数列{a n }的第1项是2,以后的各项由公式a n =a n -11-a n -1(n =2,3,4,…)给出,写出这个数列的前5项,并归纳出数列{a n }的通项公式.。
求数列的通项公式列(教案+例题+习题)
求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。
2. 学会求解数列的通项公式,并能应用于实际问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。
2. 教学难点:数列通项公式的推导和应用。
四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。
2. 利用例题,演示数列通项公式的应用过程。
3. 布置习题,巩固所学知识。
五、教学过程1. 引入数列的概念,讲解数列的基本性质。
2. 讲解数列通项公式的求法,引导学生掌握求解方法。
3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。
4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。
5. 总结本节课的重点内容,布置课后作业。
教案结束。
例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。
解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。
将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。
该数列的通项公式为an = n/2 + 1/2。
习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。
2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。
3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。
4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。
5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。
六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。
2. 学习利用函数的方法求解数列的通项公式。
3. 提升学生分析问题、解决问题的能力。
高中数学数列教案及答案
高中数学数列教案及答案
教学目标:
1. 了解数列的定义和性质;
2. 掌握数列的通项公式和求和公式的应用;
3. 能够解决数列相关的问题。
教学内容:
1. 数列的定义和分类;
2. 等差数列和等比数列的性质;
3. 数列的通项公式和求和公式。
教学步骤:
1. 引入数列的概念,让学生了解数列是一组按照一定规律排列的数的集合;
2. 讲解等差数列和等比数列的定义和性质;
3. 教授数列的通项公式和求和公式,让学生掌握其应用方法;
4. 练习相关的题目,加深对数列的理解。
教学评估:
1. 布置相关的练习题,考察学生对数列的掌握情况;
2. 进行课堂讨论,提出问题让学生展示解题思路;
3. 采用小测验的方式,检验学生对数列知识的掌握程度。
教学答案范本
1. 求等差数列$1, 4, 7, \ldots$的第$n$项公式。
答:这是一个公差为3的等差数列,通项公式为$a_n = 1 + 3(n-1)$。
2. 求等比数列$2, 6, 18, \ldots$的第$n$项公式。
答:这是一个公比为3的等比数列,通项公式为$a_n = 2 \times 3^{n-1}$。
3. 求等差数列$3, 6, 9, \ldots$前100项的和。
答:首项$a_1 = 3$,末项$a_{100} = 3 + 99 \times 3 = 300$,项数$n = 100$,和为$S_{100} = \frac{n(a_1 + a_{100})}{2} = \frac{100(3+300)}{2} = 15150$。
等差数列综合复习(教案+例题+习题)
一、等差数列1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
例1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3,13*4-,14*5。
解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1)n n n -+。
点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。
如(1)已知*2()156n na n N n =∈+,则在数列{}n a 的最大项为__ ;(2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___;(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列 答案:B ; 解法一:a n =⎩⎨⎧≥-==⇒⎩⎨⎧≥-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n∴a n =2n -1(n ∈N )又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。
数列知识点总结带例题
数列知识点总结带例题一、数列的基本概念数列是按照一定顺序排列的一组数,其中每个数称为数列的项。
数列可以用数学符号表示为{an},其中an表示第n个项。
数列中的项可以是整数、有理数、无理数或复数。
数列中的项的顺序是有意义的,我们可以用自然数n表示数列中的项的位置。
如果数列中的每一项和它的后一项之比等于一个固定的常数r,那么这个数列称为等比数列;如果数列中的每一项和它的前一项之差等于一个固定的常数d,那么这个数列称为等差数列;如果数列中的每一项和它的前一项之比等于一个固定的常数q,那么这个数列称为等比数列;如果数列中的每一项和它的后一项之差等于一个固定的常数p,那么这个数列称为等差数列。
在数列中,第一个数称为首项,最后一个数称为末项,其中还有一些特殊的数列,例如递增数列、递减数列、周期数列等。
二、数列的常见类型1.等差数列等差数列是指数列中相邻两项之差都是相等的数列。
一般来说,等差数列的通项公式是an=a1+(n-1)d,其中a1为首项,d为公差。
等差数列的前n项和公式是Sn=(a1+an)n/2。
例题1:如果等差数列的首项为2,公差为3,求前10项的和。
解:首先根据等差数列的通项公式an=2+(n-1)3=3n-1,然后代入前10项的和公式Sn=(2+2n-1)n/2=5n^2-n,得到前10项的和为5*10^2-10=240。
2.等比数列等比数列是指数列中相邻两项的比值都是相等的数列。
一般来说,等比数列的通项公式是an=a1*r^(n-1),其中a1为首项,r为公比。
等比数列的前n项和公式是Sn=a1*(1-r^n)/(1-r)。
例题2:如果等比数列的首项为3,公比为2,求前5项的和。
解:首先根据等比数列的通项公式an=3*2^(n-1),然后代入前5项的和公式Sn=3*(1-2^5)/(1-2)=-93。
3.递增数列和递减数列递增数列是指数列中相邻两项的差值大于0的数列,递减数列是指数列中相邻两项的差值小于0的数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
澳瀚教育学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功!高中数学一、定义1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)2.等差数列的通项公式:d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d =11--n a a n ③ d =mn a a mn -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项看来,73645142,a a a a a a a a +=++=+性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N )二.例题讲解。
一.基本问题例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:(1)已知3315=a ,15345=a ,求61a (2)已知488=S ,16812=S ,求1a 和d (3)已知316=a ,求31S变式:(1)(2008陕西)已知{}n a 是等差数列,421=+a a ,2887=+a a ,则该数列的前10项的和等于( )A. 64B. 100C. 110D. 120(2) (2008广东)记等差数列{}n a 的前n 项和为n S ,若211=a ,204=S ,则=6S ( ) A. 16 B. 24 C. 36 D. 48例2:在等差数列{n a }中,若1a +6a =9, 4a =7, 求3a , 9a .例3: 等差数列{n a }中,1a +3a +5a =-12, 且 1a ·3a ·5a =80. 求通项 n a二.性质的应用例1:(1)若一个等差数列前3项的和为34,最后三项的和为146。
,且所有项的和为390,则这个数列有_____项(2)已知数列{}n a 的前m 项和是30,前2m 项的和是100,则它的前3m 项的和是______ (3)设n S 和n T 分别为两个等差数列的前n 项和,若对于任意的*N n ∈,都有27417++=n n T S n n ,则第一个数列的第11项与第二个数列的第11项的比为________变式:(1)已知等差数列{}n a 中,3a ,15a 是方程0162=--x x 的两根,则_____1110987=++++a a a a a (2)已知两个等差数列{}n a 和{}n b 的前n 项和分别为{}n A 和{}n B ,且3635++=n n B A n n ,则使得nn b a为整数的正整数n 的个数是________三.等差数列的判定例1:已知数列{}n a 的前n 项和为n S 且满足)2(21≥=-n S S a n n n ,11=a(1)求证:⎭⎬⎫⎩⎨⎧n S 1是等差数列(2)求n a 的表达式变式:数列{}n a 中,211=a ,11+=+n n n a a a ,求其通项公式三、考点解析类型一:直接利用等差数列的定义、公式求解例1.(1)求等差数列3,7,11,……的第11项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. 思路点拨:(1)根据所给数列的前2项求得首项和公差,写出该数列的通项公式,从而求出所求项;(2)题中要想判断一数是否为某一数列的其中一项,关键是要看是否存在一正整数n 值,使得n a 等于这一数.总结升华:1.根据所给数列的前2项求得首项1a 和公差d ,写出通项公式n a .2.要注意解题步骤的规范性与准确性. 举一反三:【变式1】求等差数列8,5,2…的第21项 【变式2】-20是不是等差数列0,72-,-7,……的项?如果是,是第几项?如果不是,说明理由.【变式3】求集合*{|7,,100}M m m n n N m ==∈<的元素的个数,并求这些元素的和 类型二:根据公式列方程(组)求解例2.已知等差数列{}n a 中,1533a =,45153a =,试问217是否为此数列的项?若是,说明是第几项?若不是,说明理由。
思路点拨:由于在条件中已知两项的值(两个等式),所以在求解方法上,可以考虑运用方程思想求解基本量首项1a 和公差d ,也可以利用性质求d ,再就是考虑运用等差数列的几何意义。
总结升华:1. 等差数列的关键是首项1a 与公差d ;五个基本量1a 、n 、d 、n a 、n S 中,已知三个基本量便可求出其余两个量;2.列方程(组)求等差数列的首项1a 和公差d ,再求出n a 、n S ,是数列中的基本方法. 举一反三:【变式1】等差数列-10,-6,-2,2,…前多少项的和是54? 【变式2】等差数列{}n a 中, 4d =, 18n a =, 48n S =,求1a 的值. 【变式3】已知等差数列{}n a ,354a =,734a =-,则15a = 。
类型三:等差数列的判断与证明例3.已知数列{}n a 的前n 项和为243n S n n =+,求证:数列{}n a 为等差数列.思路点拨:由等差数列的定义,要判定{}n a 是不是等差数列,只要看1--n n a a (2n ≥)是不是一个与n 无关的常数。
总结升华:1. 定义法和等差中项法是证明等差数列的常用方法.2. 一般地,如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么当常数项0r =时,这个数列一定是等差数列;当常数项0r ≠时,这个数列不是等差数列,但从第二项开始的新数列是等差数列.举一反三:【变式1】已知数列{}n a 的通项公式q pn a n +=,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?【变式2】已知数列{}n a 中,11a =,122n n n a a a +=+(*n N ∈),求证:1{}na 是等差数列。
类型四:利用等差数列的性质例4. 已知等差数列}{n a 中,若381312a a a ++=,381328a a a =,求}{n a 的通项公式。
思路点拨:可以直接列方程组求解1a 和d ;同时留意到脚标31382+=⨯,可以用性质:当2m n p +=时2m n p a a a +=解题.总结升华:利用等差数列的性质解题,往往比较简捷.举一反三:【变式1】在等差数列}{n a 中,2818a a +=,则5a =【变式2】在等差数列}{n a 中,2581120a a a a +++=,则67a a +=【变式3】在等差数列}{n a 中,若169a a +=,47a =, 则3a = , 9a = 例5.等差数列}{n a 前m 项和为30,前2m 项和为100,求它的前3m 项和. 思路点拨:利用等差数列的前n 项和公式d n n na S n 2)1(1-+=求解;或利用性质:“等差数列的连续10项和构成一个新的等差数列”和等差中项求解;或利用相关的函数(2n S An Bn =+)等知识求解。
解析:方法一:利用等差数列的前n 项和公式d n n na S n 2)1(1-+=求解。
方法二:利用等差数列前n 项和公式2)(1n n a a n S +=及性质m n p q +=+,则m n p qa a a a +=+求解。
方法三:根据性质:“已知{a n }成等差数列,则S n ,S 2n -S n , S 3n -S 2n ,……,S kn -S (k-1)n ,……(k ≥2)成等差数列”解题。
方法四:由d n n na S n 2)1(1-+=的变形式解题,由上式知,2)1(1dn a n S n -+= 方法五:∵{a n }为等差数列, ∴设2n S An Bn =+ ∴S m =am 2+bm=30,S 2m =4m 2a+2mb=100, 得220A m =,10B m= ∴S 3m =9m 2a+3mb=210.举一反三:【变式1】等差数列{a n }中,若a 1+a 2+a 3+a 4+a 5=30, a 6+a 7+a 8+a 9+a 10=80, 则a 11+a 12+a 13+a 14+a 15=___________.【变式2】等差数列{a n }中,S m =S n 且m ≠n, 则S m+n =_________.【变式3】等差数列}{n a 前10项和为100,前20项和为10,求它的前30项和. 例6.已知两等差数列}{n a 、{}n b 的前n 项和分别为n S 、n T ,且27417++=n n T S n n ,试求1111b a . 思路点拨:利用前n 项和公式与性质22m n p m n p a a a +=⇒+=解题,或利用21(21)n n S n a -=-解决,或利用等差数列前n 项和2()n S An Bn An B n =+=+形式解题.总结升华:依据等差数列的性质1212n n a a a -+=可以得到12121(21)()(21)2n n n n a a S n a ---+==-,当已知两等差数列}{n a 、{}n b 的前n 项和分别为n S 、n T 时,有2121n n n n a S b T --=,12121212--⋅--=n m n m T S m n b a . 举一反三:【变式1】等差数列}{n a 中,若49a =, 则7S =_________. 【变式2】已知两等差数列}{n a 、{}n b 的前n 项和分别为n S 、n T ,且4352n n S n T n +=-,则1010ab = . 例7.已知三个数成等差数列,其和为15,其平方和为83,求此三个数。