树脂基复合材料的力学性能

合集下载

《玻璃纤维-环氧树脂复合材料力学性能研究》

《玻璃纤维-环氧树脂复合材料力学性能研究》

《玻璃纤维-环氧树脂复合材料力学性能研究》篇一玻璃纤维-环氧树脂复合材料力学性能研究一、引言复合材料是近年来科学研究和技术开发的重要领域,具有卓越的物理、化学和力学性能。

其中,玻璃纤维/环氧树脂复合材料因具有优异的强度、刚度、耐腐蚀性等特点,被广泛应用于航空、航天、汽车、建筑等多个领域。

因此,对其力学性能的深入研究具有重要意义。

本文将探讨玻璃纤维/环氧树脂复合材料的力学性能,包括其拉伸性能、弯曲性能、冲击性能等,以期为相关领域的研究和应用提供理论依据。

二、材料与方法2.1 材料实验所使用的玻璃纤维/环氧树脂复合材料由高质量的玻璃纤维和环氧树脂基体组成。

玻璃纤维具有高强度、高模量等特点,而环氧树脂基体则具有良好的粘结性和耐腐蚀性。

2.2 方法(1)样品制备:将玻璃纤维与环氧树脂按照一定比例混合,制备成复合材料样品。

(2)力学性能测试:采用万能材料试验机进行拉伸性能测试,采用三点弯曲法进行弯曲性能测试,采用冲击试验机进行冲击性能测试。

(3)数据分析:对实验数据进行统计分析,计算各项力学性能指标的平均值、标准差等。

三、结果与分析3.1 拉伸性能通过拉伸性能测试,我们发现玻璃纤维/环氧树脂复合材料具有较高的拉伸强度和拉伸模量。

这主要归因于玻璃纤维的高强度和高模量特性,以及其与环氧树脂基体之间的良好界面结合。

此外,适当的纤维含量和分布也对提高复合材料的拉伸性能起到了重要作用。

3.2 弯曲性能在弯曲性能测试中,玻璃纤维/环氧树脂复合材料表现出较高的弯曲强度和弯曲模量。

这得益于玻璃纤维的优异性能以及其在复合材料中的有效承载作用。

此外,环氧树脂基体的良好韧性和粘结性也有助于提高复合材料的弯曲性能。

3.3 冲击性能冲击性能测试结果表明,玻璃纤维/环氧树脂复合材料具有较好的冲击强度和韧性。

这主要归因于玻璃纤维的增强作用以及环氧树脂基体的能量吸收能力。

此外,复合材料的微观结构对其冲击性能也有一定影响。

四、讨论通过对玻璃纤维/环氧树脂复合材料的力学性能研究,我们可以得出以下结论:(1)玻璃纤维的增强作用对复合材料的力学性能具有显著影响。

不饱和聚酯树脂及复合材料

不饱和聚酯树脂及复合材料

CH2 CH2 CH2
乙二醇,具有对称结构,由乙二醇制得的不饱和聚酯有强烈的结 晶倾向,与苯乙烯的相容性较差。为此常要对不饱和聚酯的端羟 基进行酰化,以降低结晶倾向,改善与苯乙烯的相容性,提高固 化物的耐水性及电性能。如在乙二醇中添加一定量的丙二醇,亦 能破坏其对称性,从而降低结晶倾向,使所得的聚酯和苯乙烯混 溶性良好,而且固化后的树脂在硬度和热变形温度方面也较单纯 用乙二醇所制得的树脂为好。 多元醇(例如季戊四醇),使制得的聚酯带有支链,从而可提高固 化树脂的耐热性与硬度。只要加入少量季戊四醇代替二元醇就使 聚酯的粘度有很大增加,并易于凝胶。
二元醇对UPR的影响 1,2-丙二醇,分子结构中有不对称的甲基,由此得到的聚酯 结晶倾向较少,与交联剂苯乙烯有良好的相容性。树脂固化 后具有良好的物理与化学性能。
1,2-丙二醇和1,3-丙二醇的区别
OH OH CH3 CH CH2 OH OH R R O C O C OH R OH R O C O CH2 CH2 CH2 O O C CH3 O CH CH 2 O O C R O C R n n
高性能树脂及复合材料
不饱和聚酯树脂 (Unstaturated Polyester Resin, UPR)
授课内容
1 2
3 4 不饱和聚酯树脂的发展简史
不饱和聚酯树脂的合成原理
不饱和聚酯树脂的性能和分类 不饱和聚酯树脂基复合材料
1
不饱和聚酯树脂的发展简史
聚酯是主链上含有酯键的高分子化合物总称 ,一般由二元羧 酸和二元醇经缩聚反应而成。 不饱和聚酯树脂的主要原料为不饱和二元酸(顺酸酐、反丁烯 二酸、甲基反丁烯二酸等)、饱和二元酸(邻苯二甲酸酐、间 苯二酸、己二酸、六氯内次甲基四氢邻苯二甲酸等),二元醇 类(乙二醇、丙二醇、一缩二乙二醇、新戊二醇等)以及交联 用单体(苯乙烯、乙烯基甲苯、甲基丙烯酸甲酯、苯二甲酸二 丙烯酯、二乙烯基苯和三聚氰酸三丙烯酯等)组成的。

树脂基复合材料研究进展

树脂基复合材料研究进展

先进树脂基复合材料研究进展摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。

关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITESABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology.Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。

目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。

树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。

用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。

树脂基复合材料

树脂基复合材料
用于制作临时性冠、桥、嵌体等,通常为双组分化学 固化。
(四)根据临床修复过程
1.直接修复复合树脂
用于直接充填修复,目前的大多数复合树脂。
2.间接修复复合树脂
固化过程在体外,力学性能更好。
(五)根据固化方式
1.化学固化复合树脂(chemical cure)
又称自凝复合树脂,一组分含引发剂,另一组分含促进剂,混合后 室温2~5分钟固化。
可将无机填料含量提高到50%,可提高力学性能,降 低聚合收缩和吸水率。
2、 混合填料(hybrid filler)型
大颗粒填料(0.1~10μm)和少量超微填料混合组成。 粒子的表面积小,增稠作用小。 无机填料含量大,力学性能好,聚合收缩小。
根据填料粒度大小可分为:
细混合填料复合树脂(10μm) 超细混合填料复合树脂(5.0μm) 微混合填料复合树脂(不超3.0μm) 粒度越小,抛光性能越好。 前两者具有良好力学性能和抛光性能,称为通用型复合
而获得足够的有效贮存期。常用的阻聚剂是一些酚类 化合物,如对苯二酚。
2、颜料 为获得复合树脂与天然牙颜色相匹配
二、 固化反应
以甲基丙烯酸酯类为树脂基质的复合材料的固化反 应是活性自由基引发的聚合反应;
自凝复合树脂的聚合是引发剂和促进剂的氧化还原 反应产生的自由基引发的聚合反应;
光固化复合树脂通过可见蓝光引发聚合; 双重固化复合树脂用氧化还原反应引发和光引发相
化学固化型复合树脂在两组分调和时易夹裹空气形 成微小气泡,使表面变得粗糙,易粘附色素,使修 复体变色。
光固化复合树脂不易粘附色素,因此不易变色。
通常填料粒度越小,磨改抛光效果越好,表面光洁 度和审美性能佳。
纳米陶瓷修复材料
...之后

碳纤维树脂基复合材料强度

碳纤维树脂基复合材料强度

碳纤维树脂基复合材料强度
【最新版】
目录
1.碳纤维复合材料的概述
2.碳纤维复合材料的强度
3.碳纤维复合材料的应用
4.我国在碳纤维复合材料研究方面的发展
正文
【1.碳纤维复合材料的概述】
碳纤维复合材料是由碳纤维和一种结合剂(通常是一种树脂)组成的复合材料。

碳纤维具有较高的抗弯强度和良好的抗拉强度,因此在许多应用中被认为是一种理想的材料。

【2.碳纤维复合材料的强度】
碳纤维复合材料的强度取决于许多因素,包括碳纤维的类型和质量、结合剂的类型和质量以及制造过程。

一般来说,碳纤维复合材料的抗拉强度在 3000 到 4000 兆帕之间,抗弯强度在 200 到 300 兆帕之间。

【3.碳纤维复合材料的应用】
由于其优异的力学性能,碳纤维复合材料被广泛应用于航空航天、汽车、电子和军事等领域。

例如,碳纤维复合材料被用于制造飞机和直升机的结构部件,汽车车身和引擎盖,以及电子产品的壳体和散热器等。

【4.我国在碳纤维复合材料研究方面的发展】
我国在碳纤维复合材料研究方面取得了显著的进展。

我国的碳纤维复合材料产业已经形成了一定的规模,并且已经拥有了一批具有自主知识产权的关键技术。

此外,我国政府也一直在大力推动碳纤维复合材料的研究
和应用。

总的来说,碳纤维复合材料是一种具有巨大潜力的材料,其在各个领域的应用前景广阔。

复合材料力学性能表征

复合材料力学性能表征

复合材料力学性能表征(characterization of mechanical properties of composites)力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。

试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。

此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。

拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。

通过拉伸试验可获得如下材料的性能指标:式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。

式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm.拉伸弹性模量Et式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。

由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目:σL:∥纤维方向的拉伸强度;σT:⊥纤维方向的拉伸强度;EL:∥纤维方向的拉伸模量;ET:⊥纤维方向的拉伸模量.应力—应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制.压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F (mm2),则压缩强度σc为:由压缩试验中应力—应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。

由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测σL:∥纤维方向的压缩强度;σT:⊥纤维方向的压缩强度;EL:∥纤维方向的压缩模量;ET:上纤维方向的压缩模量。

弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。

树脂基复合材料动态力学性能及应变率效应研究

树脂基复合材料动态力学性能及应变率效应研究

树脂基复合材料动态力学性能及应变率效应研究
慕琴琴;燕群;杭超;徐健
【期刊名称】《工程与试验》
【年(卷),期】2022(62)2
【摘要】基于一维应力波理论,采用分离式Hopkinson压杆和拉杆技术对铺层树脂基复合材料进行了中高应变率下的动态力学性能研究,获得了不同应变率下不同加载方向树脂基复合材料的应力应变曲线,并就应变率效应对材料失效模式和强度极限的影响进行了进一步研究。

研究发现:树脂基复合材料的压缩强度表现为较为明显的正应变率效应,而压缩模量表现为负应变率效应;拉伸强度及拉伸模量几乎不受应变率影响;纬向方向拉伸强度高于压缩强度,经向方向拉伸强度低于压缩强度;纬向方向抗拉和抗压能力均高于经向方向;试样的失效模式均未表现出应变率相关性,且与加载方向无关。

所采用的试样设计方法与测试方法可为复合材料动态力学性能的研究提供参考,得出的结论可为树脂基复合材料结构的设计与抗冲击的有效数值模拟提供支撑。

【总页数】4页(P15-17)
【作者】慕琴琴;燕群;杭超;徐健
【作者单位】中国飞机强度研究所航空噪声与动强度航空科技重点实验室
【正文语种】中文
【中图分类】TB301
【相关文献】
1.树脂基纤维增强复合材料高应变率下力学性能的研究进展
2.多步接枝改性锐钛矿型二氧化钛/氰酸酯树脂基复合材料--静态、动态力学性能与耐热性能测试
3.T800碳纤维增强树脂基单向复合材料动态力学性能测试研究
4.研究热固性树脂固化的动态扭振法──LHX-I型树脂固化仪在热固性树脂和树脂基复合材料固化研究中的应用
5.铝基碳纳米管增强复合材料的动态力学行为及应变率效应
因版权原因,仅展示原文概要,查看原文内容请购买。

树脂基复合材料

树脂基复合材料

树脂基复合材料树脂基复合材料是一种将多种共性结合在一起的新型材料,由纤维增强树脂基体和复合材料完成。

复合材料有着良好的力学性能、较少的收缩性和减震性,具有重量轻、抗拉强度高的特点,是现代航空航天设计中非常重要的一种材料。

树脂基复合材料是由聚合物树脂和纤维材料组成的。

聚合物树脂能够在正常使用温度范围内具有很好的机械性能和耐久性,而纤维材料则使电性能、热稳定性和疲劳耐久性等性能得到明显提高。

加工过程中,纤维材料能够把聚合物树脂均匀地分散在一起,这样可以使复合材料具有更高的强度和更强的感应响应。

树脂基复合材料具有很多优势。

首先,它具有较高的强度与轻质,重量轻,耐腐蚀,耐冲击,电气绝缘,耐湿热,机械性能稳定,施工容易,可再利用,价格低,安全性高等特点,激发了工程师的创新精神,从而使得复合材料在现代航空行业中变得越来越受欢迎。

其次,复合材料还具有很好的机械性能,其附加的纤维材料提高了韧性、抗拉强度、耐水蚀等特性,可以有效地提升工程结构的强度,从而实现高效可靠的航空设计。

复合材料也有一些缺点,其中最重要的是它的价格较高。

现代航空航天设计中经常使用复合材料,但由于它的价格昂贵,往往会给航空公司造成负担,削弱它们的竞争力。

另外,由于复合材料表面细小的纤维以及其物理性质的不稳定性,树脂基复合材料的力学性能也存在一定的局限性。

尽管复合材料存在一些缺点,但其积极的作用和优点已经被广泛地认识到。

复合材料表现出良好的机械性能和耐久性,并且具有体积小、质量轻、力学性能高、价格低等特点,运用在航空航天设计中得到广泛应用,其应用将使航空航天工程的范围更加广泛。

综上所述,树脂基复合材料是一种具有很多优势的新型材料,具有良好的力学性能、较少的收缩性和减震性,并且还具有重量轻、抗拉强度高等优点,在现代航空航天设计中得到广泛应用,它的应用将为航空航天研究和设计带来更多可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

树脂基复合材料的力学性能
力学性能是材料最重要的性能。

树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。

1、树脂基复合材料的刚度
树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。

树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。

由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。

此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。

但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。

对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。

另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。

2、树脂基复合材料的强度
材料的强度首先和破坏联系在一起。

树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。

各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。

树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。

对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。

单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。

其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。

实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。

单向树脂基复合材料的横向拉伸强度和压缩强度也不同。

实验表
明,横向压缩强度是横向拉伸强度的4~7倍。

横向拉伸的破坏模式是基体和界面破坏,也可能伴随有纤维横向拉裂;横向压缩的破坏是因基体破坏所致,大体沿45°斜面剪坏,有时伴随界面破坏和纤维压碎。

单向树脂基复合材料的面内剪切破坏是由基体和界面剪切所致,这些强度数值的估算都需依靠实验。

杂乱短纤维增强树脂基复合材料尽管不具备单向树脂基复合材料轴向上的高强度,但在横向拉、压性能方面要比单向树脂基复合材料好得多,在破坏机理方面具有自己的特点:编织纤维增强树脂基复合材料在力学处理上可近似看作两层的层合材料,但在疲劳、损伤、破坏的微观机理上要更加复杂。

树脂基复合材料强度性质的协同效应还表现在层合材料的层合效应及混杂复合材料的混杂效应上。

在层合结构中,单层表现出来的潜在强度与单独受力的强度不同,如0/90/0层合拉伸所得90°层的横向强度是其单层单独实验所得横向拉伸强度的2~3倍;面内剪切强度也是如此,这一现象称为层合效应。

树脂基复合材料强度问题的复杂性来自可能的各向异性和不规则的分布,诸如通常的环境效应,也来自上面提及的不同的破坏模式,而且同一材料在不同的条件和不同的环境下,断裂有可能按不同的方式进行。

这些包括基体和纤维(粒子)的结构的变化,例如由于局部的薄弱点、空穴、应力集中引起的效应。

除此之外,界面粘结的性质和强弱、堆积的密集性、纤维的搭接、纤维末端的应力集中、裂缝增长的干扰以及塑性与弹性响应的差别等都有一定的影响。

相关文档
最新文档