先进树脂基复合材料

合集下载

树脂基复合材料

树脂基复合材料

树脂基复合材料随着科学技术的不断发展,材料科学领域也在不断取得突破性进展。

树脂基复合材料作为一种重要的功能材料,在航空航天、汽车制造、建筑等领域得到了广泛的应用。

它具有重量轻、强度高、耐腐蚀、设计自由度大等优点,因此备受青睐。

本文将就树脂基复合材料的概念、分类、制备方法、性能及应用进行介绍。

一、概念。

树脂基复合材料是由树脂作为基体,再加入填料、增强材料等组成的一种复合材料。

树脂通常选择环氧树脂、酚醛树脂、不饱和聚酯树脂等,而填料和增强材料则有玻璃纤维、碳纤维、芳纶纤维等。

树脂基复合材料具有优异的力学性能和耐腐蚀性能,广泛应用于航空航天、汽车制造、建筑等领域。

二、分类。

树脂基复合材料可以根据树脂的种类、增强材料的种类、制备工艺等进行分类。

按照树脂的种类,可以分为环氧树脂基复合材料、酚醛树脂基复合材料、不饱和聚酯树脂基复合材料等。

按照增强材料的种类,可以分为玻璃纤维增强树脂基复合材料、碳纤维增强树脂基复合材料、芳纶纤维增强树脂基复合材料等。

根据制备工艺的不同,可以分为手工层叠法、预浸法、注射成型法等。

三、制备方法。

树脂基复合材料的制备方法多种多样,常见的包括手工层叠法、预浸法、注射成型法等。

手工层叠法是最早的制备方法,其工艺简单,成本低,但生产效率低,质量不稳定。

预浸法是将增强材料浸泡在树脂中,然后烘干成型,工艺复杂,但成型速度快,质量稳定。

注射成型法是将树脂和增强材料混合后通过模具注射成型,工艺复杂,但成型速度快,适用于大批量生产。

四、性能。

树脂基复合材料具有优异的力学性能和耐腐蚀性能。

其强度和刚度远高于金属材料,比重却只有金属的三分之一至四分之一。

同时,树脂基复合材料具有优异的耐腐蚀性能,不易受到化学物质的侵蚀。

此外,树脂基复合材料还具有设计自由度大、成型工艺灵活等优点。

五、应用。

树脂基复合材料在航空航天、汽车制造、建筑等领域得到了广泛的应用。

在航空航天领域,树脂基复合材料被用于制造飞机机身、飞机翼、航天器外壳等部件,以减轻重量、提高飞行性能。

先进纤维增强树脂基复合材料在航空航天工业中的应用

先进纤维增强树脂基复合材料在航空航天工业中的应用

军民两用技术与产品2010·1先进纤维增强树脂基复合材料在航空航天工业中的应用航天材料及工艺研究所赵云峰!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!"一、引言随着航空航天工业的发展,先进飞机、运载火箭和导弹、卫星等的高性能、高可靠性和低成本,很大程度上是由于新材料和新工艺的广泛应用。

先进复合材料是航空航天高技术产品的重要组成部分,它能有效降低飞机、运载火箭、导弹和卫星的结构重量,增加有效载荷和射程,降低成本。

国外各类航空航天器结构已经广泛采用了先进的纤维增强树脂基复合材料,其中应用最多的是碳纤维增强环氧树脂复合材料。

目前,先进复合材料已经取代了铝合金,成为现代大型飞机的首要结构材料。

二、先进纤维增强树脂基复合材料的特点先进纤维增强树脂基复合材料由高性能增强纤维和基体树脂按一定的工艺方法复合而成。

与其它材料相比,具备如下特点:(1)与金属材料相比,复合材料具有高的比强度和比模量,可以大幅减轻结构重量;(2)各向异性,具有良好的可设计性,可以充分发挥增强纤维的性能;(3)具有优异的耐疲劳、耐腐蚀和抗振动等特性;(4)成型工艺性好,易于制造一次整体成型复杂零件。

表1列出了几类典型的树脂基复合材料和金属材料的性能。

三、先进纤维增强树脂基复合材料在航天产品上的典型应用欧洲的“阿里安4”运载火箭采用了大量的碳纤维增强环氧树脂复合材料。

卫星发射支架,仪器舱,大型整流罩,第一、二级之间的分离壳,助推器前锥和第二、三级级间段均采用碳纤维增强环氧树脂复合材料制造而成。

“阿里安4”运载火箭卫星整流罩最大外径4米、长约12米。

由端头、前锥段、圆柱段和倒锥几部分组成。

端头为铝合金加强筋环结构。

2023年树脂基复合材料行业市场前景分析

2023年树脂基复合材料行业市场前景分析

2023年树脂基复合材料行业市场前景分析随着新材料技术的不断发展,树脂基复合材料行业已经成为了国内外关注的热点。

树脂基复合材料是指利用高强度的复合材料增强树脂材料,具有轻量化、高强度、高刚度等诸多优点,已经被广泛应用于航空航天、汽车、船舶、电子、建筑、医疗、文化、体育、娱乐等众多领域,并逐步替代传统材料。

树脂基复合材料行业市场前景分析如下:一、市场规模不断扩大当前,全球树脂基复合材料市场规模已达到数千亿美元,未来预计仍将保持快速增长,其中北美、欧洲和亚太地区是市场发展的主要地区。

根据市场研究机构的数据显示,2019年全球树脂基复合材料的市场规模达到了1170亿美元,预计到2024年将增长到1710亿美元。

国内市场规模也在不断扩大,目前已超过600亿元人民币,预计到2025年中国市场将超过2000亿元人民币。

二、应用领域不断拓展树脂基复合材料的应用范围非常广泛,涵盖了多个领域。

在航空航天领域,树脂基复合材料被广泛应用,能够有效地降低航空器的重量,提高燃油效率;在汽车领域,树脂基复合材料可以大幅度减轻车身重量,进而带来更低的油耗和更高的安全性能;在建筑领域,树脂基复合材料被用于新型建筑材料的制造,具有良好的保温隔热性、防水透气性和抗冲击性;在体育器材制造领域,树脂基复合材料不仅轻盈耐用,而且可以用来加强器材结构,提高其表面质量和美观度。

因此,随着市场需求的增长和技术的不断进步,未来树脂基复合材料的应用领域将会更加广泛。

三、技术不断升级树脂基复合材料的发展一直面临着技术瓶颈。

但随着科学技术的不断进步,树脂基复合材料的生产技术正在逐渐成熟。

未来,随着先进制造技术的不断升级,如3D打印和机器人自动化等技术的应用,树脂基复合材料的生产效率将会大幅提高,技术也将更加成熟。

此外,具有环保、可再生和可降解性的树脂基复合材料的研发和生产也是未来发展的重点。

综上所述,树脂基复合材料市场有着广阔的市场空间,其中涵盖了多个领域。

树脂基复合材料研究进展

树脂基复合材料研究进展

先进树脂基复合材料研究进展摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。

关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITESABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology.Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。

目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。

树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。

用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。

复合材料试验工职业技能鉴定考试题库附答案(含各题型)

复合材料试验工职业技能鉴定考试题库附答案(含各题型)

复合材料试验工职业技能鉴定考试题库附答案(含各题型)一、单选题1.以下哪项不是软模成型工艺的优点()。

A、与金属模具成型相比,产品的结构尺寸精确易控B、软膜膨涨加压,可以解决复杂结构构件加压问题C、固化降温后,软膜收缩,便于脱模D、软膜可以多次使用,降低制造成本参考答案:A2.先进树脂基复合材料的纤维体积通常为()。

A、40%以下B、30%~50%C、50%~70%D、70%以上参考答案:C3.预浸料需要在()下贮存。

A、常温B、高温C、低温D、无所谓参考答案:C4.()是制造蜂窝夹芯用的防腐底胶。

A、SJ-2CB、J-70C、J-71D、J-47B参考答案:B5.聚酰胺树脂构成的复合材料命名不正确的是()。

A、玻璃纤维聚酰胺树脂复合材料B、玻璃纤维/聚酰胺树脂复合材料C、聚酰胺材料D、聚酰胺基玻璃纤维复合材料参考答案:C6.下列纤维中模量最高的是()。

A、S-2高强玻璃纤维B、高膜玻璃纤维C、T300碳纤维D、M40碳纤维参考答案:D7.阳模是()A、分成两瓣的B、向内凹陷的C、向外凸出的D、分成多瓣的参考答案:C8.纤维增强塑料一词缩写为()。

A、FRPB、CFRPC、GFRP参考答案:A9.无损检测通常可以检测复合材料制品的缺陷是()。

A、纤维与基体树脂的比例不当B、铺层方向错误C、铺层顺序错误D、疏松参考答案:D10.由于SJ-2A胶膜自粘性差,贴胶膜一般在电热平台上进行,温度控制在()。

A、20~30℃B、30~40℃C、40~50℃D、50~60℃参考答案:C11.车间内的明.暗插座距离地面的高度一般不低于多少米?()A、0.3米B、0.2米C、0.1米D、0.5米参考答案:A12.钢的含碳量是()。

A、小于2.0%B、小于2.11%C、小于1.8%D、小于3%参考答案:B13.J-47C的用途是()。

A、板─芯胶接B、板─板胶接C、夹层结构填充补强D、胶接用底胶参考答案:A14.胶粘剂又称粘合剂,它是能把()。

《树脂基复合材料》课件

《树脂基复合材料》课件

航空航天领域
树脂基复合材料具有轻量化和高 强度特点,在飞机、卫星等航空 航天组件中得到广泛应用。
体育器材
树脂基复合材料用于制造高性能 的体育器材,如高尔夫球杆、网 球拍等。
优缺点:Advantages and Disadvantages
优点
高强度、高刚度、耐腐蚀性、轻量化、设计自由度高。
缺点
制造工艺复杂、成本较高、部分树脂容易老化和热塑性。
2 增强材料
常见的增强材料包括玻璃 纤维、碳纤维、芳纶纤维 等。
3 制备方法
制备方法包括手工层叠法、 自动化层叠法、预浸法等。
制备方法:Methods for Fabricating Resin Based Composite Materials
1
手工层叠法
通过手工将树脂和增强材料依次叠加,然
自动化层叠法
《树脂基复合材料》PPT 课件
本课件将介绍树脂基复合材料的定义、特点、分类、制备方法、应用领域、 优缺点以及未来发展趋势。
定义:What are Resin Based Composite Materials?
树脂基复合材料是由树脂基质和增强材料组成的一种复合材料。树脂负责提供基质的连续相,而增强材料则增 加材料的强度和刚度。
未来发展趋势:Future Development Trends
树脂基复合材料领域的研究正在不断突破,未来的发展趋势包括:
• 开发新型树脂和增强材料,提高材料性能。 • 改进制备工艺,降低成本,提高生产效率。 • 加强环境保护和可持续性,推动绿色树脂基复合材料的发展。
耐腐蚀性
树脂基复合材料具有出色的 耐腐蚀性,能够抵抗酸碱侵 蚀和一些化学物质的腐蚀。
设计自由度

树脂基复合材料简介-2022年学习资料

树脂基复合材料简介-2022年学习资料

©传统的聚合物基体是热固性的,-o优点:良好的工艺性-©由于固化前,热固性树脂粘度很低,因而宜于在常温常压 下浸渍纤维,并在较低的温度和压力下固化成型;-©固化后具有良好的耐蚀性和抗蠕变性;-⊙缺点:预浸料需低温冷 且贮存期有限,成型周期长和-材料韧性差。-6
热塑性树脂-。1具有线形或支链结构的有机高分子化合物。特点是预-热软化或熔融而处于可塑性状态,冷却后又变坚 。-2成型利用树脂的熔化、流动,冷却、固化的物理过程-变化来实现的,过程具有可逆性,能够再次加工。-。3聚 状态为晶态和非晶态的混合,结晶度在20%-85%-b-热塑性高聚物模量与-结晶度增大-整责!-温度关系-0 -冻-Tg:玻璃化转变温度,-,GPa-10-Tf:流动温度-Tm:粘流温度-熔点-Tg温度-6
三·树脂基复合材料的制备成型工艺方法-预浸料-预混料-纤维、树脂、添加剂等原料-二步法:降低孔隙-率,提高 匀性-预成型-固化-一步法:工艺简单,-但复合材料中会存-在孔洞,均匀性差-脱模-整修-10
成型工艺主要方法-3-手糊成型-喷射成型-袋压成型-5-缠绕成型-拉挤成型-树脂传递模成型-11
四·树脂基复合材料的应用举例-20世纪60年代美国空军材料研究所将B纤维增强环氧树脂复-合材料命名为先进复 材料-先进树先进树脂基复合材料在军用飞机上的应用20多年来-走过了一条由小到大由弱到强,由少到多,由结构受 到增-加功能的道路。第三代歼击机如法国的Raflae、j-瑞典的JAs一-39,树脂基复合材料用量分别达4 %和30%,第四代歼击机-如美国的F.22和F一35,树脂基复合材料用量分别达24%和-30%以上。F一2 飞机主要应用耐热150℃以上IM7中模量碳纤-维增强韧性BMI复合材料,应用的主要部位包括前、中机身,-机 蒙皮,框,梁,壁板等,成型工艺技术主要为热压罐和-RTM成型。-12

树脂基复合材料

树脂基复合材料

树脂基复合材料树脂基复合材料是一种将多种共性结合在一起的新型材料,由纤维增强树脂基体和复合材料完成。

复合材料有着良好的力学性能、较少的收缩性和减震性,具有重量轻、抗拉强度高的特点,是现代航空航天设计中非常重要的一种材料。

树脂基复合材料是由聚合物树脂和纤维材料组成的。

聚合物树脂能够在正常使用温度范围内具有很好的机械性能和耐久性,而纤维材料则使电性能、热稳定性和疲劳耐久性等性能得到明显提高。

加工过程中,纤维材料能够把聚合物树脂均匀地分散在一起,这样可以使复合材料具有更高的强度和更强的感应响应。

树脂基复合材料具有很多优势。

首先,它具有较高的强度与轻质,重量轻,耐腐蚀,耐冲击,电气绝缘,耐湿热,机械性能稳定,施工容易,可再利用,价格低,安全性高等特点,激发了工程师的创新精神,从而使得复合材料在现代航空行业中变得越来越受欢迎。

其次,复合材料还具有很好的机械性能,其附加的纤维材料提高了韧性、抗拉强度、耐水蚀等特性,可以有效地提升工程结构的强度,从而实现高效可靠的航空设计。

复合材料也有一些缺点,其中最重要的是它的价格较高。

现代航空航天设计中经常使用复合材料,但由于它的价格昂贵,往往会给航空公司造成负担,削弱它们的竞争力。

另外,由于复合材料表面细小的纤维以及其物理性质的不稳定性,树脂基复合材料的力学性能也存在一定的局限性。

尽管复合材料存在一些缺点,但其积极的作用和优点已经被广泛地认识到。

复合材料表现出良好的机械性能和耐久性,并且具有体积小、质量轻、力学性能高、价格低等特点,运用在航空航天设计中得到广泛应用,其应用将使航空航天工程的范围更加广泛。

综上所述,树脂基复合材料是一种具有很多优势的新型材料,具有良好的力学性能、较少的收缩性和减震性,并且还具有重量轻、抗拉强度高等优点,在现代航空航天设计中得到广泛应用,它的应用将为航空航天研究和设计带来更多可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纤维缠绕技术:多自由度准确、自动化、异形结构缠绕技术,近 年来也得到了相当快的发展。
纤维铺放技术:大型结构的自动化铺放成型设备及控制技术。 先进固化技术: 电子束固化技术:利用电子加速器产生的高能电子束引发树脂聚
合和交联的电子束固化技术,可节约制造成本20%-60%。 光固化技术、微波固化技术:由液态的单体或预聚物受紫外或可
比强度、比模量高
低线膨胀系 数
阻尼性好 生物相容性
好 抗疲劳性能
好 导电性
1.2 聚芳酰胺纤维(Kevlar)
聚芳酰胺纤维:是芳香族酰胺纤维的总 称。
• 聚芳酰胺纤维在20世纪70年代由杜邦公 司率先产业化,注册商标为Kevlar系列。
品种:Kevlar纤维为对位芳酰胺纤维。
• 第一代产品:RI型、29型和49型;
应用:已成为支撑航空、航天和国防尖端技术领域的 最重要的结构材料。
• NASA最早成立ACM研究机构,并开展相关材料技术的 研究。
• ACM的发展和应用是现代产业活动中成长最快的,对 促进世界各国军用和民用领域的高科技现代化,起到 了至关重要的作用。
我国发展现状
始于1969年,研究应用主要集中于国防以及航空和航天工 业。开始系统、完整、有计划地开展ACM研究是从“六五 ”计划期间开始。经过20多年的努力,国家通过中长期科 技发展规划的指导以及各种科研计划的支持,使我国ACM 的研究取得了长足的进展。
• 双马来酰亚胺 (BMI):耐湿热性能和耐热性均优于环氧 树脂。BMI可以和多种化合物共聚以改善其韧性。
• 耐高温聚酰亚胺(PMR):更高耐温等级,可在350℃ 以上长期使用。
3 先进树脂基复合材料的成型技 术
• ACM制造成本在产品中占用很大的比重, 而目前影响ACM广泛使用的最大障碍是价 格问题。因此如何发展新的制造技术,降 低先进树脂基复合材料的制造成本,是当 前先进树脂基复合材料研究的重点。
– 高强型(HT) 、
– 超高强型( UHT)、
– 高模量型( HM)、
– 超高模量型( UHM)
• 按制造先驱体来分 类: – 聚丙烯腈基 (PAN)碳纤维、 – 沥青基碳纤维和 – 人造丝(粘胶丝) 碳纤维
表1-1 日本东丽公司碳纤维及其特性
高强度 高模量
低密度
表1-2 碳纤维复合材料在工业中的应用和特性
ACM技术及发展 • 先进的增强材料; • 高性能树脂基体; • 成型工艺技术; • ACM在各个领域中的应用。
1 先进增强材料
先进树脂基复合材料常用的增强纤维包括 碳纤维和其他高性能有机纤维。 • 碳纤维(CF)的研究:主要是如何提高模量和 强度、降低生产成本。 • 高性能有机纤维开发:包括柔性链结构的超 高分子量聚乙烯纤维(UHMPE )、芳纶纤维( Kevlar)、刚性链结构的PBO纤维等。 • 改性:各种纤维都有自身的优势,但也存在 不足和缺点,需要改性。
• 美国准备通过低成本技术研究,设想在10-15年的时间 内实现先进战斗机主要复合材料结构件制造成本降低 一个数量级的目标。
(4) 发展ACM结构/功能一体化的综合技术
ACM技术正向着技术综合化、功能多样化(隐身、防热 )和智能化方向发展。
第一章 ACM中的高性能先进增强材料
Байду номын сангаас
1.1 碳纤维
• 按力学性能分 类:
(2) 重视制造技术研究和综合配套技术协调发展
除继续采用成熟的热压罐成型技术外,还应对编织/RTM 、缝编/RTM、缠绕、拉挤、注塑等。
(3) 重点开发低成本制造技术
降低成本应从设计、材料、制造、使用、维护等多方 面综合考虑,应推广大丝束纤维(48-320K)、RTM工艺 、固化自动监控、整体成型和真空辅助成型等技术的 应用。
先进树脂基复合材料
材料科学与工程学院 材料学
2011年9月
课程内容
• 前言 1. 先进增强材料 2. 高性能树脂基体 3. 先进制造工艺 4. 先进复合材料应

前言
先进复合材料(ACM):由高性能的基体(聚合物、金属 或陶瓷等)与高性能纤维材料,通过特定的成型工艺复 合而成的复合材料。
ACM特性:比强度和比刚度高、可设计性强、抗疲劳 断裂性能好、耐腐蚀、结构尺寸稳定性好以及适于大 面积整体成形的独特优点。
见光、微波的照射经聚合反应转化为固化聚合物的过程。 固化过程实时监控技术:利用神经网络智能系统,实时监测固化
过程,并通过智能反馈系统实现实时进行控制。
4 先进树脂基复合材料的发展方向
• 高性能纤维和高韧性树脂的应用可提高ACM的各种综 合性能和放宽设计许用值,从而可将减重效率由目前 的20%-25%提高到30%或更高。
先进成型技术
热压罐成型技术:是ACM的主要成型技术,其优点是成型的复合 材料性能高,质量稳定并适合大型复杂外形复合材料构件的成型 ,缺点是设备投资大,能耗高,制造成本高。
预成型体/液体成型工艺技术(LCM):是先进树脂基复合材料低成 本制造技术的一个重要方向,已获得成功的有RTM和RFI等。
2 高性能树脂基体
树脂基体的研究:主要围绕着改善耐湿热性能、提高韧 性和工作温度。
• 环氧树脂(EP):具有工艺性能好、综合力学性能好 和价格便宜等一系列优点,但耐湿热性能较差。
• 氰酸酯树脂(AC):吸湿率低、韧性好、介电性能好 。是未来结构/功能一体化的优良材料,氰酸酯树脂一 般需要较高的后处理温度,这给使用带来不便。
• 第二代产品KevlarHX系列:高粘接型Ha、 高强型Ht(129)、原液着色型Hc(100 )、高性能中模型Hp(68)、高模型Hm (149)和高伸长型He(119)。
典型的物理性能表1-3。
(1) 提高组分性能
• 纤维: 向高性能化、轻量化方向发展。 碳纤维由T300 、AS4转向T800、IM7,如F-22、EF2000、B777等均用 T800,与T300相比其性能可提高30%~40%。
• 树脂:选用改性双马BMI和改性环氧,如F-22主承力结 构用5250-4BMI树脂,耐温达200℃。B777采用3900-2 高韧性环氧树脂。第四代韧性双马树脂5260,耐温 230℃,较适合于民航机采用。
相关文档
最新文档