★结构方程模型要点

合集下载

★结构方程模型要点

★结构方程模型要点

★结构方程模型要点一、结构方程模型的模型构成1、变量观测变量:能够观测到的变量(路径图中以长方形表示)潜在变量:难以直接观测到的抽象概念,由观测变量推估出来的变量(路径图中以椭圆形表示)内生变量:模型总会受到任何一个其他变量影响的变量(因变量;路径图会受外生变量:模型中不受任何其他变量影响但影响其他变量的变量(自变量;路中介变量:当内生变量同时做因变量和自变量时,表示该变量不仅被其他变量影响,还可能对其他变量产生影响。

内生潜在变量:潜变量作为内生变量内生观测变量:内生潜在变量的观测变量外生潜在变量:潜变量作为外生变量外生观测变量:外生潜在变量的观测变量中介潜变量:潜变量作为中介变量中介观测变量:中介潜在变量的观测变量2、参数(“未知”和“估计”)潜在变量自身:总体的平均数或方差变量之间关系:因素载荷,路径系数,协方差参数类型:自由参数、固定参数自由参数:参数大小必须通过统计程序加以估计固定参数:模型拟合过程中无须估计(1)为潜在变量设定的测量尺度①将潜在变量下的各观测变量的残差项方差设置为1②将潜在变量下的各观测变量的因子负荷固定为1(2)为提高模型识别度人为设定限定参数:多样本间比较(半自由参数)3、路径图(1)含义:路径分析的最有用的一个工具,用图形形式表示变量之间的各种线性关系,包括直接的和间接的关系。

(2)常用记号:①矩形框表示观测变量②圆或椭圆表示潜在变量③小的圆或椭圆,或无任何框,表示方程或测量的误差单向箭头指向指标或观测变量,表示测量误差单向箭头指向因子或潜在变量,表示内生变量未能被外生潜在变量解释的部分,是方程的误差④单向箭头连接的两个变量表示假定有因果关系,箭头由原因(外生)变量指向结果(内生)变量⑤两个变量之间连线的两端都有箭头,表示它们之间互为因果⑥弧形双箭头表示假定两个变量之间没有结构关系,但有相关关系⑦变量之间没有任何连接线,表示假定它们之间没有直接联系(3)路径系数含义:路径分析模型的回归系数,用来衡量变量之间影响程度或变量的效应大小(标准化系数、非标准化系数)类型:①反映外生变量影响内生变量的路径系数②反映内生变量影响内生变量的路径系数路径系数的下标:第一部分所指向的结果变量第二部分表示原因变量(4)效应分解①直接效应:原因变量(外生或内生变量)对结果变量(内生变量)的直接影响,大小等于原因变量到结果变量的路径系数②间接效应:原因变量通过一个或多个中介变量对结果变量所产生的影响,大小为所有从原因变量出发,通过所有中介变量结束于结果变量的路径系数乘积③总效应:原因变量对结果变量的效应总和总效应=直接效应+间接效应4、矩阵方程式(1)和(2)是测量模型方程,(3)是结构模型方程 测量模型:反映潜在变量和观测变量之间的关系 结构模型:反映潜在变量之间因果关系 5x x ξδ=∧+ (1)y y ηε=∧+ (2) B ηηξζ=+Γ+ (3)三、模型修正1、参考标准模型所得结果是适当的;所得模型的实际意义、模型变量间的实际意义和所得参数与实际假设的关系是合理的;参考多个不同的整体拟合指数;2、修正原则①省俭原则两个模型拟合度差别不大的情况下,应取两个模型中较简单的模型;拟合度差别很大,应采取拟合更好的模型,暂不考虑模型的简洁性;最后采用的模型应是用较少参数但符合实际意义,且能较好拟合数据的模型。

结构方程模型

结构方程模型

结构方程模型结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,用于验证数理模型,分析变量之间的因果关系以及预测未知变量。

它可以将多个观测变量和潜在变量之间的关系进行建模和评估。

在本文中,我们将详细介绍结构方程模型的基本概念、应用领域和常见的建模过程。

一、基本概念1. 指标变量(Indicator Variables):在结构方程模型中,我们通常使用指标变量来测量潜在变量。

指标变量是实际可观测到的变量,通过测量值来间接反映潜在变量的状态。

2. 潜在变量(Latent Variables):潜在变量是无法直接观测到的变量,它们通常是一些理论概念或假设的表达。

潜在变量通过指标变量的测量反映出来。

二、应用领域1.社会科学研究:结构方程模型常常被用于心理学、教育学、管理学等领域的研究中,用于探索变量之间的关系,验证理论构建和进行实证研究。

2.经济学研究:结构方程模型在经济学研究中被广泛应用,用于分析经济变量之间的关系,评估政策效果和预测未知变量。

3.市场研究:结构方程模型可以用于分析市场调查数据,探索消费者行为、产品需求和品牌忠诚度等因素之间的关系。

4.医学研究:结构方程模型可用于医学研究中,例如研究药物治疗效果、疾病发展模式和预测相关变量。

三、建模过程建立一个结构方程模型通常需要以下几个步骤:1.模型设定:在设定模型时,我们需要明确研究的目的、理论依据以及构建潜在变量和测量指标的关系。

2.指标开发:选择适当的指标来测量潜在变量。

指标应具有良好的信度和效度,并与潜在变量相关。

3.模型估计:估计结构方程模型的参数,包括路径系数和误差方差。

常用的估计方法有最小二乘法、极大似然法和广义最小二乘法等。

4.模型拟合度检验:通过拟合指标(如χ²检验、RMSEA、CFI等)来评估模型的拟合度。

如果模型拟合度较好,则可以认为模型能较好地解释数据。

5.模型修正:根据模型拟合度检验的结果对模型进行修正。

结构方程模型

结构方程模型

• (6)当模型与数据拟合时 ,说明数据并不排斥模 式 ,不能说数据可以确认模式 ,也不能证明某一理 论基础; • (7) 用同一样本数据 ,以相同数目的待估参数和 不同的组合形式可以产生许多不同模型 ,这些等同 模型哪一个更适合于研究问题 ,应按照模式表达的 意义从专业角度来鉴别; • (8)) SEM 不能验证变量间的因果关系。同其他 统计方法一样 ,当模型与样本拟合时 ,只能说该模 型是可供考虑的模型 ,是目前为止尚未被否定的模 型。只有经严格的实验设计控制其他变量的影响 , 才能探讨主要变量的因果效应。绝不能因为使用 了 SEM 便说证明模型正确。严格地说 ,尽管 SEM 不能证明因果关系 ,但它的生命力在于能寻找变量 间最可能的因果关系。
3、结构方程模型的结构
4、结构方程模型的优点 5、结构方程模型中的变量 6、结构方程模型常用图标
1、什么是结构方程模型
结构方程模型( Structural Equation Model)是基于变量 的协方差矩阵来分析变量之间关系的一种统计方法。所以,有 时候也叫协方差结构分析。 我们的课程只考虑线性结构方程模型。
• ③SEM 对样本容量的要求较高 ,也要求模 型必须满足识别条件并且它不能处理真正 的分类变量。
五、应用实例
应用场合
CALIS过程简介
• proc calis语句是必须的,且此语句还可添 加一些选项,这些选项主要包括: • (1)数据集选项,如DATA= 使用的数据 集的名字;INRAM= 使用已存在的并被分 析过的模型;OUTRAM= 将模型的说明存 入输出数据集,备以后INRAM调用。 • (2)数据处理选项,如EDF= 在没有使用 原始数据且未指定样本数N时为模型指定自 由度;NOBS= 指定样本数N。

结构方程模型

结构方程模型

2. 应用结构方程模型的注意事项
• (1)通径图中 ,内源变量与外源变量间的 关系都是线性的。实际工作中的非线性偏 离被认为是可以忽略的 ,若有强的非线性关 系则应当设法对变量作变换 ,以便可以用线 性作近似;
• (2)结构方程不支持小样本。一般要求样 本容量在 200 以上 ,或是要估计的参数数目 的 5~20 倍;
• proc calis语句是必须的,且此语句还可添 加一些选项,这些选项主要包括:
• (1)数据集选项,如DATA= 使用的数据集 的名字;INRAM= 使用已存在的并被分析 过的模型;OUTRAM= 将模型的说明存入 输出数据集,备以后INRAM调用。
• (2)数据处理选项,如EDF= 在没有使用 原始数据且未指定样本数N时为模型指定自 由度;NOBS= 指定样本数N。
模型修正
• 模型的修正主要包括: • (1) 依据理论或有关假设 ,提出一个或数个合理的
先验模型; • (2) 检查潜变量与指标间的关系 ,建立测量方程模
型; • (3) 若模型含多个因子 ,可以循序渐进地 ,每次只检
验含两个因子的模型 ,确立测量模型部分合理后 , 最后再将所有因子合并成预设的先验模型 ,作总体 检验; • (4) 对每一模型 ,检查标准误、标准化残差、修正 指数、参数期望改变值、χ 2 及各种拟合指数 ,据此 修改模型。
一、结构方程模型简介 1、什么是结构方程模型 2、为什么使用结构方程模型 3、结构方程模型的结构 4、结构方程模型的优点 5、结构方程模型中的变量 6、结构方程模型常用图标
1、什么是结构方程模型 结构方程模型( Structural Equation Model)是基于变量
的协方差矩阵来分析变量之间关系的一种统计方法。所以,有 时候也叫协方差结构分析。

结构方程模型精讲

结构方程模型精讲

SEM包含了许多不同的统计技术
SEM融合了因子分析和路径分析两种统计技 术,可允许同时考虑许多内生变量、外生变量 与内生变量的测量误差,及潜在变量的指标变 量,可评估变量的信度、效度与误差值、整体 模型的干扰因素等。
SEM重视多重统计指标的运用
SEM所处理的是整体模型契合度的程度,关注整体模 型的比较,因而模型参考的指标是多元的,研究者必 须参考多种不同的指标,才能对模型的是陪读做整体 的判断,个别参数显著与否并不是SEM的重点。
模型的本质;验证式模型分析,利用研究者搜 集的实证资料来确认假设的潜在变量间的关系, 以及潜在变量与指标的一致性程度。
即比较研究者所提假设模型的协方差矩阵与实 际搜集数据导出的协方差矩阵之间的差异。
因子分析存在的限制
所测项目只能被分配给一个因子,并只有一个 因子载荷量,如果测验题项与两个或两个以上 的因子有关时,因子分析就无法处理。
整体模型是陪读检验就是检验总体的协方差矩阵(Σ 矩阵),与假设模型隐含的变量间的协方差矩阵(Σ (θ)矩阵)的差异。因为我们无法得知总体方差与协方 差,因而用样本数据得到的参数估计代替总体参数, 即用样本协方差矩阵S矩阵代替总体的Σ矩阵。
因子间关系必须是全有(多因素斜交)或全无 (多因素直交),即因子间不是完全无关就是 完全相关。
因子分析中假设误差项不相关,但在行为及社 会科学领域中,许多测验的题项与题项之间的 误差来源是相似的,也即误差间具有相关关系。
结构方程模型相对存在以下优点:
可检验个别测验题项的测量误差,并将测量误差从题项 的变异量中抽离出来,使因子载荷量具有较高精确度。
SEM可同时处理测量与分析问题
SEM是一种将测量与分析整合为一的计量研究技术, 它可以同时估计模型中的测量指标、潜在变量,不仅 可以估计测量过程中指标变量的测量误差,也可以评 估测量的信度与效度。

结构方程模型 ppt课件

结构方程模型  ppt课件

CONTENTS
01 概念介绍 02 基本原理
03 案例分析
04 实际操作
ppt课件
2
01 概念介绍
1.基本概念
结构方程模型(Structural Equation Modeling, SEM)是一种验证性多元统计分析技术, 是应用线性方程表示观测变量与潜变量之间,以及潜变量之间关系的一种多元统计方法, 其实质是一种广义的一般线性模型。
ppt课件
19
02 基本原理
3.模型拟合——主要拟合度指标
(3)整体模型拟合度
a) χ2卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假设是模型协方差阵等 于样本协方差阵。如果模型拟合的好,卡方值应该不显著。在这种情况下,数据拟合不好的模型被拒绝。
b) RMR 是残差均方根。RMR 是样本方差和协方差减去对应估计的方差和协方差的平方和,再取平均值的平方根。 RMR应该小于0.08,RMR越小,拟合越好。
2.模型评价——参数估计 (1) 假设条件 ① 测量模型误差项δ,ε的均值为零 ② 结构模型的残差项ζ的均值为零 ③ 误差项ε,δ与因子η,ξ之间不相关,误差项ε与δ不相关 ④ 残差项ζ与ξ ,η ,δ之间不相关 (2)参数估计策略 ① 加权最小平方策略(WLS) ② 最大概似法(ML) ③ 无加权最小平方法(ULS) ④ 一般化最小平方法(GLS) ⑤ 渐进分布自由法(ADF)


5

6
结构模型:反映潜在变量之间因果关系
方程式: 1 11 1 1 2 21 1 21 1 2
0 0
B



21
0

结构方程模型介绍

结构方程模型介绍

结构方程模型介绍随着社会科学研究方法的不断发展和进步,结构方程模型(Structural Equation Modeling,简称SEM)作为一种多元统计分析方法逐渐被学者们所重视和应用。

SEM不仅可以用于检验理论模型的拟合度,还可以用于检验因果关系的存在性,并进行预测和模拟分析。

本文将从SEM的基本概念、应用领域、建模流程和常用软件等方面进行介绍。

一、基本概念1. 结构方程模型(SEM)的定义结构方程模型是一种通过变量之间的潜在关系来描述现象的统计模型。

它将观测变量和潜在变量作为模型的构成部分,通过变量之间的因果关系来解释变量之间的关系。

SEM可以用于探究变量之间的关系、检验理论模型的拟合度、预测未来变量的发展趋势等。

2. SEM的基本组成SEM由三部分组成:测量模型、结构模型和误差项。

其中测量模型包括潜在变量和观测变量,结构模型包括潜在变量和观测变量之间的因果关系,误差项则是指观测变量中不受潜在变量和结构模型影响的随机误差。

3. SEM的优势相较于传统的多元回归分析和路径分析等方法,SEM具有以下优势:(1)可以同时处理多个因变量和自变量之间的关系;(2)可以同时考虑测量误差和模型误差的影响;(3)可以将潜在变量和观测变量之间的关系纳入到模型中,更加贴近实际研究问题;(4)可以通过模型拟合度指标来评估研究模型的适应性;(5)可以进行模型的预测和模拟分析。

二、应用领域SEM广泛应用于社会科学领域,如心理学、教育学、管理学、社会学等。

具体应用领域包括但不限于以下方面:1.心理学领域SEM可用于探究心理学中的各种潜在变量之间的关系,如人格因素与心理健康、社会支持与应对策略等。

2.教育学领域SEM可用于探究教育学中的各种潜在变量之间的关系,如教育投入与学生成绩、学习动机与学习成绩等。

3.管理学领域SEM可用于探究管理学中的各种潜在变量之间的关系,如领导风格与员工绩效、组织文化与员工满意度等。

4.社会学领域SEM可用于探究社会学中的各种潜在变量之间的关系,如社会支持与幸福感、社会资本与社会信任等。

结构方程模型知识点总结

结构方程模型知识点总结

结构方程模型知识点总结一、SEM的基本概念1.1 潜变量和观察变量SEM中的变量分为潜变量和观察变量两种。

潜变量是无法直接观测到的,但通过观察变量的测量可以间接反映出来的变量,比如抽象的概念、态度或行为。

观察变量是可以直接测量和观察到的变量,它通过对潜变量的测量可以间接反映出来的现象或特征。

1.2 路径图和模型图SEM通过路径图和模型图来表示变量之间的关系。

路径图用箭头表示变量之间的因果关系,箭头的方向表示因果关系的方向,箭头的粗细表示因果关系的强度。

模型图将观察到的变量和潜变量以及它们之间的关系用图形化的方式表达出来。

1.3 测量模型和结构模型SEM包括测量模型和结构模型两个部分。

测量模型用于描述观察变量和潜变量之间的关系,它通过因子分析或确认因素分析来检验观察变量和潜变量之间的关系。

结构模型用于描述潜变量之间的因果关系,它通过路径分析来检验和估计潜变量之间的因果关系。

1.4 模型拟合度和参数估计SEM通过拟合度指标(比如χ²值、RMSEA、CFI等)来检验模型的拟合程度。

拟合度指标可以用来评估模型对观测数据的解释程度。

参数估计则是用来估计模型中的参数,比如路径系数、测量误差和因子之间的协方差等。

二、SEM的应用领域2.1 社会科学研究在社会科学研究中,SEM广泛应用于心理学、教育学、管理学、政治学等领域。

研究者可以利用SEM来检验和估计变量之间的因果关系,比如影响人们行为的因素、组织管理的影响因素等。

2.2 经济学研究在经济学研究中,SEM可以用来检验和估计宏观经济模型或微观经济模型。

研究者可以利用SEM来分析不同变量之间的关系,比如GDP和通货膨胀之间的关系、利率变动对企业盈利的影响等。

2.3 公共卫生研究在公共卫生研究中,SEM可以用来检验和估计潜变量之间的关系,比如疾病和环境因素之间的关系、健康行为和健康状况之间的关系等。

研究者可以利用SEM来揭示潜在的影响因素,从而提出有效的干预措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★结构方程模型要点
一、结构方程模型的模型构成
1、变量
观测变量:能够观测到的变量(路径图中以长方形表示)
潜在变量:难以直接观测到的抽象概念,由观测变量推估出来的变量(路径图中以椭圆形表示)
生变量:模型总会受到任何一个其他变量影响的变量(因变量;路径图会受到任何一个其他变量以单箭头指涉的变量)
外生变量:模型中不受任何其他变量影响但影响其他变量的变量(自变量;路
中介变量:当生变量同时做因变量和自变量时,表示该变量不仅被其他变量影响,还可能对其他变量产生影响。

生潜在变量:潜变量作为生变量
生观测变量:生潜在变量的观测变量
外生潜在变量:潜变量作为外生变量
外生观测变量:外生潜在变量的观测变量
中介潜变量:潜变量作为中介变量
中介观测变量:中介潜在变量的观测变量
2、参数(“未知”和“估计”)
潜在变量自身:总体的平均数或方差
变量之间关系:因素载荷,路径系数,协方差
参数类型:自由参数、固定参数
自由参数:参数大小必须通过统计程序加以估计
固定参数:模型拟合过程中无须估计
(1)为潜在变量设定的测量尺度
①将潜在变量下的各观测变量的残差项方差设置为1
②将潜在变量下的各观测变量的因子负荷固定为1
(2)为提高模型识别度人为设定
限定参数:多样本间比较(半自由参数)
3、路径图
(1)含义:路径分析的最有用的一个工具,用图形形式表示变量之间的各种线性关系,包括直接的和间接的关系。

(2)常用记号:
①矩形框表示观测变量
②圆或椭圆表示潜在变量
③小的圆或椭圆,或无任何框,表示方程或测量的误差
单向箭头指向指标或观测变量,表示测量误差
单向箭头指向因子或潜在变量,表示生变量未能被外生潜在变量解释的部分,是方程的误差
④单向箭头连接的两个变量表示假定有因果关系,箭头由原因(外生)变量指
向结果(生)变量
⑤两个变量之间连线的两端都有箭头,表示它们之间互为因果
⑥弧形双箭头表示假定两个变量之间没有结构关系,但有相关关系
⑦变量之间没有任何连接线,表示假定它们之间没有直接联系
(3)路径系数
含义:路径分析模型的回归系数,用来衡量变量之间影响程度或变量的效应大小(标准化系数、非标准化系数)
类型:
①反映外生变量影响生变量的路径系数
②反映生变量影响生变量的路径系数
路径系数的下标:
第一部分所指向的结果变量
第二部分表示原因变量
(4)效应分解
①直接效应:原因变量(外生或生变量)对结果变量(生变量)的直接影响,大小等于原因变量到结果变量的路径系数
②间接效应:原因变量通过一个或多个中介变量对结果变量所产生的影响,大小为所有从原因变量出发,通过所有中介变量结束于结果变量的路径系数乘积
③总效应:原因变量对结果变量的效应总和
总效应=直接效应+间接效应
4、矩阵方程式
(1)和(2)是测量模型方程,(3)是结构模型方程 测量模型:反映潜在变量和观测变量之间的关系 结构模型:反映潜在变量之间因果关系 5、结构方程模型的八种矩阵概念
二、模型整体评价
x x ξδ=∧+ (1)
y y ηε=∧+ (2) B ηηξζ=+Γ+ (3)
三、模型修正
1、参考标准
模型所得结果是适当的;
所得模型的实际意义、模型变量间的实际意义和所得参数与实际假设的关系是合理的;
参考多个不同的整体拟合指数;
2、修正原则
①省俭原则
两个模型拟合度差别不大的情况下,应取两个模型中较简单的模型;
拟合度差别很大,应采取拟合更好的模型,暂不考虑模型的简洁性;
最后采用的模型应是用较少参数但符合实际意义,且能较好拟合数据的模型。

②等同模式
等同模式:用不同的方法表示各个潜在变量之间的关系,能得出基本相同的结果,参数个数相同,拟合程度相同的模式。

实际意义、多次验证
3、模型修正方向
①模型扩展方面(放松一些路径系数,提高拟合度)
修正指数MI=χ12-χm2
MI【Modification Indices(M.I.)】反映的是一个固定或限制参数被恢复自由时,卡方值可能减少的最小的量。

如果MI变化很小,则修正没有意义;通常认为MI>4,模型修正才有意义。

(显著水平为0.05时,临界值为3.84)
②模型简约方面(删除或限制一些路径系数,使模型变简洁)
临界比率CR=χ2/df
CR通过自由度调整卡方值,以供选择参数不是过多,又能满足一定拟合度的模型,寻找CR比率最小者
单个参数调整设为0
两个变量之间路径系数关系进行调整,设为相等4、模型修正容
(1)测量模型修正
添加或删除因子载荷
添加或删除因子之间的协方差
添加或删除测量误差的协方差
(2)结构模型修正
增加或减少潜在变量数目
添加或删减路径系数
添加或删除残差项的协方差
四、验证性因子分析(CFA)
1、验证性因子分析
e1 e2 e3 e4
2、路径分析
非递归模型
自我效能对于学业表现的模型衍生相关:(轨迹法则) 1 直接效应:自我效能 学业表现=0.29
2 间接效应:自我效能 成就动机 学业表现=0.1
3 3 相关间接效应:
自我效能 社会期待 学业表现=0.13*0.16=0.02
自我效能 社会期待 成就动机 学业表现=0.13*0.02*0.21=0.000546
衍生相关为0.29+0.13+0.02+0.00=0.44
五、SPSS 与Amos
一般的研究论文的数据分析部分少不了对样本的描述、对变量进行探索性因子
自我效能感
社会期待
成就动机
学业表现 D 1
D 2
0.29
0.63 0.21
0.02
0.13
0.16
路径分析参数估计图
分析(EFA),然后再利用多变量分析技术或SEM进行数据分析,最后提出研究结论(验证假说),提出建议。

基于这样的了解,我们来看SPSS与Amos所发挥的功能:
利用amos,所得到的值是显著性(p值),我们要用显著性和我们所设的显著水平α值做比较,如果显著性大于α值,未达到显著水平,则接受虚无假说;如果显著性小于α值,达到显著水平,则拒绝虚无假说(即发现有统计上的显著性)。

在统计检验时,本书所设定的显著性水平皆是0.05(α=0.05)
七、拟合度
AMOS是以卡方统计量来进行检验的,一般以卡方值p大于0.05判断模型是否具有良好的拟合度。

但是卡方统计量容易受到样本大小的影响,因此还要参考其
PA-VO的路径分析有两种应用模型:递归与非递归。

递归与非递归模型可以从两个角度来判别:1.变量之间有无回溯关系2.残差之间是否具有残差相关。

九、直接效果与间接效果
直接效果是某一变量对另一变量的直接影响。

间接效果是某一变量通过某一中介变量对另一变量的直接影响。

总效果等于直接效果加上间接效果。

通常:如果直接效果大于间接效果,表示中介变量不发挥作用,可以忽略;如果直接效果小于间接效果,表示中介变量具有影响力,要重视中介变量。

相关文档
最新文档