matlab实验三定积分的近似计算

合集下载

《数学实验》实验报告——定积分的近似求解

《数学实验》实验报告——定积分的近似求解


2 梯形法程序如下: f=input('请输入被积函数 f(x)='); qujian=input('请输入积分区间[a,b]='); n=input('请输入子区间个数 n='); s=0; for i=1:n-1 x=qujian(1)+(qujian(2)-qujian(1))/n*i; y=eval(f); s=s+y; end x=qujian(1); y=eval(f); s=s+y/2; x=qujian(2); y=eval(f); s=s+y/2; disp('定积分的近似值是:'); s=s*(qujian(2)-qujian(1))/n
《数学实验》实验报告
班级 试验 内容 **** 学号 **** 姓名 试验 类别
自选试验
****
成绩 试验 时间 2011 年 5 月 20 日—22 日
定积分的近似求解
试验问题:
用梯形法与抛物法,通过 MATLAB,计算 x 2 dx 的近似值,取 n=10,比较结果的差异,研究
0 1
定积分的两种近似计算方法。
1 1 1 2 ph 3 6rh h(2 ph 2 6r ) h( y 0 4 y1 y 2 ) 3 3 3 。 ba n ,则上面所求的 S 等于区间 [ x0 , x2 ] 上以抛物线为曲边的曲边梯形的面积。同理可



以得到区间 [ xi 1 , xi 1 ] 上以抛物线为曲边的曲边梯形的面积:
试验目的:
通过分别用梯形法与抛物线法计算定积分的近似值, 进而熟练掌握运用 MATLAB 来解决 定积分的近似求解,体会 MATLAB 的强大功能。

MATLAB实验三 定积分的近似计算

MATLAB实验三 定积分的近似计算

实验三定积分的近似计算一、问题背景与实验目的利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.二、相关函数(命令)及简介1.sum(a):求数组a的和.2.format long:长格式,即屏幕显示15位有效数字.(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.4.quad():抛物线法求数值积分.格式:quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即.*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2);5.trapz():梯形法求数值积分.格式:trapz(x,y)其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)例:计算0sin()dx xπ⎰x=0:pi/100:pi;y=sin(x);trapz(x,y)6.dblquad():抛物线法求二重数值积分.格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递.例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)这时必须存在一个函数文件integrnd.m:function z = integrnd(x, y) z = y*sin(x);7.fprintf (文件地址,格式,写入的变量):把数据写入指定文件.例:x = 0:.1:1; y = [x; exp(x)];fid = fopen('exp.txt','w'); %打开文件 fprintf(fid,'%6.2f %12.8f\n',y); %写入 fclose(fid) %关闭文件 8.syms 变量1 变量2 …:定义变量为符号. 9.sym('表达式'):将表达式定义为符号.解释:Matlab 中的符号运算事实上是借用了Maple 的软件包,所以当在Matlab 中要对符号进行运算时,必须先把要用到的变量定义为符号. 10.int(f,v,a,b):求f 关于v 积分,积分区间由a 到b .11.subs(f ,'x',a):将 a 的值赋给符号表达式 f 中的 x ,并计算出值.若简单地使用subs(f),则将f 的所有符号变量用可能的数值代入,并计算出值.三、实验内容1. 矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即1()d ()nbi i ai f x x f x ς==∆∑⎰在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同i ς的取法,计算结果会有不同,我们以 120d 1xx +⎰为例(取100=n ),(1) 左点法:对等分区间b x i n ab a x x a x n i =<<-+=<<<=ΛΛ10,在区间],[1i i x x -上取左端点,即取1-=i i x ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78789399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差0.7878939967307840.0031784ππ-=≈(2)右点法:同(1)中划分区间,在区间],[1i i x x -上取右端点,即取i i x =ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78289399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 0.7828939967307840.0031884ππ-=≈(3)中点法:同(1)中划分区间,在区间1[,]i i x x -上取中点,即取12i ii x x ς-+=, 12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78540024673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7854002467307842.653104ππ--=≈⨯如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.2. 梯形法等分区间b x i n a b a x x a x n i =<<-+=<<<=ΛΛ10,nab x -=∆ 相应函数值为n y y y ,,,10Λ(n i x f y i i ,,1,0),(Λ==).曲线)(x f y =上相应的点为n P P P ,,,10Λ(n i y x P i i i ,,1,0),,(Λ==)将曲线的每一段弧i i P P 1-用过点1-i P ,i P 的弦i i P P 1-(线性函数)来代替,这使得每个],[1i i x x -上的曲边梯形成为真正的梯形,其面积为x y y ii ∆⨯+-21,n i ,,2,1Λ=. 于是各个小梯形面积之和就是曲边梯形面积的近似值,11 11()d ()22nnbi i i i ai i y y x f x x x y y --==+∆≈⨯∆=+∑∑⎰, 即11 ()d ()22bn n ay y b a f x x y y n --≈++++⎰L , 称此式为梯形公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,10112 0d ()122n n y y x b a y y x n --≈++++=+⎰L 0.78539399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7853939967307845.305104ππ--=≈⨯很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.3. 抛物线法由梯形法求近似值,当)(x f y =为凹曲线时,它就偏小;当)(x f y =为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.将积分区间],[b a 作n 2等分,分点依次为b x i n a b a x x a x n i =<<-+=<<<=2102ΛΛ,nab x 2-=∆, 对应函数值为n y y y 210,,,Λ(n i x f y i i 2,,1,0),(Λ==),曲线上相应点为n P P P 210,,,Λ(n i y x P i i i 2,,1,0),,(Λ==).现把区间],[20x x 上的曲线段)(x f y =用通过三点),(000y x P ,),(111y x P ,),(222y x P 的抛物线)(12x p x x y =++=γβα来近似代替,然后求函数)(1x p 从0x 到2x 的定积分:21 ()d x x p x x =⎰22 ()d x x x x x αβγ++=⎰)()(2)(30220223032x x x x x x -+-+-γβα]4)(2)()()[(62022022202002γβαγβαγβα++++++++++-=x x x x x x x x x x 由于2201x x x +=,代入上式整理后得 21 ()d x x p x x ⎰)](4)()[(612122202002γβαγβαγβα++++++++-=x x x x x x x x )4(621002y y y x x ++-=)4(6210y y y nab ++-= 同样也有422 ()d x x p x x ⎰)4(6432y y y n ab ++-=……222 ()d n n x nx p x x -⎰)4(621222n n n y y y nab ++-=-- 将这n 个积分相加即得原来所要计算的定积分的近似值:22222212 11()d ()d (4)6ii nnbx i i i i ax i i b af x x p x x y y y n---==-≈=++∑∑⎰⎰, 即021******* ()d [4()2()]6bn n n ab af x x y y y y y y y y n---≈++++++++⎰L L 这就是抛物线法公式,也称为辛卜生(Simpson )公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,102132124222 0d [4()2()]16n n n x b ay y y y y y y y x n ---≈+++++++++⎰L L=0.78539816339745,理论值 12 0d 14x x π=+⎰,此时计算的相对误差 160.7853981633974542.827104ππ--=≈⨯4. 直接应用Matlab 命令计算结果(1) 数值计算 120d .1xx +⎰ 方法1:int('1/(1+x^2)','x',0,1) (符号求积分)方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)方法3:x=0:0.001:1; y=1./(1+x.^2);trapz(x,y) (梯形法求数值积分) (2)数值计算 212 01d d x x y y -+⎰⎰方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分)方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手1. 实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算 120d 1xx +⎰,取258=n ,并比较三种方法的精确程度.2. 分别用梯形法与抛物线法,计算 2 1d xx⎰,取120=n .并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.3. 试计算定积分 0sin d xx x+∞⎰.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)4. 将 120d 1xx +⎰的近似计算结果与Matlab 中各命令的计算结果相比较,试猜测Matlab 中的数值积分命令最可能采用了哪一种近似计算方法?并找出其他例子支持你的观点.5. 通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值?6. 学习fulu2sum.m 的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环.五、附录附录1:矩形法(左点法、右点法、中点法)(fulu1.m ) format long n=100;a=0;b=1;inum1=0;inum2=0;inum3=0; syms x fx fx=1/(1+x^2); for i=1:nxj=a+(i-1)*(b-a)/n; %左点 xi=a+i*(b-a)/n; %右点 fxj=subs(fx,'x',xj); %左点值fxi=subs(fx,'x',xi); %右点值fxij=subs(fx,'x',(xi+xj)/2); %中点值inum1=inum1+fxj*(b-a)/n;inum2=inum2+fxi*(b-a)/n;inum3=inum3+fxij*(b-a)/n;endinum1inum2inum3integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum1 and real-value is about: %d\n\n',...abs((inum1-integrate)/integrate))fprintf('The relative error between inum2 and real-value is about: %d\n\n',...abs((inum2-integrate)/integrate))fprintf('The relative error between inum3 and real-value is about: %d\n\n',...abs((inum3-integrate)/integrate))附录2:梯形法(fulu2.m)format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n;xi=a+i*(b-a)/n;fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);inum=inum+(fxj+fxi)*(b-a)/(2*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录2sum:梯形法(fulu2sum.m),利用求和函数,避免for 循环format longn=100;a=0;b=1;syms x fxfx=1/(1+x^2);i=1:n;xj=a+(i-1)*(b-a)/n; %所有左点的数组xi=a+i*(b-a)/n; %所有右点的数组fxj=subs(fx,'x',xj); %所有左点值fxi=subs(fx,'x',xi); %所有右点值f=(fxi+fxj)/2*(b-a)/n; %梯形面积inum=sum(f) %加和梯形面积求解integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录3:抛物线法(fulu3.m)format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n; %左点xi=a+i*(b-a)/n; %右点xk=(xi+xj)/2; %中点fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);fxk=subs(fx,'x',xk);inum=inum+(fxj+4*fxk+fxi)*(b-a)/(6*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))。

数值积分的方法计算定积分,matlab实验

数值积分的方法计算定积分,matlab实验

n 1 n 1 h f ( a ) 2 f ( x ) 4 f ( x 1 ) f (b) i i 6 i 1 i 0 2
编程如下: a=0; b=1; %积分上下限分别为 0,1, 将[0,1]区间 3 等分保证误差小于 e-5 n=3; h=(b-a)/n; %h 为区间长度 m=0;n=0; %定义变量并初始化 for x1=a+h:h:b-h m=m+exp(-x1); %计算以步长为 h 的所有节点函数值之和 end for x2=a+h/2:h:b-h/2 %计算以步长为 h/2 的所有节点函数值之和 n=n+exp(-x2); end S=h*(exp(0)+2*m+4*n+exp(-1))/6*2/sqrt(pi) %复化 simpson 公式求积分并输出 format long;
姓 名
学 号
班 级
成 绩
教师姓名:
时间:
( 教 师 填 写 )
实 验 报 告 要 求
如果步骤较多,请自行加页(A4 幅面)ຫໍສະໝຸດ 2e0
1
x
dx .
(1)复化梯形公式 分析: 由复化梯形公式可知, 余项 RTn

b a 2 '' '' x h f ( ) , 且 a=0, b=1, f ( x) e , 12
h
ba 1 1 x 1 x 1 e e 105 ,所以可 , 所以可得 RTn 2 2 2 n 12 n 12n 12n
n 1 h 得 n 91.29 ,所以 n 取 92, Tn [ f (a) 2 f ( xi ) f (b)] 。 2 i 1
程序: n=92,a=0,b=1;

定积分的近似运算

定积分的近似运算
一.单调增函数
(1)y=x^2
矩形法inum1 =0.328350000000000 inum2 = 0.338350000000000
inum3 =0.333325000000000
integrate =1/3 integrate = 0.333333333333333
the relative error between inum1 and real-value is about: 0.01495
the relative error between inum2 and real-value is about: 0.01505
the relative error between inum3 and real-value is about: 2.5e-05
梯形法inum =0.333350000000000 integrate =1/3
the relative error between inum1 and real-value is about: 0.0199
the relative error between inum2 and real-value is about: 0.0201
the relative error between inum3 and real-value is about: 5e-05
fx1=subs(fx,x,x1);
fx2=subs(fx,x,x2);
si=(fx0+4*fx1+fx2)*(b-a)/(6*n);
inum=inum+si;
end
inum
integrate=int(fx,0,1);
integrate=double(integrate)

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)西京学院数学软件实验任务书实验二十一实验报告一、实验名称:Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。

二、实验目的:进一步熟悉Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。

三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。

四、实验原理:1.Romberg 积分法:龙贝格积分法是用里查森外推算法来加快复合梯形求积公式的收敛速度,它的算法如下,其中()i m T 是通过一系列逼近原定积分的龙贝格分值.计算(0)1[()()]2b aT f a f b -=+ 对1,2,3,k n = ,计算下列各步:21()(1)11111(21)()[()]222k k k k k j b a j b a TT f a ---=---=++∑对1,2,,m k = 和,1,2,,1i k k k =-- ,计算111441m i i i m m m m T T T--+-=-随着计算的步骤的增加,()i mT 越来越逼近积分()ba f x dx ?。

2.Gauss 型积分法:高斯积分公式的思想是用n 个不等距的节点123,,,nx x x x 对被积函数进行插值,然后对插值后的函数进行积分,其积分公式为:111()()nk k k f x dx A f x -=≈∑?如果积分区间不是[1,1]-,则需转换到此区间:11()()222bab a b a b af x dx f t dt ---+=+?其中系数k A 、节点k x 与n 的关系如下表所示: 3.高斯-切比雪夫积分法:第一类切比雪夫积分形式为:11()()nk k k f x dx A f x -=≈∑?其中k A n π=,21cos2k k x nπ-= 4.高斯-拉盖尔积分法:高斯-拉盖尔公式有两种形式:1()()nxk k k e f x dx A f x +∞-=≈∑?1()()k nx k k k f x dx A e f x +∞=≈∑?下面编制的程序是针对第一种形式的高斯-拉盖尔公式,即1()()nxk k k e f x dx A f x +∞-=≈∑?因此程序的第一个输入参数——被积函数,是上式中的()f x 。

三用MATLAB实现定积分计算

三用MATLAB实现定积分计算

s=s+feval(f,z1(j))+feval(f,z2(j));
0,2*pi,1000)
end
s=
s=s*h/2;
-267.2458
Gauss-lobatto是改进的高斯积分方法,采取自适应求积方法

三 用MATLAB实现定积分计算: 2 sin xdx 0
⑴ 矩形公式与梯形公式 z1 =
形的公求式积代公数式精。度为对于1,f 辛(x)甫=1森, x公, 式x 2的, x代3,数应精该度有为 3。
节成点立我x,ba下i和们依f面系先(次介x数考11)将绍dfA虑f(x的i(,xx节))是d=使点x1取t代数, (x消数xAb,为1对xaa精f22)(2区/bx,度而21x间)尽使3代等可用Ab入2分2能(fa1,(的1高1x1)即2限计的)f可制(算所得a,的谓2b到n积高确给分斯b定定近2公aA后似t式1,)同A值d。2时t有,x确1代,x定数2
这两种用随机模拟的方式求积分近似值的方法 z=sum(y)*pi/2/n
/2
z=
蒙特卡罗方法
sin xdx
1.0010
0
3、蒙特卡罗方法的通用函数与调用格式
均值估计法
随机投点法 (设0≤ f(x) ≤1)
b
a
f
( x)dx

ba n
n i1
f
(a (b a)ui )
直接调用。这里被积函数为内部函数,无需另外定义。
s=gaussinteg(‘sin', 0, pi/2,1000) s=
1.0000
6000
§2 数值积分应用问题举例4000
2000
0
一 求卫星轨道长度

如何用matlab计算定积分-matlab求积分

如何用matlab计算定积分-matlab求积分

用matlab 计算积分4.1积分的有关理论定积分:积分是微分的无限和,函数)(x f 在区间],[b a 上的积分定义为∑∫=→∆∆==ni iix baxf dx x f I i 1)max()(lim)(ξ其中.,,2,1),,(,,1110n i x x x x x b x x x a i i i i i i n =∈−=∆=<<<=−−ξ从几何意义上说,对于],[b a 上非负函数)(x f ,记分值I 是曲线)(x f y =与直线b x a x ==,及x 轴所围的曲边梯形的面积。

有界连续(或几何处处连续)函数的积分总是存在的。

微积分基本定理(Newton-Leibniz 公式):)(x f 在],[b a 上连续,且],[),()('b a x x f x F ∈=,则有)()()(a F b F dx x f ba−=∫这个公式表明导数与积分是一对互逆运算,它也提供了求积分的解析方法:为了求)(x f 的定积分,需要找到一个函数)(x F ,使)(x F 的导数正好是)(x f ,我们称)(x F 是)(x f 的原函数或不定积分。

不定积分的求法有学多数学技巧,常用的有换元积分和分部积分法。

从理论上讲,可积函数的原函数总是存在的,但很多被积函数的原函数不能用初等函数表示,也就是说这些积分不能用解析方法求解,需用数值积分法解决。

在应用问题中,常常是利用微分进行分析,而问题最终归结为微分的和(即积分)。

一些更复杂的问题是含微分的方程,不能直接积分求解。

多元函数的积分称为多重积分。

二重积分的定义为∑∑∫∫∆∆=→∆+∆ijji jiy x Gy x f dxdy y x f i i ),(lim),(0)max(22ηξ当),(y x f 非负时,积分值表示曲顶柱体的体积。

二重积分的计算主要是转换为两次单积分来解决,无论是解析方法还是数值方法,如何实现这种转换,是解决问题的关键。

定积分的近似计算.

定积分的近似计算.
n x2 i
x2 n
x2 n 2
b
相加即得:

a
f ( x )dx
i 1 n
x2 i 2
f ( x )dx
ba ( y2i 2 4 y2i 1 y2i ) i 1 6n
14
数学软件与数学实验
抛物线法
整理后可得:

b
a
b a f ( x)dx [ y0 y2n 4( y1 y3 y2n1 ) 6n 2( y2 y4 y2n2 )]
梯形法
如果我们 n 等分区间 [a,b],即令:
x1 x2 xn
则 S

b a
b
a
h ba n n n n yi 1 yi yi 1 yi f ( x )dx Si xi h 2 2 i 1 i 1 i 1
==>

yn y0 f ( x)dx h y1 yn1 2 2
dx y0 y1 0 1 x 2 h 2
1
0.78539399673078
yn yn1 2
相对误差: 0.78539399673078 / 4 5.305 10-6 /4
11
数学软件与数学实验
抛物线法
2n 等分区间 [a,b] ,得
数学软件与数学实验
专题 定积分的近似计算
数学软件与数学实验
专题 定积分的近似计算
问题背景和实验目的
定积分计算的基本公式是牛顿-莱布尼兹公式。但当 被积函数的原函数不知道时,如何计算?这时就需要利 用近似计算。特别是在许多实际应用中,被积函数甚至 没有解析表达式,而是一条实验记录曲线,或一组离散 的采样值,此时只能用近似方法计算定积分。 本实验主要研究定积分的几种近似计算算法:矩形法、 梯形法和抛物线法;蒙特卡洛随机投点法和蒙特卡洛样 本均值法。同时介绍 Matlab 计算定积分的相关函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三定积分的近似计算一、问题背景与实验目的利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.二、相关函数(命令)及简介1.sum(a):求数组a的和.2.format long:长格式,即屏幕显示15位有效数字.(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.4.quad():抛物线法求数值积分.格式:quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即.*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2);5.trapz():梯形法求数值积分.格式:trapz(x,y)其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)例:计算0sin()dx xπ⎰x=0:pi/100:pi;y=sin(x);trapz(x,y)6.dblquad():抛物线法求二重数值积分.格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递.例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)这时必须存在一个函数文件:function z = integrnd(x, y)z = y*sin(x);7.fprintf(文件地址,格式,写入的变量):把数据写入指定文件.例:x = 0:.1:1;y = [x; exp(x)];fid = fopen('','w'); %打开文件fprintf(fid,'%6.2f %12.8f\n',y); %写入fclose(fid) %关闭文件8.syms 变量1 变量2 …:定义变量为符号.9.sym('表达式'):将表达式定义为符号.解释:Matlab中的符号运算事实上是借用了Maple的软件包,所以当在Matlab中要对符号进行运算时,必须先把要用到的变量定义为符号.10.int(f,v,a,b):求f关于v积分,积分区间由a到b.11.subs(f,'x',a):将a 的值赋给符号表达式f 中的x,并计算出值.若简单地使用subs(f),则将f的所有符号变量用可能的数值代入,并计算出值.三、实验内容1. 矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即1()d ()nbi i a i f x x f x ς==∆∑⎰在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同i ς的取法,计算结果会有不同,我们以 12 0d 1x x +⎰为例(取100=n ), (1) 左点法:对等分区间 b x i na b a x x a x n i =<<-+=<<<=ΛΛ10, 在区间],[1i i x x -上取左端点,即取1-=i i x ς,12 01d ()1n i i i x f x x ς==∆≈+∑⎰, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 0.7878939967307840.0031784ππ-=≈ (2)右点法:同(1)中划分区间,在区间],[1i i x x -上取右端点,即取i i x =ς,12 01d ()1n i i i x f x x ς==∆≈+∑⎰, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 0.7828939967307840.0031884ππ-=≈(3)中点法:同(1)中划分区间,在区间1[,]i i x x -上取中点,即取12i i i x x ς-+=, 12 01d ()1n i i i x f x x ς==∆≈+∑⎰,理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.785400246730784 2.653104ππ--=≈⨯ 如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.2. 梯形法等分区间b x i n a b a x x a x n i =<<-+=<<<=ΛΛ10,na b x -=∆ 相应函数值为n y y y ,,,10Λ(n i x f y i i ,,1,0),(Λ==).曲线)(x f y =上相应的点为n P P P ,,,10Λ(n i y x P i i i ,,1,0),,(Λ==)将曲线的每一段弧i i P P 1-用过点1-i P ,i P 的弦i i P P 1-(线性函数)来代替,这使得每个],[1i i x x -上的曲边梯形成为真正的梯形,其面积为x y y i i ∆⨯+-21,n i ,,2,1Λ=. 于是各个小梯形面积之和就是曲边梯形面积的近似值,11 11()d ()22n n b i i i i a i i y y x f x x x y y --==+∆≈⨯∆=+∑∑⎰, 即 011 ()d ()22b n n a y y b a f x x y y n --≈++++⎰L , 称此式为梯形公式. 仍用 120d 1x x +⎰的近似计算为例,取100=n ,10112 0d ()122n n y y x b a y y x n --≈++++=+⎰L , 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.785393996730784 5.305104ππ--=≈⨯ 很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.3. 抛物线法由梯形法求近似值,当)(x f y =为凹曲线时,它就偏小;当)(x f y =为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.将积分区间],[b a 作n 2等分,分点依次为b x i n a b a x x a x n i =<<-+=<<<=2102ΛΛ,na b x 2-=∆, 对应函数值为 n y y y 210,,,Λ(n i x f y i i 2,,1,0),(Λ==),曲线上相应点为n P P P 210,,,Λ(n i y x P i i i 2,,1,0),,(Λ==).现把区间],[20x x 上的曲线段)(x f y =用通过三点),(000y x P ,),(111y x P ,),(222y x P 的抛物线)(12x p x x y =++=γβα来近似代替,然后求函数)(1x p 从0x 到2x 的定积分:20 1 ()d x x p x x =⎰20 2 ()d x x x x x αβγ++=⎰)()(2)(30220223032x x x x x x -+-+-γβα ]4)(2)()()[(62022022202002γβαγβαγβα++++++++++-=x x x x x x x x x x 由于2201x x x +=,代入上式整理后得20 1 ()d x x p x x ⎰)](4)()[(612122202002γβαγβαγβα++++++++-=x x x x x x x x )4(621002y y y x x ++-=)4(6210y y y n a b ++-= 同样也有42 2 ()d x x p x x ⎰)4(6432y y y na b ++-= ……222 ()d n n x n x p x x -⎰)4(621222n n n y y y n a b ++-=-- 将这n 个积分相加即得原来所要计算的定积分的近似值: 222 22212 11()d ()d (4)6i i n n b x i i i i a x i i b a f x x p x x y y y n ---==-≈=++∑∑⎰⎰, 即021******* ()d [4()2()]6b n n n a b a f x x y y y y y y y y n---≈++++++++⎰L L 这就是抛物线法公式,也称为辛卜生(Simpson )公式. 仍用 120d 1x x +⎰的近似计算为例,取100=n , 102132124222 0d [4()2()]16n n n x b a y y y y y y y y x n ---≈+++++++++⎰L L =, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 160.785398163397454 2.827104ππ--=≈⨯ 4. 直接应用Matlab 命令计算结果(1) 数值计算 12 0d .1x x +⎰ 方法1:int('1/(1+x^2)','x',0,1) (符号求积分)方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)方法3:x=0::1;y=1./(1+x.^2);trapz(x,y) (梯形法求数值积分)(2)数值计算 2 12 0 1d d x x y y -+⎰⎰ 方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分)方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手1. 实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算 12 0d 1x x +⎰,取258=n ,并比较三种方法的精确程度.2. 分别用梯形法与抛物线法,计算 2 1d x x ⎰,取120=n .并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.3. 试计算定积分 0sin d x x x +∞⎰.(注意:可以运用trapz()、quad()或附录程序求解吗为什么)4. 将 12 0d 1x x +⎰的近似计算结果与Matlab 中各命令的计算结果相比较,试猜测Matlab 中的数值积分命令最可能采用了哪一种近似计算方法并找出其他例子支持你的观点.5. 通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值6. 学习的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环.五、附录附录1:矩形法(左点法、右点法、中点法)()format longn=100;a=0;b=1;inum1=0;inum2=0;inum3=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n; %左点xi=a+i*(b-a)/n; %右点fxj=subs(fx,'x',xj); %左点值fxi=subs(fx,'x',xi); %右点值fxij=subs(fx,'x',(xi+xj)/2); %中点值inum1=inum1+fxj*(b-a)/n;inum2=inum2+fxi*(b-a)/n;inum3=inum3+fxij*(b-a)/n;endinum1inum2inum3integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum1 and real-value is about: %d\n\n',...abs((inum1-integrate)/integrate))fprintf('The relative error between inum2 and real-value is about: %d\n\n',...abs((inum2-integrate)/integrate))fprintf('The relative error between inum3 and real-value is about: %d\n\n',...abs((inum3-integrate)/integrate))附录2:梯形法()format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n;xi=a+i*(b-a)/n;fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);inum=inum+(fxj+fxi)*(b-a)/(2*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录2sum:梯形法(),利用求和函数,避免for 循环format longn=100;a=0;b=1;syms x fxfx=1/(1+x^2);i=1:n;xj=a+(i-1)*(b-a)/n; %所有左点的数组xi=a+i*(b-a)/n; %所有右点的数组fxj=subs(fx,'x',xj); %所有左点值fxi=subs(fx,'x',xi); %所有右点值f=(fxi+fxj)/2*(b-a)/n; %梯形面积inum=sum(f) %加和梯形面积求解integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录3:抛物线法()format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n; %左点xi=a+i*(b-a)/n; %右点xk=(xi+xj)/2; %中点fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);fxk=subs(fx,'x',xk);inum=inum+(fxj+4*fxk+fxi)*(b-a)/(6*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))。

相关文档
最新文档