地球化学总复习(复习要点加习题)
地球化学复习资料

地球化学复习资料第⼀部分:选择题1.硫同位素分馏的主要⽅式是()和()。
A.物理分馏;化学分馏B.化学分馏;⽣物分馏C.物理分馏;⽣物分馏2.A.E.Ringwood电负性法则适合于()A.所有状态B.离⼦键化合物C.共价键化合物3.地球化学亲和性可⽤于研究()元素的结合规律。
A.常量元素B.微量元素C.所有元素4.V.MGoldschmidt类质同象法则适⽤于研究()化合物的类质同象规律A.硫化物B.离⼦键化合物C.所有5.克拉克值是由()提议命名的A.ClarkB.FersmanC.V.M.Goldschidt6.⽅铅矿的铅同位素组成可以代表()A.现阶段体系的铅同位素组成B.形成时体系的铅同位素组成C.下地壳的铅同位素组成7.C14可以测定活树的年龄A.不对B.对C.有时可以8.确定地质体元素丰度的关键是:()、样品分析精度、样品统计性A.样品多少B.样品代表性C.样品是否新鲜9.络离⼦的稳定性与其不稳定常数(K不)有关,(K不)越⼤()A. 稳定性⼤,迁移能⼒强B.稳定性,迁移能⼒⼤C.络离⼦越不稳定,迁移能⼒⼩10.活度积原理可以解释()元素的迁移与沉淀A.难溶元素B.易溶元素C.所有元素11.元素迁移表现为()A.含量变化B.含量变化、空间位移和存在形式变化12.LREE是指()/doc/94db84ce0242a8956aece42b.html -Eu /doc/94db84ce0242a8956aece42b.html -Sm /doc/94db84ce0242a8956aece42b.html -Dd13.总分配系数d=Σwi*Kdi,Wi为()A.矿物数B.矿物中元素的分配系数C.每种矿物在集合体中所占的质量百分数14.测定流体包裹体中流体的氧同位素组成应选择()矿物进⾏测定A.氧化物B.硫化物C.硅酸盐15.假等时线是指()A.分⼦误差所致B.⼦核太少所致C.复杂因素综合所致答案:BBBBB—BABCA—BACBC⼀、名词解释:1.浓度克拉克值2.类质同象3.曾⽥章正-科⾥尔模式(Aasuda-Coryell)⼆、问答题1.陨⽯的研究意义2.地球化学组成的研究⽅法论3.地球的化学组成特征第⼀部分:选择题1.胶体带电,其能吸附()共同迁移,带正电的胶体与带()的胶体共同稳定迁移。
地球化学考试复习资料

地球化学考试复习资料第一部分课后习题及答案绪论1. 简要说明地球化学研究的基本问题。
1)地球系统中元素及同位素的组成问题;2)地球系统中元素的组合和元素的赋存形式;3)地球系统各类自然过程中元素的行为(地球的化学作用)、迁移规律和机理;4)地球的化学演化,即地球历史中元素及同位素的演化历史。
2. 简述地球化学学科的研究思路和研究方法。
1)自然过程在形成宏观地质体的同时也留下了微观踪迹,其中包括了许多地球化学信息;2)自然界物质的运动和存在状态是环境和体系介质条件的函数;3)地球化学问题必须至于地球或其其子系统中进行分析,以系统的组成和状态来约束作用的特征和元素的行为。
地球化学研究方法:反序法和类比法第一章太阳系和地球系统的元素丰度1.简述太阳系元素丰度的基本特征.1)原子序数较低的范围内,元素丰度随原子序数增大呈指数递减,而在原子序数较大的范围内(Z>45)各元素丰度值很相近。
2)原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。
具有偶数质子数(A)或偶数中子数(N)的核素丰度总是高于具有奇数A 或N的核素。
3)质量数为4的倍数的核类或同位素具有较高的丰度,原子序数或中子数为“约数”(2、8、20、50、83、126等)的核类或同位素分布最广、丰度最大。
4)锂、铍、硼元素丰度严重偏低,属于强亏损的元素。
5)氧和铁元素丰度显著偏高,它们是过剩元素。
6)含量最高的元素为H、He,这两种元素的原子几乎占了太阳中全部原子数目的98%。
2.简介地壳元素丰度特征.1)地壳元素丰度差异大:丰度值最大的元素(O)是最小元素(Rn)的1017倍;丰度值最大的三种元素之和达82.58%;丰度值最大的九种元素之和达98.13%;2)地壳元素丰度的分布规律与太阳系基本相同。
与太阳系或宇宙相比,地壳和地球都明显地贫H, He, Ne, N等气体元素;而地壳与整个地球相比,则明显贫Fe和Mg,同时富集Al, K 和Na。
地球化学复习题

地球化学复习题
1. 地球化学的定义是什么?
2. 地球化学研究的主要领域有哪些?
3. 描述地球化学循环的过程。
4. 地球化学元素在地壳中的分布规律是什么?
5. 什么是地球化学异常?它在地质勘探中的作用是什么?
6. 地球化学分析的主要方法有哪些?
7. 简述地球化学在环境科学中的应用。
8. 地球化学在矿产资源勘探中如何发挥作用?
9. 什么是同位素地球化学?它在研究地球历史中的作用是什么?
10. 描述地球化学在水文学中的应用。
11. 地球化学如何帮助我们理解地球内部结构?
12. 什么是地球化学的生物地球化学循环?
13. 地球化学在农业中的应用有哪些?
14. 简述地球化学在石油和天然气勘探中的作用。
15. 地球化学在海洋科学中如何应用?
16. 描述地球化学在大气科学中的应用。
17. 地球化学如何帮助我们理解地球的气候系统?
18. 地球化学在灾害地质学中的作用是什么?
19. 什么是地球化学的热液循环?
20. 地球化学在土壤科学中的应用有哪些?
21. 地球化学如何帮助我们评估和修复污染场地?
22. 简述地球化学在材料科学中的应用。
23. 地球化学在考古学中的应用有哪些?
24. 描述地球化学在生物医学研究中的作用。
25. 地球化学在宇宙化学中的应用是什么?。
地球化学复习资料(二)2024

地球化学复习资料(二)引言概述:地球化学是研究地球及其组成部分的化学性质和过程的学科。
它对于理解地球内部构造、岩石和矿物的形成、地球生态系统以及地球表面和大气层的化学变化非常重要。
本文是地球化学复习资料系列的第二篇,主要介绍地球中元素的分布、地球化学循环、地球化学分析技术等内容。
正文内容:1. 地球元素分布a. 大地构造带来的地球元素差异b. 地壳、地幔和核的元素组成c. 元素富集与稀缺性的原因d. 地球元素的地球化学周期表2. 地球化学循环a. 生物地球化学循环i. 元素在生物圈中的循环过程ii. 包括生物体内和生物体间的循环b. 地球物质循环i. 土壤中的元素循环ii. 水循环、碳循环、氮循环等c. 平衡和非平衡地球化学循环3. 地球化学分析技术a. 主要的地球化学分析方法i. 光谱分析ii. 质谱分析iii. X射线衍射分析iv. 原子吸收光谱分析b. 地球化学样品的采集和准备c. 地球化学数据的处理和解释4. 岩石和矿物的地球化学特征a. 岩石的成分和分类b. 矿物的成分和分类c. 岩石和矿物的地球化学特征对地球演化的指示作用5. 环境地球化学a. 土壤污染的地球化学特征b. 矿物对环境中污染物的吸附和解毒作用c. 环境地球化学的应用与挑战总结:地球化学研究通过对地球元素的分布、地球化学循环、地球化学分析技术以及岩石、矿物的地球化学特征的探索,为我们深入了解地球的内部构造、地球表面和大气层的化学变化以及生态系统的环境问题提供了重要参考。
进一步发展地球化学研究不仅可以更好地了解地球的起源和演化,还能够支持环境保护、资源开发等领域的科学决策和实践。
地球化学复习题汇总

地球化学赵伦山张本仁韩吟文马振东等P1: 地球化学基本问题)P 5: 克拉克值,地球化学发展简史(几个发展阶段)P31: 元素丰度,表示单位元素在地壳平均化学丰度------ 确定方法,克拉克值,P37: 元素克拉克值的地球化学意义P68: 类质同象和固溶作用P81: 元素的赋存状态一一1,5种P88: 元素迁移P 123: 相律P169: 衰变定律P181:痕量元素地球化学,稀土元素的研究方法和意义(痕量元素=微量元素)复习内容及答案汇总一、地球化学研究的基本问题、学科特点及其在地球科学中的地位(P1-)地球化学是研究地球及相关宇宙体的化学组成、化学作用和化学演化的科学,在地球化学发展历史中曾经历了较长时间的资料积累过程,随后基于克拉克、戈尔施密特、维尔纳茨基、费尔斯曼等科学家的出色工作,地球化学由分散的资料描述逐渐发展为有系统理论和独立研究方法的学科。
目前地球化学已发展成为地球科学领域的重要分支学科之一,与岩石学、构造地质学等相邻学科相互渗透与补充,极大地丰富了地球科学研究内容,在地质作用过程定量化研究中已不可或缺。
地球化学的研究思路和学科特点是:(1)通过分析常量、微量元素和同位素组成的变化,元素相互组合和赋存状态变化等追索地球演化历史;(2)利用热力学等现代科学理论解释自然体系化学变化的原因和条件,探讨自然作用的机制;(3)将地球化学问题置于地球和其子系统(岩石圈、地壳、地幔、地核等)中进行分析,以个系统的组成和状态约束作用过程的特征和元素的行为。
围绕原子在自然环境中的变化及其意义,地球化学研究主要涉及四个基本问题:(1)研究地球和动质体中元素和同位素的组成;(2)研究元素的共生组合和赋存形式;(3)研究元素的迁移和循环;(4)研究元素和同位素迁移历史和地球的组成、演化历史、地球化学作用过程。
、简述痕量元素地球化学研究解决的主要问题痕量元素地球化学理论使许多地质难题迎刃而解,其可解决的主要问题有:(1)使元素分配的研究进入定量和动态研究阶段;(2)为确定地质一地球化学过程的物理化学条件提供了新的研究途径;(3)开辟了根据固态岩石和矿物中痕量元素丰度数据,探讨岩浆、热液和古沉积盆地水介质化学成分,源区特征及发展演化历史的重要途径;(4)为鉴别各类岩石和矿床成因,提供了定量化的指示信息;(5)为分析微量元素在地壳中的分散和集中,尤其是浓集成矿的机制问题提供了依据三、试举例说明稀土元素地球化学在地学研究中的作用(P190-)稀土元素稀土元素指原子序数57 (La)—71 (Lu)的16个元素,由于他们的电子构型非常接近,所以它们具有十分相近的化学和物理性质。
地球化学复习重点

绪论:1. 地球化学:地球化学是研究地球及其子系统(含部分宇宙)的化学组成、化学作用和化学演化的科学.2. 地球化学研究的基本问题:①元素(同位素)在地球及各子系统中的组成②元素的共生组合和存在形式③研究元素的迁移④研究元素(同位素)的行为⑤元素的地球化学演化3. 地球化学的研究思路:"见微而知著"。
通过观察原子、研究元素(同位素),以求认识地球和地质作用地球化学现象。
4. 简述地球化学的研究方法:A. 野外工作方法:①宏观地质调研②运用地球化学思维观察、认识地质现象③在地质地球化学观察的基础上,根据目标任务采集各种地球化学样品B.室内研究方法:④量的测定,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的含量值⑤质的研究,也就是元素结合形态和赋存状态的研究⑥动的研究,地球化学作用过程物理化学条件的测定和计算。
包括测定和计算两大类。
⑦模拟地球化学过程,进行模拟实验。
⑧测试数据的多元统计处理和计算。
第一章:基本概念1. 地球化学体系:我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的时间连续,具有一定的空间,都处于特定的物理化学状态(T、P 等)2. 丰度:一般指的是元素在这个体系中的相对含量(平均含量)。
3. 分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区)整体的总的含量特征。
4. 分配:元素的分配指的是元素在各地球化学体系内各个区域、各个区段中的含量。
5. 研究元素丰度的意义:①元素丰度是每一个地球化学体系的基本数据以在同一体系中或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素基本特征和动态情况,从而建立起元素集中、分散、迁移等系列的地球化学概念。
是研究地球、研究矿产的重要手段之一。
②研究元素丰度是研究地球化学基础理论问题的重要素材之一。
宇宙天体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的主要元素不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和分布规律。
地球化学复习重点(部分)

绪论:1.地球化学的定义:地球化学是研究地球及其子系统(含部分宇宙体)的化学组成、化学机制和化学演化的科学。
2.地球化学研究的基本问题:(1)地球系统中元素及同位素的组成问题(2)元素的共生组合和赋存形式问题(3)元素的迁移和循环(4)地球的历史与演化。
第一章:1.陨石的分类:陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成按成份分为三类:(1)铁陨石:主要由金属Ni-Fe(98%)和少量其它矿物如磷铁镍古矿[(Fe,Ni,Co)3P]、陨硫铁(troilite)(FeS)、镍碳铁矿(Fe3C)和石墨(graphite)等组成。
(2)石陨石:主要由硅酸盐矿物silicate minerals组成。
根据它是否含有细小而大致相近的球状硅酸盐结构而进一步分为球粒陨石和无球粒陨石。
球粒主要是橄榄石和辉石,有时为玻璃;无球粒陨石缺乏球粒结构,成分上与前者也有差异。
(3)石-铁陨石:由数量大体相等的Ni-Fe 和硅酸盐(主要是橄榄石,偶尔辉石)组成。
2.地壳、地球和太阳系元素丰度组成特征及其差异的原因:太阳系:H>He>O>C>Ne>N>Fe>Si>Mg>S;特征规律:1.原子序数较低的范围内,元素的丰度随原子序数增大而呈指数递减,而在原子序数较大的范围内(Z>45)个元素丰度值很接近;2.原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素;3.H 和He的丰度最高的两种元素;4.与He向邻近的Li和Be、B具有很低的丰度,属于强亏损的元素;5.在元素丰度曲线上O和Fe呈明显的峰,它们是过剩元素;6.质量数为4的倍数的核素和同位素具有较高丰度;地球:Fe>O>Mg>Si>Ni>S>Ca>Al>Co>Na;特征:1.地球物质的90%由Fe、O、Si和Mg四纵元素组成;2.含量大于1%的元素有Ni、Ca、Al、和S;3.Na、K、Cr、Co、P、Mn和Ti的含量均在0.01%-1%扥范围;地壳:O>Si>Al>Fe>Ca>Na>K>Mg>Ti>H ;特征:①与地球和太阳系相比,最丰富的十种元素是O-Si-Al-Fe-Ca-Na-K-Mg-Ti-H;②不均匀性:前13种元素占地壳总重的99.7%;其余只占0.3%。
地球化学复习题

地球化学复习题地球化学复习题绪论1、地球化学的定义。
答:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。
2、地球化学的任务。
答:1)地球及其子系统中元素及其同位素的组成,即元素的分布和分配问题;2)元素的共生组合和赋存形式;3)元素的迁移和循环;4)地球的历史和演化。
5)基础理论和应用的发展。
3、地球化学的研究思路和工作方法。
答:研究思路:以化学、物理化学等基本原理为基础,以研究原子(包括元素和同位素)的行为为手段,来认识地球的组成、历史和地球化学作用。
工作方法:野外:地质考察+样品采集(代表性、系统性、统计性、严格性)。
室内:--岩矿鉴定--分析测试:早期容量法、离子色谱法和比色法,现今X射线荧光光谱XRF、ICPAES、--ICPMS、固体质谱、AAS等。
--元素结合形式和赋存状态的研究:化学分析、晶体光学、X射线衍射、拉曼谱、微区分析(电子探针、离子探针)等。
--作用过程的物理化学条件的测定:温度(包裹体、矿物、同位素)、压力、pH、Eh、盐度等。
--自然作用的时间参数:同位素测年。
--模拟实验。
--多元统计计算和数学模型。
4、地球化学学科的特点。
答:1、基础科学成果的应用.2、地质科学的发展.3、更广泛的数字模拟。
第一章太阳系和地球系统的元素丰度1、对比元素在地壳、地球和太阳系中分布规律的异同点,并解释其原因。
答:相同点:元素的丰度均随原子系数增大而减小。
均符合奇偶定律。
不同点:与太阳系或宇宙相比,地壳和地球都明显地贫H, He, Ne, N等气体元素;而地壳与整个地球相比,则明显贫Fe和Mg,同时富集Al, K和N a。
原因:2、研究克拉克值有何地球化学意义。
答:可作为元素集中、分散的标尺。
控制元素的地球化学行为。
A)影响元素参加地壳中地球化学过程的浓度。
B)限定自然界的矿物种类及种属。
C) 限制了自然体系的状态。
3、地球各圈层化学组成的基本特征。
答:地壳:①地壳中元素的相对平均含量是极不均一的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地球化学总复习
1.温度的增加
2.压力的降低
3.体系由无水转变为含水条件
六、其它基本概念
胶体、地球化学障、造网元素、变网元素
第四章 放射性同位素地球化学
一、同位素的概念 原子核内质子数 Z 相同而中子数 N 不同的一类核素称为同位素。
二、同位素定年的基本原理
三、母体、子体的概念(銣-锶、钐-钕、铀-铅)
地球化学总复习
8.举例说明元素存在形式研究对环境、找矿或农业问题的意义。 对找矿:如在超基性岩中镍的含量一般较高,如果镍存在于硅酸盐中,其基本不能被利
用,但如果镍以硫化物形式存在,就有良好的利用价值了。 对农业:元素 赋存形式的研究,可了解土壤中有益元素是否能够为植物吸收,而有害
2.林伍德提出对戈氏法则(更适于非离子键化合物)对于二个价数和离子半径相似的阳 离子,具有较低电负性者将优先被结合,因为它们形成一种较强的离子键成分较多的化学键。 第三章 自然体系中元素的地球化学迁移 一、元素地球化学迁移的定义
当元素发生结合状态变化并伴随有元素的空间位移时,称元素发生了地球化学迁移。 二、元素地球化学迁移能力的影响因素
4 自结晶以来,每个样品都符合定年的基本条件—呈封闭体系。
五、同位素测年的计算
铷—锶衰变体系பைடு நூலகம்年方法
铀-铅衰变体系定年方法
钐-钕模式年龄的表达
第五章 稳定同位素地球化学
一、基本概念
同位素效应、同位素分馏系数、δ值、同位素分馏值(包括它们之间的相关换算)
二、同位素地质温度计的原理及应用
三、大气降水的氢、氧同位素组成特点
母体:放射性核素
子体:母体衰变的产物
四、銣-锶等时线定年需满足的条件
1 一套岩石系列的不同岩石,由于岩浆结晶分异作用造成不同岩石的 Rb/Sr 比值有差异。
2 结晶分异作用经历的时间较短,各岩石形成 Rb-Sr 封闭体系的时间大致相同。
3 由于同源岩石具有相同的 87Sr/86Sr 初始同位素比值。
答:1.Goldschmidt 类质同像法则:该法则从相互置换的质点的电价、半径的角度判断, 适用于离子键化合物。
(1)若两种离子电价相同,半径相似,则半径较小的离子优先进入矿物晶格,即较小 离子半径的元素集中于较早期的矿物中,而较大离子半径的元素集中于较晚期矿物中。
(2)若两种离子半径相似而电价不同,则较高价离子优先进入较早结晶的矿物晶体, 集中于较早期的矿物中,称“捕获”;较低价离子集中于较晚期的矿物中,称为被“容许”。
亲氧(亲石)、亲硫(亲铜)、亲铁、亲气 五、类质同象的定义
某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机地被介质中的其他 质点(原子、离子、配离子、分子)所占据,结果只引起晶格常数的微小改变,晶体的构造 类型、化学键类型等保持不变,这一现象称为“类质同象”。 六、类质同象的置换法则
1.戈式法则(适于离子键化合物)①优先法则:两种元素电价相同,半径较小者优先 进入矿物晶格。 ②捕获允许法则:两种离子半径相似而电价不同时,较高价的离子优先进 入矿物晶格。 ③隐蔽法则:两个离子具有相近的半径和相同的电荷,则它们因丰度的比例 来决定自身的行为,丰度高的主量元素形成独立矿物,丰度低的微量元素进入矿物晶格,为 主量元素所“隐蔽”。
e. 分配系数的含义
f. 影响分配系数的主要因素
g. 分配系数的测定
第六章 微量元素地球化学
二、岩浆过程中相容元素与不相容元素的变化特征
平衡部分熔融过程微量元素变化的主要特征
不相容元素在溶体中富集,
分配系数越小,富集程度越高;
部分熔融程度越低,富集程度越高
不相容元素在残留体中亏损
分配系数越小,亏损程度越高;
相容元素在溶体中的含量低于源岩
分配系数越大,亏损程度越高
2
地球化学总复习
分离结晶过程中微量元素变化的主要特征 三、稀土元素组成、化学性质及增田-科里尔图解 四、REE 配分图的分类 五、稀土元素 Eu 异常产生的原因 例题:
计算高级变质岩(麻粒岩)的变质温度。已知所测定 的石英、透辉石的氧同位素组成分别为+10.2‰和+7.9‰ (相对 V-SMOW)。 解: 1)根据 Chiba et al. (1989)和 Javoy (1977) 给出石英-透辉石的氧同位素平衡分馏系数与 温度关系(见 Matthews (1994)提供的表):103lnα石英-透辉石 = 2.75 (103/T)2 在δ18O>+10 ‰ 情况下,最好不用 103lnαA-B = δ18OA-δ18OB 近似。 αA-B = (103+δ18OA)/(103+δ18OB) 代入石英和透辉石数据,得 103lnα石英-透辉石 = 103ln[(103+10.2)/(103+7.9)] = 2.279 2)计算变质温度 2.75 (103/T)2 = 2.279 解出 T 来 T = (2.75/2.279)1/2×103 = 1098 (K) 将开尔文温度换算成摄氏温度 T = 1098 - 273 = 825 (℃) 因此,我们获得麻粒岩的变质温度为 825 ℃ 。 注意:1)根据公式计算得到的温度是 K 氏温度,一定要转 换为摄氏温度;2)当δ值较大时最好不要用近似公式。 例题 已知:U=792.1ppm; Th=318.6ppm; Pb=208.2ppm; Pb 同位素组成:204Pb=0.048%(atom);206Pb=80.33%;
研究方法:
(一)野外阶段:
(1)宏观地质调研。明确研究目标和任务,制定计划。
(2)运用地球化学思维观察认识地质现象。
(3)采集各种类型的地球化学样品。
(二)室内阶段:
(1)“量”的研究,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的分配量。
元素量的研究是地球化学的基础和起点,为此,对分析方法的研究的要求:首先是准确;其
类质同像是自然界化合物中一种十分普遍的现象,它是支配地壳中元素共生组合的一个 重要因素,特别是对一些微量元素,是决定它们在自然界活动状况的主要因素。
(1)确定了元素的共生组合(包括微量元素和常量元素间的制约、依赖关系)。 (2)决定了元素在共生矿物间的分配。 (3)支配微量元素在交代过程中的行为。 (4)类质同象的元素比值可作为地质作用过程和地质体成因的标志。 (5)标型元素组合。 (6)影响微量元素的集中或分散(晶体化学分散或残余富集)。 (7)为地质找矿及环境研究服务。 7.简述地壳中元素的赋存形式及其研究方法。
207Pb=9.00%; 208Pb=10.63% 普通 Pb 的同位素组成: 204Pb:206Pb:207Pb:208Pb=1.00 : 16.25 : 15.51 : 35.73 λ8=1.55125×10-10 ; λ5=9. 8485×10-10 (假定 204Pb,206Pb,207Pb,208Pb 的原子量为 204, 206, 207, 208; 235U、238U 的原子量分别为 235,238;235U/238U=1/137.88) 求 t6/8 , t7/5 , t7/6
1.内因(1)迁移前元素的存在形式(2)晶体化学键类型(3)元素的地球化学性质(半 径、电价、电负性、离子电位等)。2.外因(1)体系中组分的浓度(2)温度、压力(3)环 境中 PH 值、Eh 值的变化。 三、元素的迁移方式
机制:(1)化学迁移(2)生物迁移(3)机械迁移 物质状态:(1)固态物质迁移;(2)水溶液形式迁移;(3)胶体形式迁移; (4) 岩浆形式迁移 四、水-岩作用的基本类型 1.氧化还原反应 2.水解和脱水反应 3.水合作用 4.碳酸盐化或脱碳酸盐化 5.阳离子交换反应 五、岩浆产生的三种条件
答(1)赋存形式:独立矿物、类质同像形式、超显微非结构混入物、胶体吸附状态和与 有机物结合的形式。
(2)研究方法:
存在形式 显微镜 X 光衍射 电 子 探 放 射 照 偏提取 电渗析 透 射 电
针
相
镜
独立矿物 +
+
+
+
+
+
类质同象 +
+
+
+
+
+
超微混入 + 物
+
+
+
吸附态
+
+
+
+
有机质结 合
+
+
+
5
地球化学总复习
第一章 绪论 一、地球化学的定义
地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学 (涂光炽)。 二、地球化学研究的基本问题 第一: 元素(同位素)在地球及各子系统中的组成(量)。 第二: 元素的共生组合和存在形式(质)。 第三: 研究元素的迁移(动)。 第四: 研究元素(同位素)的行为。 第五: 元素的地球化学演化。 第二章 自然体系中元素的共生结合规律 一、元素地球化学亲和性的定义
成高度共价键, 亲硫元素和硫结合生成的硫化物、硫盐等常常和铜的硫化物共生,易熔于 硫化铁熔体,主要集中于硫化物—氧化物过渡带。
亲氧元素(又称亲石元素):有惰性气体的电子层结构, 即离子的最外电子层具有 8 电子惰性气体型(s2p6)的稳定结构,电负性较小,与氧形成高度离子键, 亲氧元素与 氧结合以后形成的氧化物、含氧盐等矿物是构成岩石圈的主要矿物形式,易熔于硅酸盐熔体, 主要集中在岩石圈。 5.简述类质同像的基本规律。
“四个效应”
一、基本概念
1.1 微量元素的定义
1.2 微量元素在地质体中的赋存型式
1.3 微量元素分类
1.4 支配微量元素地球化学行为的主要物理化学定律
a. Goldschmidt 三定律
b. 化学势、逸度、活度
c. 固熔体、稀溶液与亨利定律