单结晶体管触发电路
单结晶体管触发电路波形

单结晶体管触发电路波形
咱来说说单结晶体管触发电路波形是啥。
有一次我去一个工厂参观,看到一些奇怪的图形在屏幕上跳来跳去。
我就好奇地问旁边的师傅这是啥,师傅说这是单结晶体管触发电路波形。
单结晶体管触发电路波形呢,就像是一个调皮的小波浪。
它一会儿高一会儿低,一会儿快一会儿慢。
比如说,你看大海的波浪,有大有小,有急有缓。
单结晶体管触发电路波形就有点像那个,只不过是在电子世界里。
在生活中,单结晶体管触发电路波形虽然我们平时不太注意,但它可重要了。
它能控制一些电器的工作,让它们按照一定的规律运行。
就像我在工厂看到的那些波形,让我对单结晶体管触发电路波形有了更直观的认识。
嘿嘿。
单结晶体管触发电路工作原理

单结晶体管触发电路工作原理单结晶体管触发电路由一个单极性晶体管组成,其结构和工作原理类似于普通的集电极放大电路。
晶体管由三个区域组成:发射区、基区和集结区。
基区接入触发信号电源,而集结区接入电源,形成偏置电压。
当输入信号电压通过基区施加到晶体管时,集结结区的二极管就会被极化。
当输入信号电压高于一定阈值时,集结结区的二极管会开始导通,从而导致晶体管进入饱和状态。
1.稳定偏置:通过集结区的偏置电压来稳定晶体管的工作点。
这个偏置电压可以使集结结区的二极管处于正向偏置状态。
2.输入信号:通过将输入信号电压附加在基区时,可以改变集结结区二极管的电场分布。
当输入信号电压高于一些阈值时,集结结区二极管开始导通。
3.晶体管饱和:当集结结区二极管导通时,基区的电流会极大增加,导致晶体管进入饱和状态。
在饱和状态下,晶体管的集电极电流将近似于直流驱动电流。
4.输出信号:晶体管的饱和状态使得输出电压趋近于接近集电极电流的电源电压。
根据以上的工作原理,单结晶体管触发电路具有以下特点:1.简单:单结晶体管触发电路只需要一个晶体管和少量的外部元件,所以它的设计和实施都相对简单。
2.快速:由于晶体管本身的快速开关特性,单结晶体管触发电路可以实现高速开关操作,适用于需要快速开关的应用领域。
3.高可靠性:晶体管是一种稳定可靠的元件,所以单结晶体管触发电路在稳定性和可靠性方面具有优势。
4.小尺寸:由于单结晶体管触发电路仅由一个晶体管和少量的外部元件组成,所以它的尺寸相对较小,适用于空间有限的应用场景。
此外,单结晶体管触发电路还常用于时序电路和计时器中。
由于其高速开关特性和稳定可靠性,它可以实现精确的时序控制和计时功能。
因此,在电子钟、计时器、频率计等应用中也经常使用单结晶体管触发电路。
总而言之,单结晶体管触发电路是一种功能强大、可靠性高、适用范围广的电子元件。
它的工作原理简单明了,应用场景广泛,是电子电路设计和实施中不可或缺的一部分。
单结晶体管触发电路

单结晶体管触发电路看一看单结晶体管触发电路如图3-1所示,注意观察电路中所用的元器件,特别是有关元器件的型号或参数。
三极管9012的管脚图如图3-2所示,单结晶体管BT33的管脚图如图3-3所示。
图3-1 单结晶体管触发电路图3-2 9012的管脚图图3-3 单结晶体管BT33的管脚图知识链接单结晶体管的基本特性:1.等效电路单结晶体管等效电路如图3-4所示。
r b1:E与B1间电阻,随发射极电流而变,即IE上升,r b1下降。
rb2:E与B2间的电阻,数值与IE无关。
rbb:两基极间电阻。
rbb = r b1 + rb2η:称为分压比,r b1与rbb的比值,η一般在0.3 ~ 0.8 之间。
图3-4 单结晶体管等效电路图2.导通条件VEE > ηVBB + VD (VD为PN结的正向电压)想一想如图3-1所示,单结晶体管触发电路是如何工作的?做一做1.检测图3-1所示电路中的元器件。
2.根据图3-1所示电路完成印制板图设计(板子尺寸:100mm×80mm)。
3.根据设计的印制板图在多孔板上完成电路的装接。
注意:电解电容、二极管、稳压二极管、三极管和单结晶体管的极性。
测一测用示波器实测并画出单结晶体管触发电路各点波形图,将结果画入如图3-5所示。
图3-5 测各点波形学一学单结晶体管触发电路工作特点:1.电源变压器的二次侧24V交流电压经单相桥式整流后由稳压管V5削波得到梯形波电压,该电压既作为单结晶体管触发电路的同步电压,又作为单结晶体管的工作电源电压。
2.V7、V8组成直接耦合放大电路,V7采用PNP型管,V8采用NPN型管,触发电路的给定电压(U1)由电位器RP调节,U1经V8放大后加到V7。
三极管V7相当于由U1控制的一个可变电阻,它起到移相的作用。
3.V9~V11是三极管V8的基极正反向电压保护作用。
单结晶体管触发电路

优点:单结晶体管触发电路比较简单,温度性能比较好,有一定的抗干扰能力,
缺点:脉冲前沿陡,输入功率较小,脉冲宽度较窄,只能承受调节RP (电位器R2),无法加入其它信号,移相范围≤180°,
一般为150°此电路可以用在单相可控硅整流电路要求不高的场合,能触发50A 以下的晶闸管。
交流电压经桥式整流和稳压后削波后得到梯形电压。
脉冲电压形成时梯形同步电压经R2、R3对电容C 充电,
C 两端电压上升到单结晶体管峰点电压UP(BT33的峰点电压)时,单结晶体管由截止变为导通,通过e---b1---R5放电,
放电电流在电阻RB1(放电电阻R5)上产生一组尖顶脉冲电压,由RB1(放电电阻R5)输出一组触发脉冲,其中第一个脉冲使晶闸管触发导通,后面的脉冲对晶闸管工作没有影响。
随着C 的放电,当电容两端电压下降到单结晶体管谷点电压UV(BT33谷底电压)时单结晶体管重新截止,
C 重新充电,重复上述过程。
RB1(放电电阻R5)上又输出一组峰顶脉冲电压,这个过程重复进行。
当梯形电压过零点时,电容C 两端电压也为零,因此电容每一次连续充放电的起点就是电源电压过零点,这样就保证输出电压的频率和电源频率同步。
移相是通过改变RP(电位器R2)的大小实现的,改变RP(电位器R2)的大小可以改变C 的充电速度,因此就改变了第一个脉冲出现的时间,从而达到了移相的目的。
分析单结晶体管触发电路

谷点电流IV。由于UE随IE增大而减小,动态电阻 reb1
U E I E
为负值,故从P点到V
点这段曲线称为单结晶体管的负阻特性。对应这段负阻特性的区域称为负阻区。
V点以后,当IE继续增大,空穴注入N区增大到一定程度,部分空穴来不及与 基区电子复合,出现空穴剩余,使空穴继续注入遇到阻力,相当于RB1变大,因 此在V点之后,元件又恢复正阻特性,UE随着IE的增大而缓慢增大。这段区域称 为饱和区。显然,UV是维持管子导通的最小发射极电压,一旦UE<UV,管子将 截止。
2020年9月27日星期日
6
学习情第境7一章单相电可控力整电流子电技路术的制作
由上述分析可知,单结晶体管具有以下特点:
பைடு நூலகம்1.当发射极电压UE小于峰点电压UP时,单结晶体管为截 止状态,当UE上升到峰点电压时,单结晶体管触发导通。
2.导通后,若UE低于谷点电压UV,单结晶体管立即转入 截止状态。
3.峰点电压UP与管子的分压比η及外加电压UBB有关。 η
接上外加电源UEE,调整RP使UE由零逐渐加大,在UE<UA+UD=ηUBB+UD时 (UD为等效二极管的正向压降),二极管因反偏而截止,发射极仅有很小的反 向电流流过。E与B1间呈现很大的电阻,管子处于截止状态,这段区域称截止区。 如图b中OP段。
当UE升高到UE=ηUBB+UD时,达到图b中P点,二极管开始正偏而导通。IE随 之开始增加。P点所对应的发射极电压UP和电流IP分别称为单结晶体管的峰点电
2020年9月27日星期日
4
学习情第境7一章单相电可控力整电流子电技路术的制作
当E极开路时,图中A点对B1极间电压(即上压降)为
式中
晶闸管触发电路

•1.1 单结晶体管
单结晶体管又叫双基极二极管,是具有一个PN结的三 端负阻器件。 单结晶体管触发电路结构简单,输出脉 冲前沿陡峭,抗干扰能力强,运行可靠,调试方便,广 泛应用与小容量晶闸管触发控制。
1.单结晶体管的结构ຫໍສະໝຸດ 等效电路在一个低掺杂的N型硅棒上利 用扩散工艺形成一个高掺杂P 区,在P区与N区接触面形成 PN 结 , 就 构 成 单 结 晶 体 管 (UJT)。其结构如图 (a)所示,
当Ueb1增大,使PN结正向电压大于开启电压时,则IE变为正向电流,从 发射极e流向基极b1,此时,空穴浓度很高的P区向电子浓度很低的硅棒的A— b1区注入非平衡少子;由于半导体材料的电阻与其载流子的浓度紧密相关, 注入的载流子使rb1减小;而且rb1的减小,使其压降减小,导致PN结正向电 压增大,IE随之增大,注入的载流子将更多,于是rb1进一步减小;当IE增大 到一定程度时,二极管的导通电压将变化不大,此时UEB1。将因rb1的减小而 减小,表现出负阻特性。
P型半导体引出的电极为发射极E; N型半导体的两端引出两个电极, 分别为基极B1和基极B2,B1和B2 之间的N型区域可以等效为一个纯 电阻,即基区电阻RBB。该电阻的 阻值随着发射极电流的变化而改 变。单结晶体管因有两个基极, 故也称为双基极晶体管。其符号 如图(b)所示。
单结晶体管的等效电路如图(c)所 示,发射极所接P区与N型硅棒 形成的PN结等效为二极管D;N
型硅棒因掺杂浓度很低而呈现高 电阻,二极管阴极与基极B2之间 的 等 效 电 阻 为 RB2 , 二 极 管 阴 极 与基极B1之间的等效电阻为RB1; RB1的阻值受E-B1间电压的控制, 所以等效为可变电阻。
2、工作原理和特性曲线
当e-b1电压Ueb1为零或(Ueb1< UA)时,二极管承受反向电压,发射极的电 流Ie为二极管的反向电流,记作IEO。
单结晶体管触发电路

实验一单结晶体管触发电路一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。
2.掌握单结晶体管触发电路的调试步骤和方法。
3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。
4.了解续流二极管的作用。
二.实验内容1.单结晶体管触发电路的调试。
2.单结晶体管触发电路各点波形的观察。
3.单相半波整流电路带电阻性负载时特性的测定。
4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。
三.实验线路及原理将单结晶体管触发电路的输出端“G”“K”端接至晶闸管VT1的门阴极,即可构成如图4-1所示的实验线路。
四.实验设备及仪器1.NMCL系列教学实验台主控制屏2.NMEL—03三相可调电阻器3.NMCL—05组件:触发电路4.NMCL—31组件:低压控制电路及仪表5.NMCL—32组件:电源控制屏6.NMCL—33组件:触发电路和晶闸管主回路7.二踪示波器8.万用表五.注意事项1.双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。
为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。
当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。
2.为保护整流元件不受损坏,需注意实验步骤:(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct=0时,接通主电路电源,然后逐渐加大U ct,使整流电路投入工作。
(3)正确选择负载电阻或电感,须注意防止过流。
在不能确定的情况下,尽可能选择较大的电阻或电感,然后根据电流值来调整。
(4)晶闸管具有一定的维持电流I H,只有流过晶闸管的电流大于I H,晶闸管才可靠导通。
实验中,若负载电流太小,可能出现晶闸管时通时断,所以实验中,应保持负载电流不小于100mA。
单结晶体管同步触发电路_模拟电子技术_[共2页]
![单结晶体管同步触发电路_模拟电子技术_[共2页]](https://img.taocdn.com/s3/m/b0669ed2cc17552706220875.png)
07.3 单结晶体管的触发电路141 们不希望的。
图7.16(a )所示电路中的电阻R 2是作温度补偿用的,假设温度升高,因极间电阻R BB 具有正温度系数,其阻值增大,电流I B = U /(R 2 + R BB + R 1)就随之减小,R 1和R 2上的压降也相应减小,所以加在单结晶体管B 1、B 2上的电压U BB 就略微增大,于是补偿了U DF 因温度上升而下降的值,从而使峰点电压U P 稳定。
7.3.3 单结晶体管同步触发电路在可控整流电路中晶闸管接在交流电源上,需要当它承受正向电压时送去触发脉冲,而且在每个正半周内控制极上获得第一个触发脉冲的时刻都应该相同,即要求触发脉冲与主电路的电源电压同步。
为此,将触发电路与主电路接在同一交流电源上。
在主电路的交流电源电压过零时,单结晶体管上的电压也为0,触发电路中电容上的电荷全部放完,下一个正半周电容从0开始充电,这样才能保证每个正半周产生的第一个触发脉冲的时间保持不变。
实现同步的触发电路如图7.17所示。
图7.17 单结晶体管同步触发电路图7.17所示的主电路和触发电路由同一变压器提供交流电压,因此变压器不仅是整流变压器,而且还起同步作用,故也称为同步变压器。
电源电压u 2经单相桥式整流后,再经由电阻R 3和稳压管组成的削波稳压电路,然后在稳压管两端得到梯形电压U Z ,如图7.18(b )所示。
U Z 作为单结晶体管振荡电路的同步电源,当电源电压u 2过零时,电压U Z 过零,U BB 也为0,电容C 迅速放电至0。
因此电容C 每次都在电源电压过零时,再从零状态开始充电,保证触发电路与主电路同步。
触发电路每次发出的第一个触发脉冲使承受正向电压的晶闸管导通。
第一个触发脉冲发出后电容再次充电,随后发出一系列脉冲。
由于第一个触发脉冲已使晶闸管导通,于是控制极失去控制作用,以后的脉冲便不起作用。
电路各电压波形如图7.18所示。
要改变整流电路输出电压的大小就必须改变控制角α的大小,即改变第一个触发脉冲发出的时刻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浏览2695发布时间2009-03-20
单结晶体管触发电路之一
图1(a)是由单结晶体管组成的张弛振荡电路。
可从电阻R1上取出脉冲电压ug。
(a) 张弛振荡电路(b) 电压波形
图1 单结晶体管张弛振荡电路
假设在接通电源之前,图1(a)中电容C上的电压uc为零。
接通电源U后,它就经R向电容器充电,使其端电压按指数曲线升高。
电容器上的电压就加在单结晶体管的发射极E和第一基极B1之间。
当uc等于单结晶体管的峰点电压UP时,单结晶体管导通,电阻RB1急剧减小(约20Ω),电容器向R1放电。
由于电阻R1取得较小,放电很快,放电电流在R1上形成一个脉冲电压ug,如图1(b)所示。
由于电阻R取得较大,当电容电压下降到单结晶体管的谷点电压时,电源经过电阻R供给的电流小于单结晶体管的谷点电流,于是单结晶体管截止。
电源再次经R向电容C充电,重复上述过程。
于是在电阻R1上就得到一个脉冲电压ug。
但由于图1(a)的电路起不到如后述的“同步”作用,不能用来触发晶闸管。
单结晶体管触发电路之二
单结晶体管触发电路如图2所示,带有放大器。
晶体管T1和T2组成直接耦合直流放大电路。
T1是NPN型管,T2是PNP型管。
UI是触发电路的输入电压,由各种信号叠加在一起而得。
UI经T1放大后加到T2。
当UI增大时,IC1就增大,而使T1的集电极电位UC1,即T2的基极电位UB2降低,T2更为导通,IC2增大,这相当于晶体管T2的电阻变小。
同理,UI减小时,T2的电阻变大。
因此,T2相当于一个可变电阻,随着UI的变化来改变它的阻值,对输出脉冲起移相作用,达到调压的目的。
输出脉冲可以直接从电阻R1上引出,也可以通过脉冲变压器输出。
图2 单结晶体管触发电路
因为晶闸管控制极与阴极间允许的反向电压很小,为了防止反向击穿,在脉冲变压器副边串联二极管D1,可将反向电压隔开,而并联D2,可将反向电压短路。
单结晶体管触发电路之三——单相半控桥式整流电路
图3 由单结晶体管触发的单相半控桥式整流电路
改变电位器R P的数值可以调节输出脉冲电压的频率。
但是(R P+R)的阻值不能太小,否则在单结晶体管导通之后,电源经过R P和R供给的电流较大,单结晶体管的电流不能降到谷点电流之下,电容电压始终大于谷点电压,因此,单结晶体管就不能截止,造成单结晶体管的直通现象。
选用谷点电流大一些的管子,可以减少这种现象。
当然,(R P+R)的阻值也不能太大,否则充电太慢,使晶闸管的最大导通角受到限制,减小移相范围。
一般(R P+R)是几千欧到几十千欧。
单结晶体管触发电路输出的脉冲电压的宽度,主要决定于电容器放大电的时间常数。
R1或C 太小,放电快,触发脉冲的宽度小,不能使晶闸管触发。
因为晶闸管从阻断状态到完全导通需要一定时间,一般在10uf以下,所以触发脉冲的宽度必须在10uf以上。
如选用C=~1uF,R1=250~100Ω,就可得到数十微秒的脉冲宽度。
但是,若C值太大,由于充电时间常数(R P +R)C的最小值决定于最小控制角,则(R P+R)就必须很小,如上所述,这将引起单结晶体管的直通现象。
如果R1太大,当单结晶体管尚未导通时,其漏电流就可能在R1上产生较大的电压,这个电压加在晶闸管的控制极上而导致误触发。
一般规定,晶闸管的不触发电压为~,所以上述电压不应大于这个数值。
脉冲电压的幅度决定于直流电源电压和单结晶体管的分压比。
如电源电压为20V,晶体管的分压比为,则在单结晶体管导通时,电容器上的电压约为10V,除去管压降外,可以获得幅度为7~8V的输出脉冲电压。
根据上述数据,输出脉冲的宽度和幅度都能满足触发晶闸管的要求。
图3中的电阻R2是作温度补偿用的。
因为在U P=U BB+U D的式中,分压比几乎不随温度而变,而U D将随温度上升而略有下降。
这样,U P就要随温度而变,这是不希望的。
当接入R2(及R U BB是由稳压电源的电压U Z经R2、R BB、R1分压而得,而R BB随温度上升而增大,因此在1)后,
温度上升后,R BB增大,电流
就减小,R1和R2上的压降也相应减小,U BB就增大一些,于是补偿了U D因温度上升而下降之值,从而使峰点电压U P保持不变。
⑴稳压管的作用是将整流电压u o变换成梯形波(削去顶上一块,所谓削波),稳定在一个电压值U Z,使单结晶体管输出的脉冲幅度和每半周产生第一个脉冲(第一个脉冲使晶闸管触发导通后,后面的脉冲都是无用的)的时间不受交流电源电压波动的影响。
图4中示出了单结晶体管触发电路中各处电压的波形。
图4 电压波形
⑵通过变压器将触发电路与主电路接在同一电源上,所以每当主电路的交流电源电压过零值时,单结晶体管上的电压U Z也过零值,两者同步。
在U Z过零值时,单结晶体管基极间的电压U BB也为零。
如果这时电容器上还有残余电压,必然要向R1放电,很快放掉,以保证电容
器在每一半波之初从零开始充电。
这样,才能使每半周产生第一个脉冲的时间保持不变,即,从而使晶闸管的导通角和输出电压平均值保持不变。
因此,变压器不仅是个整流变压器,而且还起同步作用,故也称为同步变压器。
图5(a)的电路是起不到同步作用的。
⑶如果改变电位器R P的电阻值,例如增大阻值,电容器C的充电变慢,因而每半波出现第一个脉冲的时间后移(即a角增大),从而使晶闸管的导通角变小,输出电压的平均值也变小。
因此,改变R P是起移相的作用,达到调压的目的。
这三个问题就是稳压管的削波作用,变压器的同步作用,改变R P的移相作用。
图5 (a) (b)。