说课教案 几何概型.

合集下载

几何概型说课稿

几何概型说课稿

几何概型说课稿一、说教材(一)作用与地位《几何概型》作为高中数学课程中概率与统计部分的重要内容,它对于培养学生的空间想象能力、逻辑思维能力和解决实际问题的能力具有重要作用。

本节内容在教材中起到承上启下的作用,既是对之前学习的几何知识的深化,也为后续学习概率论打下基础。

(二)主要内容本节课主要围绕几何概型的定义、特点和应用进行讲解。

通过具体实例,让学生理解几何概型的概念,学会如何运用几何概型解决实际问题。

本节课将详细讲解以下内容:1. 几何概型的定义及构成要素;2. 几何概型的特点;3. 几何概型的计算方法;4. 几何概型在实际问题中的应用。

二、说教学目标(一)知识与技能目标1. 让学生掌握几何概型的定义、特点和计算方法;2. 培养学生运用几何概型解决实际问题的能力;3. 培养学生的空间想象能力和逻辑思维能力。

(二)过程与方法目标1. 通过自主探究、合作学习,让学生体验知识形成的过程;2. 培养学生提出问题、分析问题和解决问题的能力;3. 培养学生运用数学语言进行表达和交流的能力。

(三)情感态度与价值观目标1. 培养学生对数学学习的兴趣和信心;2. 培养学生严谨的科学态度和勇于探索的精神;3. 增强学生的团队协作意识和集体荣誉感。

三、说教学重难点(一)重点1. 几何概型的定义及构成要素;2. 几何概型的计算方法;3. 几何概型在实际问题中的应用。

(二)难点1. 对几何概型特点的理解;2. 几何概型计算方法的灵活运用;3. 解决实际问题时的思维转换和空间想象能力的培养。

四、说教法(一)启发法在本节课的教学中,我将采用启发法引导学生主动探索几何概型的相关知识。

通过设计一系列具有启发性的问题,激发学生的好奇心和求知欲,使他们能够在问题的引导下,自主地发现几何概型的定义、特点和应用。

(二)问答法在教学过程中,我将运用问答法与学生互动,了解他们对几何概型知识点的掌握情况。

针对学生的回答,给予及时的反馈和指导,帮助他们巩固知识点,提高解决问题的能力。

《几何概型》教案

《几何概型》教案

2008年第四届全国高中青年数学教师优秀课观摩大赛《几何概型》教案及其说明湖南省长沙市长郡中学王小伟《几何概型》教案说明一、《几何概型》的教学目标:1、教学目标:1)学生能够正确区分几何概型及古典概型;2)学生初步掌握并运用几何概型解决有关概率的基本问题;3)提高学生自主探究问题、解决问题的能力;4)渗透数学的基本思想:猜想验证思想、以旧引新思想等等;5)通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。

2、教学目标的设置意图:几何概型概念中的核心是它的两个特征,(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等(等可能性),尤其是特征(2),所以教学的重点不是“如何计算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的几何概型的实例与数学模型使学生概括、理解、深化几何概型的两个特征及概率计算公式。

同时使学生初步能够把一些实际问题转化为几何概型,并能够合理利用随机、统计、化归、数形结合等数学思想方法有效解决有关的概率问题。

几何概型是对古典概型有益的补充,几何概型将古典概型的研究从有限个基本事件过渡研究无限多个基本事件,几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例。

在强化几何概型概念教学的同时,将几何概型概念形成的教学通过猜想验证思想逐步让学生自主探究,并体会概念形成的合理性。

二、《几何概型》在教材中的地位:1、几何概型是区别于古典概型的又一概率模型,几何概型是对古典概型有益的补充,将研究有限个基本事件过渡到研究无限多个基本事件;2、学习几何概型主要是为了更广泛地满足随机模拟的需要。

三、《几何概型》的重难点分析:1、《几何概型》的重难点:1)学生能够正确区分几何概型及古典概型两者的区别;2)学生初步掌握并运用几何概型解决有关概率的基本问题;3) 通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;4)难点在于把求未知量的问题转化为几何概型求概率的问题;2、几何概型的学习是建立在古典概型的学习基础之上,少数学生受古典概型学习的影响,容易忽视对几何概型的判断和选择,不善于把求未知量的问题转化成几何概型求概率的问题,而常常转化成古典概型进行分析;因此在教学中结合[课前练习]、[问题初探]进行深入讨论,让学生真正体会到判断几何概型的特点以及重要性,利用回顾、猜想、试验、对比等手段来帮助学生解决问题。

全国高中数学优质课:几何概型 教学设计教案说课稿

全国高中数学优质课:几何概型 教学设计教案说课稿

几何概型(第1课时)一、教学目标:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力。

二、教学重点与难点:重点:1、几何概型概率计算公式及应用。

2、如何利用几何图形,把问题转化为几何概型问题。

难点:正确判断几何概型并求出概率。

三、学法与教学用具:我认为作为新增内容,几何概型在高考中必然要有所体现,但是大纲要求仅为了解、以及会简单的应用,所以会在填空或选择题中出现。

而向这样的条件不清晰,甚至基本事件不是等可能的几何概型,需要讨论的情况一定要避免出现。

教案说明一、教学目标的定位:本课选自人教版A版(必修三)第三章《概率》中“几何概型”第一课时。

本章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成建模的数学思想,学会用随机的观念去观察、分析研究客观世界的变化规律,并获取认识世界的初步知识和科学方法。

依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等方针,我认为这一节课要达到的学习目标可确定为:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

几何概型说课稿

几何概型说课稿

《几何概型》讲课稿(第一课时)各位老师:大家好 !我今日讲课的题目是《几何概型》,该内容选自于人教版一般高中课程标准实验教科书高中数学 A 版必修三,该教材一共分为三章,分别是算法初步、统计和概率。

而几何概型这一小节选自于该教材的第三章第三节。

该节内容课时安排为两个课时,本节课内容为第一课时。

下边我将从教材、教课目的、教法和学法、教课过程四个方面来论述我对这节课的剖析和设计:一、教材剖析1.教材所处的地位和作用本节内容是在学生已经掌握一般性的随机事件即概率的统计定义的基础上,继古典概型后对另一常有概型的学习,是等可能事件的观点从有限向无穷的延伸,是对古典概型内容的进一步拓展,学好此节内容对全面系统地掌握概率知识和关于学生辩证思想的进一步形成都拥有优秀的作用。

2、教课的要点和难点本课是一节观点新讲课,不单要掌握好新课的学习,并且要与前方所学的古典概型很好的划分开来,所以把掌握几何概型的观点,及其两个重要特色、能判断某个事件是古典概型仍是几何概型及几何概型中概率的计算公式作为教课重点。

又因为要正确的运用几何概型的公式一定要学会正确的成立合理的几何模型来进行求解,所以我把该节课的教课难点设置为:在实质问题中怎样正确成立合理的几何模型求解概率。

二、教课目的剖析依照高中数学新课程标准的要求、本课教材的特色、学生的实质状况等,我以为这一节课要达到的三维目标可确立为:1.知识目标(1)经过详细例子理解几何概型的观点和掌握几何概型的概率公式;(2)会鉴别某种概型是古典概型仍是几何概型;2、能力目标:(1)经过把古典概型的例子略加变化后成为几何概型,从有限个等可能结果推广到无穷个等可能结果,让学生经历观点的建构这一过程,感觉数学的拓广过程。

(2)经过实例培育学生把实质问题转变成数学识题的能力,让学生感知用图形解决概率问题的方法。

3、感情目标经过对几何概型的教课,培育学生独立思虑研究的能力,让学生领会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培育其踊跃研究的精神。

数学《几何概型》教案

数学《几何概型》教案

数学《几何概型》教案一、教学目标1. 了解几何概型的概念和性质;2. 深入理解几何概型的应用与实例;3. 培养学生观察能力和数理思维;4. 培养学生在数学学科中的创新能力和实践能力。

二、教学内容与教学方法1. 教学内容(1) 几何概型的基本概念和性质;(2) 几何概型的应用;(3) 实例讲解和练习。

2. 教学方法(1) 教师讲解;(2) 课堂互动;(3) 实验操作;(4) 讨论交流。

三、教学大纲第一节、几何概型的基本概念1. 什么是几何概型?2. 几何概型的分类及特点。

3. 几何概型的基本性质。

第二节、几何概型的应用1. 几何概型在数学学科中的应用。

2. 日常生活中几何概型的实际应用。

第三节、实例讲解和练习1. 分享例题和解题技巧。

2. 课堂练习和课后作业。

四、教学重点和难点1. 教学重点(1) 几何概型的基本概念和性质的讲解;(2) 几何概型的应用和实例的分享。

2. 教学难点(1) 如何让学生理解几何概型的概念和性质;(2) 如何引导学生使用几何概型的应用和技巧。

五、教学过程第一节、几何概型的基本概念1. 什么是几何概型?通过解释什么是概型,什么是几何学、什么是几何概型,对几何概型的概念进行详细阐述。

2. 几何概型的分类及特点对几何概型的分类及其特点进行解释和讲解,包括欧氏几何、非欧几何、拓扑几何等。

在讲述内容的同时,引导学生探索几何概型之所以被分类的原因。

3. 几何概型的基本性质讲解几何概型的基本原理和基本性质,介绍公理、定理、定义等基本概念。

在讲解的同时,引导学生思考这些性质的应用场景。

第二节、几何概型的应用1. 几何概型在数学学科中的应用通过例题,引导学生理解几何概型在数学领域中的应用。

2. 几何概型在日常生活中的应用介绍几何概型在现实中的应用场景,如建筑、城市规划、交通设计等,引导学生理解几何概型与现实生活的联系。

第三节、实例讲解和练习1. 分享例题和解题技巧通过讲解例题,引导学生掌握几何概型的运用方法和技巧。

几何概型 说课稿 教案 教学设计

几何概型  说课稿  教案 教学设计

几何概型【教学目标】1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.【教法指导】本节重点是几何概型的特点及概念;难点是应用几何概型的概率公式求概率;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】一、知识回顾1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.概率公式在几何概型中,事件A的概率计算公式如下想一想几何概型的概率计算与构成事件的区域形状有关吗?概念理解(1)几何概型也可以如下理解对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.( ) (2)在一个正方形区域内任取一点的概率是零.( )(3)[2012·昆明模拟] 在线段[0,3]上任投一点,则此点坐标小于1的概率为13.( )几何概型概率的适用情况和计算步骤 (1)适用情况几何概型用 计算事件发生的概率适用于有无限多个试验结果的情况,每种结果的出现也要求必须是等可能的.而且事件发生在一个有明确范围的区域中,其概率与构成该事件区域的长度(面积或体积)成比例. (2)计算步骤①判断是否是几何概型,尤其是判断等可能性,比古典概型更难于判断.②计算基本事件空间与事件A 所含的基本事件对应的区域的几何度量(长度、面积或体积).这是计算的难点. ③利用概率公式计算. 特别提示在使用几何概型中,事件A的概率计算公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积时,公式中分子和分母涉及的几何度量一定要对等.即若一个是长度,则另一个也是长度.一个若是面积,则另一个也必然是面积,同样,一个若是体积,另一个也必然是体积.题型一与长度有关的几何概型例、(1)如图A,B两盏路灯之间的距离是30米,由于光线较暗,想在其间再随意安装两盏路灯C、D,问A与C,B与D之间的距离都不小于10米的概率是多少?(2)已知函数f(x)=log2x,在区间[12,2]上随机取一x0,则使得f(x0)≥0的概率为________.解析f(x)=log2x≥0可以得出x≥1,所以在区间⎣⎢⎡⎦⎥⎤12,2上使f(x)≥0的范围为[1,2],所以使得f(x0)≥0的概率为P=2-12-12=23.答案23规律方法将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型(长度比长度) 求解. 变式训练一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少? (1)红灯亮; (2)黄灯亮; (3)不是红灯亮.【解析】 在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.题型二 与面积有关的几何概型例、(1)一只海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.总结规律、得出方法此类几何概型题,关键是要构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型公式,从而求得随机事件的概率. 变式训练(1)如图,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P ,则点P 落在区域M 内的概率为________.【答案】 1-π4【解析】 由题意知题图中的阴影部分的面积相当于半径为1的半圆面积,即阴影部分面积为π2,又易知直角三角形的面积为2,所以区域M 的面积为2-π2.故所求概率为2-π22=1-π4.(2)已知x ≤2, y ≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.题型三 与体积、角度有关的几何概型例、(1)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,在正方体内随机取一点M.(1)求点M 落在三棱锥B 1-A 1BC 1内的概率;[ 学_ _ ] (2)求点M 与平面ABCD 及平面A 1B 1C 1D 1的距离都大于a3的概率;(3)求使四棱锥M -ABCD 的体积小于16a 3的概率.总结规律、提高升华这类题目一般需要分清题中的条件,提炼出几何体的形状,并找出总体积是多少.以及所求的事件占有的几何体是什么几何体并计算出体积.课堂小结1.几何概型与古典概型的区别.2.几何概型的定义及其特点.3.应用几何概型的概率计算公式求几何概型的概率.。

《必修三《几何概型》教案

《必修三《几何概型》教案

《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。

2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。

二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。

2.难点:-运用几何概型解决实际问题。

三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。

2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。

3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。

4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。

5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。

6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。

四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。

五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。

六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。

几何概型说课稿人教版

几何概型说课稿人教版
(4)让学生思考几何概型在现实生活中的应用。学生可以观察周围的事物,思考哪些问题可以用几何概型来解决。通过这种方式,让学生认识到几何概型的实用价值。
教学反思与总结
今天上了《几何概型》这一节课,感觉整体教学效果还是不错的。学生们对于几何概型的概念和性质有了初步的理解,通过分组讨论和实践活动,他们能够将所学知识应用到实际问题中,这让我感到很高兴。
3.重点难点解析:在讲授过程中,我会特别强调几何概型的定义和分类这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与几何概型相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示几何概型的基本原理。
几何概型说课稿人教版
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
几何概型说课稿人教版
课程基本信息
1.课程名称:几何概型
2.教学年级和班级:八年级(3)班
3.授课时间:2022年10月12日
4.教学时数:45分钟
核心素养目标分析
本节课旨在通过几何概型的学习,培养学生的逻辑推理能力、空间想象能力和数学思维能力。在教学过程中,我将引导学生运用已学的数学知识,通过观察、分析、归纳和推理,探索几何图形的基本性质和规律,从而提高他们的数学抽象和数学建模的核心素养。
在教学过程中,我尝试采用了讲授法、讨论法和实验法等多种教学方法,学生们对这些方法的接受程度很高,他们在课堂上积极参与讨论和思考,这让我感到很欣慰。同时,我也利用多媒体设备和教学软件来辅助教学,提高了教学效果和效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说课教案几何概型
一.教材分析
1.教材地位与作用
本节课是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸,使概率的公理化定义更加完备。

尽管本节内容在课程标准中的要求仅为了解和会简单的应用,但蕴含的数形结合和数学建模的思想凸显了其重要性。

2.教学目标
知识与技能:
了解几何概型的两个特征,会识别几何概型,并能正确求解概率。

过程与方法:
通过问题探究,动手实验,辨析异同,发现概念,学生体验“做数学”的乐趣和概念生成的过程。

学生对照古典概型,类比推理,能提出解决几何概型问题的可行性想法。

情感、态度与价值观:
通过设置的故事情境,调动学生的兴趣,积极的进行自主探究,并进行合作交流。

让学生认识到数学与我们的生活息息相关,数学是有用的、是自然的、是清楚的,也是丰富多彩的。

3.重点难点
重点:几何概型的两个特征,几何概型的识别和计算公式;
难点:建立合理的几何模型求解概率。

二.学情分析
学生的认知水平有了一定的基础,前面学习了随机事件的概率和古典概型,并且掌握了二元一次不等式表示的平面区域问题。

但学生的抽象思维能力还有待于进一步提高,因此在从古典概型向几何概型的过渡时,如何将问题的实际背景转化为“几何度量”,学生会有一些困难和疑惑,这就需要恰当的引导、合理的解释和明确的辨析。

三.学法指导(附导学案)
本节课采用发现法教学和学案导学相结合的方法。

通过精心设计的导学案,以故事的形式展现问题,激发学生的求知欲。

学生不仅在课前自主的探究和预习,而且在课堂中通过动手实验,合作交流,发现问题,提倡学生扮演“老师”进行讲评,把课堂变成教师导演学生主演的数学学习活动场所。

我将学生的导学案附在后面,恳请各位专家给予指导。

四.教学过程
数学教学是数学活动的教学,我将整个导与学的过程分为以下四个环节:1.创设情境,温故知新,2.探究实验,构建概念,3.例题分析,推广应用,4.巩固升华,总结概括。

1.创设情境 温故知新(3分钟)
青青草原上“喜洋洋”超市举行购物抽奖的大型促销活动,红太狼购物后在抽奖时,有点犯蒙了。

原来聪明的喜羊羊为促销活动设计了两种方案:
⑴在一只不透明的口袋中装有20只大小相同的小球,其中白球11只,黄球5只,蓝球3只,红球1只。

中奖规则为:购买100元的商品就可以从口袋中摸出一只小球,摸出红球为一等奖、蓝球为二等奖、黄球为三等奖。

⑵转盘游戏:如图设立了一个可以自由转动的转盘,并
规定:购买100元的商品,就能获得一次转动转盘的机会。

如果转盘停止时,指针正好对准红、黄或绿的区域,就可以获得一等奖、二等奖、三等奖。

(转盘等分成20份) 课前思考问题:
红太狼数学学的很差,不知该如何选择了,聪明的你能帮她分析一下选择哪种抽奖方式中奖的概率大吗?
你是怎样计算的呢?
请同学们课前发挥自己的聪明才智,动手做个转盘游戏的实物模型,以备课堂探究使用。

【设计意图】运用动画、音乐等多媒体手段把问题以故事的形式展现出来,吸引学生的兴趣,把学生卷入问题中来,引发学生的思考。

以学生的最近发展区为切入点,在回顾古典概型的同时产生新的疑问,激发学生的求知欲。

2.探究实验,构建概念(8分钟)
课堂探究问题:
①在方案二你是怎样得到概率大小的?“中奖”这一基本事件的含义是什么?基本事件是有限个还是无限个呢?符合古典概型吗?
②如果圆盘不是等分成20份的,那么该如何求解概率呢?
对于方案二,尽管转盘游戏比较简单,可以运用动画来展示,我个人觉得只有学生亲身经历数学实验的过程,印象才是深刻的,理解才是透彻的!因此倡导由学生动手操作,课前自己做个小转盘。

在课堂中让学生亲历实验的过程,加深对几何概型特征的理解。

学生经过数学实验、讨论交流后,可以发现这类概型的特征:一是基本事件的个数有无限个,二是基本事件的发生是等可能的,并且概率是可以用面积、弧长,角度等几何量的比例来求解的,进而由学生总结概括发现几何概型的概念:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
得出几何概型中事件A 的概率计算公式:
课堂教学在此告一段落,给学生留出一段时间反思古典概型和几何概型的异同,并完成导学案中“牛刀小试”题组和对比表格,让学生的认知结构经历同化
Ω==μμA
)(积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P
和顺应的过程。

【设计意图】在转盘游戏中困惑的地方出现了,问题的基本事件是什么?是有限个还是无限个呢?很多学生误认为方案二符合古典概型,如何辨析会激起学生激烈的争论。

在通过亲历实验过程,学生会豁然开朗的,课堂中动画的展示是不能替代学生动手操作的,只有亲身经历的,印象才是深刻的!
3.例题分析,推广应用(20分钟)
例1.“大懒虫”懒羊羊早晨一觉醒来,发现表停了,于是他打开收音机,想听到电台整点报时后再起床,那么他等待的时间不多于10分钟的概率会是多大呢?
【设计意图】例1的设计在于把握重点,本题方法的多样性可以很好的展现学生思维的灵活性,由学生扮演老师的角色讲解本题,对讲解较好的学生给予毫不吝啬鼓励和赞扬,让学生体验成功的喜悦。

例2.沸羊羊经过冬天酷寒的历练,练就了一身高超的本领,决心与灰太狼一决高下。

阳春三月,双方互下战书相约7点到8点在泰山之玉皇顶决战,但由于山顶寒冷,不宜久留,事先约定先到者等候另一方15分钟,过时离去。

求双方能够决战的概率有多大.
例2将概率论中经典的“会面问题”以故事形式展现,会使学生热情大增,求知欲高涨,使课堂气氛达到高潮,这也为合作学习打下了良好的基础。

在仔细审题后引导学生探究以下问题:
⑴沸羊羊与灰太狼到达的时间相互影响吗?
学生都可以肯定两者到达时间互不影响,但能够决战的时间是有关系的。

⑵既然互不影响,那么他们到达的时间可以是7点~8点间的任意时刻,基本事件的总体是什么?该怎么表示呢?
⑶进一步设问:符合古典概型还是几何概型?请你说出理由。

⑷如果能够决战,满足什么关系呢?
⑸然后分析选择哪种“几何度量”来求解概率?指导学生运用二元一次不等式表示平面区域,选择面积法来求解概率。

让学生进行小组合作学习,让学生经历实际问题数学化的过程,经历知识再创造的过程,通过自主探究、合作交流获取成功的体验。

为了规范学生的答题思路与步骤,培养学生严谨的数学学习习惯,例2由我进行板书讲解。

解析:设沸羊羊到达的时间为7时x 分,灰太狼到达的时间为7时y 分,则两人到达的时间分别满足 ,
在直角坐标系中可表示在如图所示的正方形 由题意得,两人能够会面的充要条件是:
即如图所示的阴影区域
∴P(两人能会面)=
【设计意图】数学教学的核心是学生的再创造。

学生们通过合作学习,小组讨论,亲身经历实际问题数学化的过程,经历知识再创造的过程,在获取成功的体验的同时突破本节课的难点.
4.巩固升华,总结概括 (12分钟)
落实提高题组:
1一根长度为3m 的绳子,如果将绳子拉直后在任意位置剪断,那么剪得两段绳子的长度都不小于2m 的概率有多大?
2. 在区间(0,1)中随机地取两个数,求事件“两数之和小于5
6”的概率。

【设计意图】本题组的难度不大,目的在于促进对概念的理解和对公式的运用,起到内化的作用。

完成能力提高题组后老师适当的点评,由学生自主回顾本节内容小结一下,然后结合学生的小结老师做简单的说明:
我们通过对故事的观察分析,得到了它们共同的本质的东西,发现并定义了几何概型,通过几何模型的建立,我们可以解决生活中的这类具体问题。

最后是作业布置:
1.教材P142习题3.3 A 组;
2.请同学们课下撰写小论文《举例说明古典概型、几何概型的异同》。

五: 设计说明
根据课程标准的要求,我将本节内容设计为两课时,本节为第一课时,目的在于让学生体验知识的发现和形成过程。

第二课时为活动课,交流个人的小论600≤≤x 600≤≤y 15≤-y x 167604560222=-
文和学习心得,我得在课下提供课外书籍,供学生们参考查阅,指导部分学生如何选材,完成写作,真正体现过程教学的理念。

相关文档
最新文档