2021届全国新高考仿真模拟试题(二)数学(文)

合集下载

2021年高考数学真题模拟试题专项汇编之立体几何(文)(Word版,含解析)

2021年高考数学真题模拟试题专项汇编之立体几何(文)(Word版,含解析)

(8)立体几何(文)——2021年高考数学真题模拟试题专项汇编1.【2021年新高考Ⅰ卷,3】已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2B.22C.4D.422.【2021年新高考Ⅱ卷,4】卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度指卫星到地球表面的最短距离).把地球看成一个球心为O ,半径为6400km 的球,其上点A 的纬度是指OA 与赤道所在平面所成角的度数,地球表面能直接观测到的一颗地球静止同步轨道卫星的点的纬度的最大值记为α.该卫星信号覆盖的地球表面面积22π(1cos )S r α=-(单位:2km ),则S 占地球表面积的百分比为( ) A.26%B.34%C.42%D.50%3.【2021年北京卷,4】某四面体的三视图如图所示,该四面体的表面积为( )33+ B.1213+3 4.【2021年浙江卷,4】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A.32B.3C.322D.325.【2021年新高考Ⅱ卷,5】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则四棱台的体积为( ) A.5623B.562C.282D.28236.【2021年浙江卷,6】如图,已知正方体1111ABCD A B C D -,,M N 分别是1A D ,1D B 的中点,则( )A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B7.【2021年北京卷,8】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10<mm ),中雨(10mm —25mm ),大雨(25mm —50mm ),暴雨(50mm —100mm ),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级( )A.小雨B.中雨C.大雨D.暴雨8.【2021年全国乙卷(文),10】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( ) A.π2B.π3C.π4D.π69.【2021年全国甲卷(文),14】已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__________.10.【2021年上海卷,9】已知圆柱的底面半径为1,高为2,AB 为上底面圆的一条直径,点C 为下底底面圆周上的一个动点,点C 绕着下底底面旋转一周,则ABC △面积的取值范围为____________.11.【2021年全国乙卷(文),16】以图①为正视图,在图②③④③中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为___________(写出符合要求的一组答案即可).12.【2021年全国乙卷(文),18】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.13.【2021年安徽怀宁模拟,18】如图,在三棱柱111ABC A B C -中,侧面11AAC C ⊥底面11,2,ABC AA AC AC AB BC ====,且AB BC ⊥,O 为AC 的中点.(1)求证:平面11A B O ⊥平面1BCA ;(2)若点E 在1BC 上,且//OE 平面1A AB ,求三棱锥1E A BC -的体积.14.【2021年广西桂林模拟(文),18】如图所示,在三棱锥A BCD -中,侧棱AB ⊥平面BCD ,F 为线段BD 中点,Q 为线段AB 中点,2π3BCD ∠=,3AB =,2BC CD ==.证明:(1)CF ⊥平面ABD ; (2)求点D 到平面QCF 的距离.15.【2021年全国甲卷(文),19】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形.2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥,(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.答案以及解析1.答案:B解析:本题考查圆锥的侧面展开图.设圆锥的底面半径为r ,母线长为l .由题意可得2ππr l =,所以222l r ==. 2.答案:C解析:由题意可知,6400cos 0.1536000640036000r r α==≈++,所以从同步卫星上可望见的地球的表面积222π(1cos )2π(10.15)S r r α=-≈-,此面积与地球表面积之比约为222π(10.15)100%42%4πr r -⨯≈.3.答案:A解析:画正方体,删点,剩下的4个点就是三棱锥的顶点,如图:1333311(11)2S +=⨯⨯⨯+=表. 4.答案:A解析:本题考查几何体的三视图.该几何体是高为1的四棱柱,其底面为三个全等的直角边为1的等腰直角三角形拼成的梯形,面积为32,故其体积是32. 5.答案:D解析:本题考查棱台的体积.将正四棱台1111A B C D ABCD -补成四棱锥P ABCD -,作PO ⊥底面ABCD 于点O ,交平面1111A B C D 于点1O ,则棱台1111A B C D ABCD -的体积1111P ABCD P A B C D V V V --=-.由题意,11112142PA PO A B PA PO AB ====,易知,4PA =,22AO =22224(22)22PO PA AO --=,所以12PO =,则1322(44)223P ABCD V -=⨯⨯⨯,1111142(22)23P A B C D V -=⨯⨯,所以棱台1111A B C D ABCD -的体积111132242282P ABCD P A B C D V V V --=-==.6.答案:A解析:本题考查空间的线线关系与线面关系.易知1A D ⊥平面1ABD ,故11A D D B ⊥,排除B ,C 项;连接1AD ,可知//MN AB ,所以//MN 平面ABCD ,A 项正确;因为AB 不垂直于平面11BDD B ,//MN AB ,所以直线MN 不垂直于平面11BDD B ,D 项错误.7.答案:B解析:由相似的性质可得,小圆锥的底面半径2002502r ==,故231π5015050π3V =⨯⨯⨯=⋅小圆锥,积水厚度3250π12.5π100V h S ⋅===⋅大小圆锥圆,属于中雨,故选B. 8.答案:D解析:本题考查立体几何中的线面关系及解三角形的应用.如图,记正方体的棱长为a ,则1111112AD C B A C B D a ====,所以1122B P PC a ==,221162BP B P B B a =+=.在1BC P 中,由余弦定理得22211113cos 22PB C B PC PBC PB C B +-∠==⋅,所以1π6PBC ∠=.又因为11//AD BC ,所以1PBC ∠即为直线PB 与1AD 所成的角,所以直线PB 与1AD 所成的角为π6.9.答案:39π解析:本题考查圆锥的体积与侧面积.由题可得圆锥的体积21π12π30π3V r h h ===,可得52h =,故圆锥的母线22132l r h +,所以圆锥的侧面积π39πS rl ==. 10.答案:5]解析:本题主要考查空间几何体.上顶面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M ,则12ABCSAB CM =⨯⨯,根据题意,AB 为定值2,所以ABCS 的大小随着CM 长短的变化而变化.当点M 与点O 重合时,22125CM OC ==+=,取得最大值,此时12552ABCS =⨯⨯=.当点M 与点B 重合时,CM 取最小值2,此时12222ABCS=⨯⨯=.综上所述,ABCS 的取值范围为[2,5].11.答案:②⑤或③④解析:本题考查几何体的三视图.由高度可知,侧视图只能为②或③.当侧视图为②时,则该三棱锥的直观图如图1,平面PAC ⊥平面ABC ,2PA PC ==,5BA BC =2AC =,此时俯视图为⑤;当侧视图为③时,则该三棱锥的直观图如图2,PA ⊥平面ABC ,1PA =,5AC AB ==2BC =,此时俯视图为④.12.答案:(1)因为PD ⊥底面ABCD ,AM ⊂底面ABCD , 所以PD AM ⊥.又因为PB AM ⊥,PD PB P ⋂=,PB ,PD ⊂平面PBD , 所以AM ⊥平面PBD .因为AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)由PD ⊥底面ABCD ,所以PD 即为四棱锥P ABCD -的高,DPB 是直角三角形. 由题可知底面ABCD 是矩形,1PD DC ==,M 为BC 的中点,且PB AM ⊥.设2AD BC a ==,取CD 的中点为E ,CP 的中点为F ,连接MF ,AF , EF ,AE ,可得//MF PB ,//EF DP ,那么AM M F ⊥,AM F 为直角三角形,且12EF =,2144AE a =+,21AM a =+,222142AF EF AE a =++因为DPB 是直角三角形,所以根据勾股定理得224BP a =+,则2242a MF +=.由AM F 是直角三角形,可得222AM MF AF +=,解得22a =, 所以底面ABCD 的面积22S a ==,则四棱锥P ABCD -的体积11221333V S h =⋅⋅=⨯⨯-.13.答案:(1)1111,//,AB BC AB A B BC A B ⊥∴⊥,在1A AC 中,112AA AC AC ===,O 是AC 的中点,1AO AC ∴⊥,又平面11AAC C ⊥平面ABC ,平面11AAC C平面ABC AC =,1A O ∴⊥平面ABC .BC ⊂平面1,ABC AO BC ∴⊥. 111,A B AO ⊂平面111111,A B O A B AO A =,BC ∴⊥平面11A B O , 又BC ⊂平面1BCA ,∴平面1BCA ⊥平面11A B O .(2)如图,连接1B C ,设1B C 与1BC 交于点E ,连接1,OE AB , 易得1//OE AB ,1AB ⊂平面11,ABB A OE ⊄平面11ABB A ,//OE ∴平面11ABB A ,∴满足条件的E 为1BC 的中点.11111 1122E A BCC A BC B A CC V V V ---==三棱锥三棱锥三棱锥21133212346=⨯⨯⨯⨯=, 故三棱锥1E A BC -的体积为36.14.答案:(1)AB ⊥平面BCD ,CF ,BD ⊂平面BCD ,AB CF ∴⊥,AB BD ⊥.2BC CD ==,F 为BD 中点,CF BD ∴⊥.又CF AB ⊥,AB BD B =,AB ,BD ⊂平面ABD ,CF ∴⊥平面ABD .(2)在三棱锥Q DCF -中,设D 到平面QFC 距离为d . Q DCF D QCF V V --=,1133DCFQCFQB Sd S ∴⋅⋅=⋅⋅,DCFQCFQB S d S ⋅∴=.1112π322sin 2223DCFDCBSS ==⨯⨯⨯⨯=,2π44222cos 233BD =+-⨯⨯⨯.AB BD ⊥,3AB =,Q ,F 分别为AB ,BD 的中点.22912212ADAB BD QF ++∴====.QCF 中,π2cos 13CF ==,235422CQ ⎛⎫=+ ⎪⎝⎭,21QF =. 25211244cos 55212QCF +-∴∠==⨯⨯,21sin QCF ∴∠=. 152121122QCFS∴=⨯⨯=. 33372221d ∴==.15.答案:(1)如图,取BC 的中点为M ,连接EM .由已知易得//EM AB ,2AB BC ==,1CF =,112EM AB ==,11//AB A B , 由11BF A B ⊥得EM BF ⊥,又易得EM CF ⊥,BF CF F ⋂=,所以EM ⊥平面BCF , 故1111121132323F EBC E FBC V V BC CF EM --==⨯⨯⨯=⨯⨯⨯⨯=三棱锥三棱锥.(2)连接1A E ,1B M ,由(1)知11//EM A B , 所以ED 在平面11EMB A 内.在正方形11CC B B 中,由于F ,M 分别是1CC ,BC 的中点,所以1tan 2CF CBF BC ∠==,111tan 2BM BB M BB ∠==, 且这两个角都是锐角,所以1CBF BB M ∠=∠, 所以111190BHB BMB CBF BMB BB M ∠=∠+∠=∠+∠=︒, 所以1BF B M ⊥,又11BF A B ⊥,1111B M A B B ⋂=,所以BF ⊥平面11EMB A , 又DE ⊂平面11EMB A ,所以BF DE ⊥.。

2021年高考数学试卷含解析(新高考II)

2021年高考数学试卷含解析(新高考II)
ຫໍສະໝຸດ A. 3B. 1,6
C. 5,6
【答案】B
【解析】∁ UB = 1,5,6 ,A ∩ ∁ UB = 1,6 , 选 B
D. 1,3
(
)
3. 抛物线 y2 = 2pxp > 0 的焦点到直线 y = x + 1 的距离为 2, 则 p =
A. 1
B. 2
C. 2 2
D. 4
【答案】B
(
)
4. 北斗三号全球卫星导航系统是我国航天事业的重要成果 . 在卫星导航系统中, 地球静止同步卫星的轨
B. ω(2n + 3) = ω(n) + 1 D. ω(2n - 1) = n
【答案】ACD 【解析】令 n = a0 ⋅ 20 + a1 ⋅ 2 +⋯+ak-1 ⋅ 2k-1 + ak ∙ 2k, 则 2n = 0 ∙ 20 + a0 ⋅ 21 + a1 ⋅ 22 +⋯+ak-1 ⋅ 2k + ak ∙ 2k+1,ω(2n) = 0 + a0 + a1 +⋯+ak = ω(n),A 正确 . 下证明 : 若 n 为偶数 n ∈ N * , 则 ω(n + 1) = ω(n) + 1. 证明 : 因为 n 为偶数, 所以 n = 0 ⋅ 20 + a1 ⋅ 2 +⋯+ak-1 ⋅ 2k-1 + ak ∙ 2k, 则 n + 1 = 1 ⋅ 20 + a1 ⋅ 2 +⋯+ak-1 ⋅ 2k-1 + ak ∙ 2k, 所以 ω(n) = 0 + a1 +⋯+ak,ω(n + 1) = 1 + a1 +⋯+ak = ωn + 1. 选项 B, 取 n = 2 可排除 . 或者 ω(2n + 3) = ω2n + 1 + 1 = ω2n + 1 + 1 = ωn + 1 + 1, 不能保 证与 ω(n) + 1 恒等 .B 错误 . 选项 C,ω(8n + 5) = ω(8n + 4 + 1) = ω(8n + 4) + 1 = ω(2n + 1) + 1 = ω(2n) + 2 = ω(n) + 2;ω(4n + 3) = ω(4n + 2) + 1 = ω(2n + 1) + 1 = ω(n) + 2.C 正确 . 选项 D, ∵ 2n - 1 = 20 + 21 + 22 +⋯+2n-1, ∴ ω(2n - 1) = n. 或者, 当 n ≥ 2 时,ω(2n+1 - 1) = ω22n - 1 + 1 = ω22n - 1 + 1 = ω(2n - 1) + 1. 又 ∵ ω(3) = 2,ω(1) = 1, ∴ ω(3) = ω(1) + 1. 即对 ∀ n ∈ N * 有 ω(2n+1 - 1) = ω(2n - 1) + 1, ∴ ω(2n - 1) 为首项为 1, 公差为 1 的等差数列 . ∴ ω(2n - 1) = n.D 正确 . 故选 ACD.

2020-2021学年广东省高三第二次高考模拟数学(文)试题及答案解析

2020-2021学年广东省高三第二次高考模拟数学(文)试题及答案解析

绝密★启用前广东省高中毕业班第二次高考模拟考试题数学(文科)本试卷共4页,满分150分.考试用时120分钟.注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效.4.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.(1)已知复数2(1)z i i =-(i 为虚数单位),z 的共轭复数为z ,则z z +=(A )4i(B )4i - (C )4(D )4-(2)已知集合2{|{|ln(2)}A x y B x y x x ====-,则A B =I(A )(2,)+∞ (B )[1,2) (C )(0,2)(D )[1,2](3)已知向量(0,1),(a b c k ==-=r r r,若(2a b -r r )与c r 互相垂直,则k的值为(A )-3 (B )-1 (C )1 (D )3(4)已知命题:,cos sin p x R x x ∃∈>,命题1:(0,),sin 2sin q x x xπ∀∈+>,则下列判断正确的是(A )命题p q ∨是假命题 (B )命题p q ∧是真命题 (C )命题()p q ∨⌝是假命题 (D )命题()p q ∧⌝是真命题(5)已知双曲线22221(0,0)x y a b a b-=>>两条渐近线的夹角为60o,则该双曲线的离心率为(A(B )43(C或2 (D )4 (6)已知函数2,(1)()(1),(1)x x f x f x x ⎧<=⎨-≥⎩,则2(log 9)f 的值为(A )9 (B )92 (C )94(D )98(7)已知等差数列{}n a 的公差不为0,11a =,且124111,,a a a 成等比数列,设{}n a 的前n 项和为n S ,则n S =(A )2(1)4n + (B )(3)4n n +(C )(1)2n n + (D )212n + (8)函数log ||()||a x x f x x =(01a <<)图象的大致形状是(9)若直线2y x =上存在点(,)x y 满足条件30,230,.x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为(A )2-(B )1- (C )1(D )3(10)圆柱形容器内盛有高度为6cm 的水,若放入3个相同的铁球球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径为 (A )1 cm(B )2cm (C )3cm(D )4cm(11)某组合体的三视图如图2示,则该组合体的表面积为(A)(622)12π++ (B) 8(1)π+ (C)4(21)π+(D)(122)π+(12)已知P 是直线40(0)kx y k ++=>上一动点,PA 、PB 是圆C :2220x y y +-=的两条切线,切点分别为A 、B ,若四边形PACB 的最小面积为2,则k 的值为 图2 (A )3 (B )2 (C )1 (D )12第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)某高级中学共有学生3200人,其中高二级与高三级各有学生1000人,现采用分层抽样的方法,抽取容量为160的样本,则应抽取的高一级学生人数为 ___________.(14)执行如图3所示的程序框图,则输出的k 值为 . (15)已知函数2()f x x ax =-的图象在点A (1,(1))f 处的切线l 与直线310x y +-=垂直,记数列1{}()f n 的前n 项和为n S ,则2016S 的值为 .(16) 已知梯形ABCD 中,AD//BC ,90ABC ∠=o,AD=2,BC=1,P 是腰AB 上的动点,则||PC PD +u u u r u u u r的最小值为 .图3三、解答题:解答应写出文字说明,证明过程或演算步骤.bkg0.0.ABCD (17)(本小题满分12分)已知如图4,△ABC 中,AD 是BC 边的中线,120BAC ∠=o,且152AB AC ⋅=-u u u r u u u r.(Ⅰ)求△ABC 的面积;(Ⅱ)若5AB =,求AD 的长. 图4(18)(本小题满分12分)某人租用一块土地种植一种瓜类作物,根据以往的年产 量数据,得到年产量频率分布直方图如图5示,以各区间中点值作为该区间的年产量,得到平均年产量为 图5年产量低于450 kg 时,单位售价为12元/ kg ,当年产量不低于 450 kg 时,单位售价为10元/ kg. (Ⅰ)求图中a 、b 的值;(Ⅱ)估计年销售额大于3600元小于6000元的概率.(19)(本小题满分12分)如图6,已知四棱锥P-ABCD 的底面ABCD 为菱形,且60ABC ∠=o,AB=PC=2,2.(Ⅰ)求证:平面PAB ⊥平面ABCD ;(Ⅱ)求点D 到平面APC 的距离.图6(20)(本小题满分12分)已知椭圆22122:1(0)y x C a b a b+=>>与抛物线22:1C x y =+有公共弦AB (A 在B左边),AB=2,2C 的顶点是1C 的一个焦点,过点B 且斜率为k (0)k ≠的直线l 与1C 、2C 分别交于点M 、N (均异于点A 、B ).(Ⅰ)求1C 的方程;(Ⅱ)若点A 在以线段MN 为直径的圆外,求k 的取值范围.(21)(本小题满分12分)已知函数ln(1)()2x f x x -=-(2x >).(Ⅰ) 判断函数()f x 的单调性;(Ⅱ)若存在实数a ,使得()f x a <对(2,)x ∀∈+∞均成立,求a 的取值范围.请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一个题目计分.(22)(本小题满分10分)选修41:几何证明选讲OP‘AB D CE图75如图7所示,⊙O 和⊙P 相交于,A B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连接DB 并延长交⊙O 于点E .(Ⅰ) 若BC=2,BD=4,求AB 的长; (Ⅱ) 若AC=3,求AE 的长.(23)(本小题满分10分)选修44:坐标系与参数方程已知椭圆C 的普通方程为:22194x y +=. (Ⅰ) 设2y t =,求椭圆C 以t 为参数的参数方程;(Ⅱ) 设C 与x 轴的正半轴和y 轴的正半轴的交点分别为A 、B ,点P 是C 上位于第一象限的动点,求四边形AOBP 面积的最大值.(其中O 为坐标原点)(24)(本小题满分10分)选修45:不等式选讲已知()|2|||(,0)f x x x a a R a =+--∈>, (Ⅰ) 若()f x 的最小值是3-,求a 的值; (Ⅱ)求|()|2f x ≤的解集.数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:解析:(7)由142a a a =,得公差d=1,n a n =;故选C.(10)设球的半径为r ,依题意得3243(66)33r r r r ππ⨯=-⇒=. (11)该组合体下面为半圆柱,上面为半圆锥,故其表面积为:211112222242422222πππ⨯⨯+⨯⨯⨯+⨯⨯⨯⨯+⨯⨯2484(612πππ=++++=++.(12)PACB S PA AC PA =⋅=四边形=,可知当||CP 最小时,即CP l ⊥ 2=得min ||CP =由点到直线的距离公式得:min ||CP ==0k >,所以2k =.二、填空题:解析:(15)依题意知函数()f x x ax =-的图象在点A (1,(1))f 处的切线斜率'(1)231k f a a ==-=⇒=-,故1111()(1)1f n n n n n ==-++,AB CDE201611111122320162017S =-+-++-L 12016120172017=-=. (16)如图以PC 、PD 为邻边作平行四边形PCQD ,则PC PD PQ +=u u u r u u u r u u u r 2PE =u u u r,要||PQ uuu r 取最小值,只需||PE u u u r取最小值,因E 为CD 的中点,故当PE AB ⊥时,||PE u u u r取最小值,这时PE 为梯形的 中位线,即min 13||(||||)22PE BC AD =+=u u u r ,故min ||3PQ =u u u r.三、解答题:(17)解:(Ⅰ)∵152AB AC ⋅=-u u u r u u u r ,∴115cos 22AB AC BAC AB AC ⋅⋅∠=-⋅=-,----2分即15AB AC ⋅=,----------------------------------------------------3分∴315311sin 1522ABC S AB AC BAC ∆=⋅∠=⨯=.-------5分(Ⅱ)解法1:由5AB =得3AC =,延长AD 到E ,使AD=DE ,连结BE ,---------------6分 ∵BD=DC,∴四边形ABEC 为平行四边形,∴60ABE ∠=o,且3BE AC ==-----------8分设AD x =,则2AE x =,在△ABE 中,由余弦定理得:222(2)2cos 2591519x AB BE AB BE ABE =+-⋅∠=+-=,-----------------------10分解得192x =,即AD 的长为192.--------------------------------------12分【解法2:由5AB =得3AC =, 在△ABC 中,由余弦定理得:2222cos 2591549BC AB AC AB AC BAC =+-⋅∠=++=,得7BC =,----------------------------------------------------------------------------------------------7分 由正弦定理得:sin sin BC ABBAC ACD=∠∠,得5sin 2sin 7AB BACACD BC⨯∠∠===----------------------------------------9分∵090ACD <∠<oo∴11cos 14ACD ∠==,--------------10分在△ADC 中,22249711192cos 92342144AD AC CD AC CD ACD =+-⋅∠=+-⨯⨯⨯=,解得AD =.------------------------------------------------------12分】【解法3:由5AB =得3AC =, 在△ABC 中,由余弦定理得:2222cos 2591549BC AB AC AB AC BAC =+-⋅∠=++=,得7BC =,--------------------------------------------------------------------------------------7分在△ABC 中,2229492511cos 223714AC BC AB ACB AC BC +-+-∠===⋅⨯⨯,------------9分 在△ADC 中,由22249711192cos 92342144AD AC CD AC CD ACD =+-⋅∠=+-⨯⨯⨯=,解得AD =.-------------------------------------------------------12分】 (18)解:(Ⅰ)由100(0.00150.004)1a b +++=,得100()0.45a b +=,-------------------------------------------------2分由3001004000.45001006000.15455a b ⨯+⨯+⨯+⨯=,得300500 2.05a b +=,-----------------------------------------------4分解得0.0010a =,0.0035b =;----------------------------------------6分(Ⅱ)由(Ⅰ)结合直方图知,当年产量为300kg 时,其年销售额为3600元,当年产量为400kg 时,其年销售额为4800元,当年产量为500kg 时,其年销售额为5000元,当年产量为600kg 时,其年销售额为6000元,-------------------------8分 因为年产量为400kg 的频率为0.4,即年销售额为4800元的频率为0.4,-----------9分而年产量为500kg 的频率为0.35,即年销售额为5000元的频率为0.35,-----------10分故估计年销售额大于3600元小于6000元的概率为:0.35+0.4=0.75, -----------12分(19)解:(Ⅰ)取AB 得中点O ,连结PO 、CO ,----1分由2,AB=2知△PAB 为等腰直角三角形,∴PO ⊥AB ,PO=1,------------------------------------------------------------------2分又AB=BC=2,60ABC ∠=o 知△ABC 为等边三角形,∴3CO =分又由2PC =得222PO CO PC +=, ∴PO ⊥CO ,-----------4分 ∴PO ⊥平面ABC ,-------------------------------------------5分又∵PO ⊂平面PAB ,∴平面PAB ⊥平面ABCD -----------------------6分 (Ⅱ)设点D 到平面APC 的距离为h ,由(Ⅰ)知△ADC 是边长为2的等边三角形,△PAC 为等腰三角形,由D PAC P ADC V V --=得1133PAC ADC S h S PO ∆∆⋅=⋅---------------------------------------------8分 ∵23234ADC S ∆==,22117()22PAC S PA PC PA ∆=-=,---------------------10分 ∴ADC PAC S PO h S ∆∆⋅=3221772==,即点D 到平面APC 的距离为221.-------12分 (20)解:(Ⅰ)∵抛物线21y x =-的顶点为(0,1)-,即椭圆的下焦点为(0,1)-,∴1c =,----------------------------------------------------------------------------------------1分由AB=2知1B x =,代入抛物线得(1,0)B ,得1b =,----------------------2分∴222a b c =+=2,1C 的方程为2212y x +=;---------------------------4分 (Ⅱ)依题意知直线l 的方程为(1)y k x =-,-------------------------------5分 联立2212y x +=消去y 得:2222(2)220k x k x k +-+-=, 则2222M B k x x k -⋅=+,得2222M k x k -=+,242M k y k -=+,-------------------------7分由{2(1)1y k x x y =-=+,得210x kx k -+-=, 由224(1)(2)0k k k ∆=--=->,得2k ≠,则1N B x x k ⋅=-,得1N x k =-,(2)N y k k =-,----------------------------9分∵点A 在以MN 为直径的圆外,即,AM AN <>u u u u r u u u r [0,)2π∈,----------------------10分∴0AM AN ⋅>u u u u r u u u r ,又(1,0)A -,∴(1,)(1,)M M N N AM AN x y x y ⋅=+⋅+u u u u r u u u r 22224(2)222k k k k k k --=⋅+++222(4)02k k k -=>+, 解得4k <,综上知(,0)(0,2)(2,4)k ∈-∞U U .-----------------------------12分(21)解:(Ⅰ) 解法1:22ln(1)1'()(2)x x x f x x ----=-2(2)(1)ln(1)(1)(2)x x x x x ----=--, -----------2分记()(2)(1)ln(1)g x x x x =----(2x >),'()ln(1)0g x x =--<,----------3分即()g x 在(2,)+∞上单调递减,∴()(2)0g x g <=从而'()0f x <,∴函数()f x 在(2,)+∞上的单调递减.----------------------------5分【解法2:依题意得22ln(1)1'()(2)x x x f x x ----=-, --------------------------------------------2分 记2()ln(1)1x g x x x -=---(2x ≥) 则211'()(1)1g x x x =---22(1)xx -=-,---------------------------------------------------------3分∵2x > ∴'()0g x <,即函数()g x 在(2,)+∞上单调递减,∴()(2)0g x g <=,从而得'()0f x <,∴函数()f x 在(2,)+∞上的单调递减.--------------------------------------------------5分】(Ⅱ) 解法1:()f x a <对(2,)x ∀∈+∞均成立,等价于ln(1)(2)x a x -<-对(2,)x ∀∈+∞均成立,-------------------------------------6分由ln(1)y x =-得1'1y x =-,由此可得函数ln(1)y x =-的图象在点(2,0)处的切线为y=x-2,-----------------------------------------------------------------------------------------7分(1)当1a <时,在(2,)+∞上,直线(2)y a x =-与函数ln(1)y x =-的图象相交,不合题意;---9分(2)当1a ≥时,在(2,)+∞上,直线(2)y a x =-在函数ln(1)y x =-的图象的上方,符合题意---------------11分综上得:要使()f x a <对(2,)x ∀∈+∞均成立,[1,)a ∈+∞.------------------------------12分【解法2: ()f x a <对(2,)x ∀∈+∞均成立,等价于ln(1)(2)x a x -<-对(2,)x ∀∈+∞均成立---------------------------------------5分记()ln(1)(2)h x x a x =---,则1'()1h x a x =--11a ax x +-=-1()1a a x x a-+=---------6分 (2)0h =,令'()0h x =得1a x a +=, 1201a a a +>⇔<<, (1)当0a ≤时,对(2,)x ∀∈+∞,'()0h x >,即函数()h x 在(2,)+∞单调递增,故()(2)0h x h >=,即ln(1)(2)0x a x --->,不符合题意;---------------------------8分(2)当01a <<时,对1(2,)a x a +∀∈,'()0h x >, 此时函数()h x 在1(2,)a a+上为增函数,即ln(1)(2)0x a x --->,不符合题意;-----10分(3)当1a ≥时,对(2,)x ∀∈+∞,有'()0h x <,函数()h x 在(2,)+∞单调递减,因此ln(1)(2)(2)0x a x h ---<=,符合题意;综上得:要使()f x a <对(2,)x ∀∈+∞均成立,[1,)a ∈+∞.------------------------12分】选做题:(22)解:(Ⅰ)由弦切角定理得BAC BDA ∠=∠,---------1分BAD BCA ∠=∠,----------------------------------------------------2分所以BAC ∆∽BDA ∆,------------------------------------------------------------------3分 得AB BC BD AB =,----------------------------------------------------------------------------4分28AB BC BD =⋅=,AB =---------------------------------5分 (Ⅱ)连接EC ,∵AEC AEB BEC ∠=∠+∠,-----------------------------------------6分ACE ABE BAD ADB ∠=∠=∠+∠-------------------------------------------------7分∵AEB BAD ∠=∠,BAC BDA ∠=∠=BEC ∠,----------------------8分 ∴AEC ACE ∠=∠------------------------------------------------9分 ∴AE=AC=3.--------------------------------------------------------------------------------10分(23)解:(Ⅰ)将2y t =代入椭圆的普通方程得22249(1)9(1)4t x t =-=-,------------1分于是得x =±,-----------------------------------------------------------------------------2分∴椭圆C的参数方程为2.x y t ⎧⎪=⎨=⎪⎩(t为参数)和2.x y t ⎧⎪=-⎨=⎪⎩(t 为参数)---4分(Ⅱ)依题意知点A(3,0),B(0,2),--------------------------------------------------------------------5分 设点P 的坐标为(3cos ,2sin )θθ,(0)2πθ<<---------------------------------------------6分则BPO OPA AOBP S S S ∆∆=+四边形1123cos 32sin 22θθ=⨯⨯+⨯⨯---------------------------8分3sin 3cos )4πθθθ=+=+,(0)2πθ<<----------------9分 当sin()14πθ+=,即4πθ=时,四边形AOBP 面积取得最大值,其值为分(24)解:(Ⅰ)解法1:∵0a >, ∴(2),(2)()22,(2)2,()a x f x x a x a a x a -+<-⎧⎪=+--≤<⎨+≥⎪⎩,--------------2分当2x a -≤<时,2()2a f x a --≤<+,∴当x R ∈时,2()2a f x a --≤≤+,---4分∴min ()(2)3f x a =-+=-,∴a=1;--------------------------------------------------5分【解法2:∵||2|||||(2)()|2x x a x x a a +--≤+--=+,----------------------2分∴|()|2f x a ≤+,min ()(2)f x a =-+,---------------------------------------------3分又已知min ()3f x =-,∴a=1;----------------------------------------------------------5分】(Ⅱ)由(Ⅰ)知(2),(2)()22,(2)2,()a x f x x a x a a x a -+<-⎧⎪=+--≤<⎨+≥⎪⎩,(0a >)当2x <-时,()(2)2f x a =-+<-,|()|2f x >,不等式|()|2f x ≤解集为空集----6分当x a ≥时,()22f x a =+>,不等式|()|2f x ≤解集也为空集;----------------7分当2x a -≤<时,|()|2f x ≤,即2222x a -≤+-≤⇒222a a x -<< ∵222a ->-,2a a <,∴当2x a -≤<时,|()|2f x ≤的解为222a a x -<<-----9分 综上得所求不等式的解集为{|2}22a a x x -<<----------------------------10分。

2021年全国新高考2卷数学试题(原卷版)

2021年全国新高考2卷数学试题(原卷版)

绝密★启用前 试卷类型: 2021年普通高等学校招生全国统一考试新高考Ⅱ卷数学一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 在复平面内,复数213i i--对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2. 若全集{}1,2,3,4,5,6U =,集合{}1,3,6A =,{}2,3,4,B =则U A C B =( ){}(A)3 {}(B)1,6 {}(C)5,6 {}(D)1,33. 若抛物线22(0)y px p =>焦点到直线1y x =+,则p =( )(A)1 (B)2 (D)44. 卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km (轨道高度指卫星到地球表面的最短距离),把地球看成一个球心为O 半径为6400km 的球,其上点A 的纬度是指OA 与赤道所在平面所成角的度数,地球表面能直接观测到的一颗地球静止同步卫星的点的纬度的最大值记为α,该卫星信号覆盖的地球表面面积22(1cos ),S r πα=-(单位:2km ),则S 占地球表面积的百分比为( )(A)26% (B)34% (C)42% (D)50%5. 正四棱台的上、下底面边长为2,4,侧棱长为2,则四棱台的体积为( )(A)20+ 56(D)3 6. 某物理量的测量结果服从正态分布2(10,)N σ则下列结论中不正确的是( )()A σ越小,该物理量一次测量结果落在()9.9,10.1内的概率越大。

()B σ越小,该物理量一次测量结果大于10的概率为0.5。

()C σ越小,该物理量一次测量结果大于10.01的概率与小于9.99的概率相等。

()D σ越小,该物理量一次测量结果落在()9.9,10.2内的概率与落在()10,10.3内的概率相等。

7. 若581log 2,log 3,,2a b c ===则( ) ()A c b a << ()B b a c << ()C a c b << ()D a b c <<8. 设函数()f x 的定义域为R ,且()2f x +是偶函数,()21f x +为奇函数,则( )1().02A f ⎛⎫-= ⎪⎝⎭()().10B f -= ()().20C f = ()().40D f =二、选择题:本题共4小题,每小题5分,共20分。

2021年高三下学期模拟(二)测试数学文试题(详解) 含答案

2021年高三下学期模拟(二)测试数学文试题(详解) 含答案

2021年高三下学期模拟(二)测试数学文试题(详解) 含答案一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合A .B .C .D . 2. 为虚数单位,则复数的虚部为A .B .C .D .3. 为了了解某学校xx 名高中男生的身体发育 情况,抽查了该校100名高中男生的体重情况. 根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在70~78kg 的人数为 A .240 B .160 C .80 D .604. 在平面直角坐标系中, 落在一个圆内的曲线可以是 A . B . C . D .5.A. B. C. D.6. 若对任意正数,均有,则实数的取值范围是 A. B. C. D.7.曲线在点处的切线方程是 A. B.C. D.8.已知命题:“对任意, 都有”;命题:“空间两条直线为异面直线的充要条件是它们不同在任何一个平面内”.则A. 命题“”为真命题B. 命题“”为假命题kg )第3题图C. 命题“”为真命题D. 命题“”为真命题9. 某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是A .B .C .D .10. 线段是圆的一条直径,离心率为的双曲线以为焦点.若是圆与双曲线的一个公共点,则 A. B. C. D.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题:第11、12、13题为必做题.11. 按照右图的工序流程,从零件到成品最少 要经过______道加工和检验程序,导致废 品的产生有_____种不同的情形.12. 已知递增的等比数列中, 则 .13. 无限循环小数可以化为有理数,如,请你归纳出 (表示成最简分数.(二)选做题:第14、15题为选做题,考生只能从中选做一题.14. (坐标系与参数方程选做题)在极坐标系中,直线(常数)与曲线相切,则 . 15.(几何证明选讲选做题)如图,是半圆的直径,弦和弦相交于点,且,则 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)在中,角为锐角,记角所对的边分别为设向量 且与的夹角为 (1)求的值及角的大小; (2)若,求的面积.第11题图PDC 第15题图第9题图1 cm1 cm2 cm2 cm17.(本小题满分12分)设函数,其中是某范围内的随机数,分别在下列条件下,求事件A “且”发生的概率. (1) 若随机数;(2) 已知随机函数产生的随机数的范围为, 是算法语句和的执行结果.(注: 符号“”表示“乘号”)18.(本小题满分14分)如图,四棱柱的底面是平行四边形,分别在棱上,且. (1)求证:;(2)若平面,四边形是边长为的正方形,且,,求线段的长, 并证明:19.(本小题满分14分)已知二次函数的最小值为且关于的不等式的解集为 ,(1)求函数的解析式; (2)求函数的零点个数.A 1BCDC 1B 1D 1FE20.(本小题满分14分)如图,是抛物线上的两动点(异于原点),且的角平分线垂直于轴,直线与轴,轴分别相交于.(1) 求实数的值,使得;(2)若中心在原点,焦点在轴上的椭圆经过. 求椭圆焦距的最大值及此时的方程.21.(本小题满分14分)定义数列: ,且对任意正整数,有 .(1)求数列的通项公式与前项和;(2)问是否存在正整数,使得?若存在,则求出所有的正整数对 ;若不存在,则加以证明.数学(文科)参考答案及评分标准说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.第20题图2. 对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题考查基本知识和基本运算。

2021届全国新高考仿真模拟试题(二)数学(文)(解析版)

2021届全国新高考仿真模拟试题(二)数学(文)(解析版)

∴CD⊥平面
ABD,∴CD
是三棱锥
C
­
ABD
的高,∴VC
­
ABD=13×12×2×2×sin
60°×2=2 3, 3
故选 A.
8.答案:C
解析:由射线测厚技术原理公式得I20=I0e-7.6×0.8μ,∴12=e-6.08μ,-ln 2=-6.08μ,μ≈0.114,
故选 C.
9.答案:C
解析:从题图(1)可以看出,该品牌汽车在 1 月份所对应的条形图最高,即销售量最多,
商品销售 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y10
额 y/万元
且已知 错误!i=380.0
(1)求第 10 年的年收入 x10. (2)若该城市居民年收入 x 与该种商品的销售额 y 之间满足线性回归方程y^=363x+^a,
254 (ⅰ)求该种商品第 10 年的销售额 y10; (ⅱ)若该城市居民年收入为 40.0 亿元,估计这种商品的销售额是多少?(精确到 0.01) 附:①在线性回归方程y^=b^x+^a中,b^=错误!,^a=-y -b^-x ;
(1)求轨迹Γ的方程; (2)过点 F 作互相垂直的直线 AB 与 CD,其中直线 AB 与轨迹Γ交于点 A,B,直线 CD 与轨迹Γ交于点 C,D,设点 M,N 分别是 AB 和 CD 的中点,求△FMN 的面积的最小值.
-5-
21.(12 分)[2020·安徽省示范高中名校高三联考]函数 f(x)=aex+x2-ln x(e 为自然对数的底数,a 为常 数),曲线 f(x)在 x=1 处的切线方程为(e+1)x-y=0.
于 8 月份,所以该公司 7 月份汽车的总销售量比 8 月份少,所以选项 C 是错误的;从题图(1)

2021年5月28日河南省●天一大联考2021届高三毕业班高考考前模拟(河南版)数学(文)试题及答案

2021年5月28日河南省●天一大联考2021届高三毕业班高考考前模拟(河南版)数学(文)试题及答案

绝密★启用前河南省●天一大联考2021届高三毕业班下学期高考考前模拟卷(河南版)数学(文)试题考试时间:2021年5月28日考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x|2x 2-13x>0},B ={y|y>2},则(∁R A)∩B = A.(2,132) B.(0,2) C.[0,2] D.(2,132]2.在复平面内,复数z 所对应的向量OZ 如图所示,则35z i =-A.1213434i -+B.1213434i --C.9193434i -+D.9193434i -- 3.“王莽方斗”铸造于王莽始建国元年(公元9年),有短柄,上下边缘刻有篆书铭文,外壁漆画黍、麦、豆、禾和麻纹,如图1所示。

因其少见,故为研究西汉量器的重要物证图2是“王莽方斗”模型的三视图,则该模型的容积为A.213B.162C.178D.1934.若双曲线C 1与双曲线C 2:22146x y -=有共同的渐近线,且C 过点(2,3),则双曲线C 1的方程为 A.22123y x -= B.22123x y -= C.22123x y -= D.22132y x -= 5.记等差数列{a n }的前n 项和为S n ,且a 3=5,42S S =4,则a 10= A.9 B.11 C.19 D.21 6.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象。

在政府部门的牵头下,甲工厂率先转业生产口置。

2021年高考数学(文)3月模拟评估卷(一)(全国3卷)试题

2021年高考数学(文)3月模拟评估卷(一)(全国3卷)试题

C.若 m / /n, m , n ,则 / /
D.若 m n, m / /, n / / ,则
8.三个数
cos
8
, cos 5
, cos
3 5
的大小关系(

A.
cos
8
cos
5
cos
3 5
B. cos 3 5
cos 5
cos
8
C. cos 3 5
cos
8
入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下扇形统计图:
则下面结论中不.正.确.的是( ) A.新农村建设后,种植收入略有增加 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入不变
D.新农村建设后,种植收入在经济收入中所占比重大幅下降
6.《易经》是中国文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成
2021 年高考数学(文)3 月模拟评估卷(一)(全国 3 卷)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分
满分 150 分.考试时间 120 分钟
第Ⅰ卷(选择题共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是
符合题目要求的.
(一)、必考题:共 60 分
17.(12 分) 设{an}是等比数列,其前 n 项的和为 Sn ,且 a2 2 , S2 3a1 0 .
(1)求 {an } 的通项公式;
(2)若 Sn an 48 ,求 n 的最小值.
18.(12 分) 某花圃为提高某品种花苗质量,开展技术创新活动,在 A,B 实验地分别用甲、乙方法培育该品种花 苗.为观测其生长情况,分别在 A,B 试验地随机抽选各 50 株,对每株进行综合评分,将每株所得的综合评分制 成如图所示的频率分布直方图.记综合评分为 80 及以上的花苗为优质花苗.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届全国新高考仿真模拟试题(二)数学(文)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.[2020·安徽省示范高中名校高三联考]设全集U =R ,A ={x |x 2-x -6<0},B ={x |y =ln(1-x )},则A ∩(∁U B )=( )A .[1,3)B .(1,3]C .(1,3)D .(-2,1]2.[2020·石家庄市重点高中高三毕业班摸底考试]若复数z 满足2z +z -=3-i ,其中i 为虚数单位,则|z |=( )A .2 B. 3 C. 2 D .3 3.[2020·石家庄市高三年级阶段性训练题]已知a =0.30.2,b =50.3,c =log 0.2 5,则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <a <bD .c <b <a 4.[2020·河北省九校高三联考试题]设{a n }是公差大于零的等差数列,S n 为数列{a n }的前n 项和,则“a 2>0”是“S n +1>S n ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.[2020·广州市高三年级调研检测]已知实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≥03x -y -3≤0x -2y +4≥0,则z =x -3y 的最小值为( )A .-7B .-6C .1D .66.[2020·长沙市四校高三年级模拟考试]执行如图所示的程序框图,若输入的x 的值为6,则输出的z的值为( )A .108B .120C .131D .1437.[2020·石家庄市重点高中高三毕业班摸底考试]已知四面体ABCD 中,平面ABD ⊥平面BCD ,△ABD是边长为2的等边三角形,BD =DC ,BD ⊥CD ,则四面体ABCD 的体积为( )A.233B.45C.433 D .2 38.[2020·合肥市高三第一次教学质量检测]射线测厚技术原理公式为I =I 0e -ρμt ,其中I 0,I 分别为射线穿过被测物前后的强度,e 是自然对数的底数,t 为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am)低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln 2≈0.693 1,结果精确到0.001)( )A .0.110B .0.112C .0.114D .0.116 9.[2020·安徽省部分重点校高三联考试题]图(1)是某品牌汽车2019年月销售量统计图,图(2)是该品牌汽车月销售量占所属汽车公司当月总销售量的份额统计图,则下列说法错误的是( )A .该品牌汽车2019年全年销售量中,1月份销售量最多B .该品牌汽车2019年上半年的销售淡季是5月份,下半年的销售淡季是10月份C .2019年该品牌汽车所属公司7月份的汽车销售量比8月份多D .该品牌汽车2019年下半年月销售量相对于上半年,波动性小,变化较平衡10.[2020·山东九校联考]下列关于函数f (x )=2cos 2x -cos ⎝⎛⎭⎫2x +π2-1的描述错误的是( ) A .其图象可由y =2sin 2x 的图象向左平移π8个单位长度得到B .f (x )在⎝⎛⎭⎫0,π2上单调递增 C .f (x )在[0,π]上有2个零点D .f (x )在⎣⎡⎦⎤-π2,0上的最小值为- 2 11.[2020·山西省八校高三第一次联考]已知函数f (x )的定义域为R ,满足f (x +1)=2f (x -1),且当x ∈(-1,1]时,f (x )=2x -1,则f (2 020)=( )A .22 019B .22 018C .21 010D .21 009 12.[2020·合肥市高三调研性检测]设数列{a n }的前n 项和为S n,4S n =(2n +1)a n +1(n ∈N *).定义数列{b n }如下:对于正整数m ,b m 是使不等式a n ≥m 成立的所有n 的最小值,则数列{b n }的前60项的和为( )A .960B .930C .900D .840二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上.)13.[2020·南昌市高三年级摸底测试卷]已知sin θ=15,则cos 2θ=________.14.[2020·广州市普通高中毕业班综合测试(一)]如图,如果一个空间几何体的正视图与侧视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,则这个几何体的体积为________,表面积为________.15.[2020·江苏卷]将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.16.[2020·湖北省部分重点中学高三起点考试]已知点A (0,1),抛物线C :y 2=ax (a >0)的焦点为F ,连接F A ,与抛物线C 相交于点M ,延长F A ,与抛物线C 的准线相交于点N ,若|FM |︰|MN |=1︰2,则实数a 的值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)[2020·安徽十四校联考]在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知b =a cos C +33c sin A ,点M 是BC 的中点.(1)求A 的值;(2)若a =3,求中线AM 长度的最大值.18.(12分)[2020·全国卷Ⅱ]如图,已知三棱柱ABC - A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B - EB 1C 1F的体积.19.(12分)[2020·武汉市高中毕业生学习质量检测]有人收集了某10年中某城市居民年收入(即该城市所有居民在一年内收入的总和)与某种商品的销售额的相关数据如表:第n 年 1 2 3 4 5 6 7 8 9 10 年收入x /亿元 32.0 31.0 33.0 36.0 37.0 38.0 39.0 43.0 45.0 x 10商品销售额y /万元25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y 10且已知 i =110x i =380.0(1)求第10年的年收入x 10.(2)若该城市居民年收入x 与该种商品的销售额y 之间满足线性回归方程y ^=363254x +a ^,(ⅰ)求该种商品第10年的销售额y 10;(ⅱ)若该城市居民年收入为40.0亿元,估计这种商品的销售额是多少?(精确到0.01)附:①在线性回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -n x -y-∑i =1n x 2i -n x -2,a ^=y --b ^x -; ②∑i =110x 2i -102x =254.0,∑i =19x i y i =12 875.0,∑i =19y i =340.0.20.(12分)[2020·武汉市部分学校高三在线学习摸底检测]已知F (0,1)为平面上一点,H 为直线l :y =-1上任意一点,过点H 作直线l 的垂线m ,设线段FH 的垂直平分线与直线m 交于点P ,记点P 的轨迹为Γ.(1)求轨迹Γ的方程;(2)过点F 作互相垂直的直线AB 与CD ,其中直线AB 与轨迹Γ交于点A ,B ,直线CD 与轨迹Γ交于点C ,D ,设点M ,N 分别是AB 和CD 的中点,求△FMN 的面积的最小值.21.(12分)[2020·安徽省示范高中名校高三联考]函数f (x )=a e x +x 2-ln x (e 为自然对数的底数,a 为常数),曲线f (x )在x =1处的切线方程为(e +1)x -y =0.(1)求实数a 的值;(2)证明:f (x )的最小值大于54+ln 2.选考题(请考生在第22、23题中任选一题作答,多答、不答按本选考题的首题进行评分.)22.(10分)[2020·石家庄市重点高中高三毕业班摸底考试]已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),A (2,0),P 为曲线C 上的一个动点.(1)求动点P 对应的参数从π3变动到2π3时,线段AP 所扫过的图形的面积;(2)若直线AP 与曲线C 的另一个交点为Q ,是否存在点P ,使得P 为线段AQ 的中点?若存在,求出点P 的直角坐标;若不存在,请说明理由.23.(10分)[2020·大同市高三学情调研测试]设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)c 2a +b 2c +a2b ≥1.仿真模拟专练(二)1.答案:A 2.答案:C 3.答案:C 4.答案:C 5.答案:A 6.答案:C7.答案:A 8.答案:C 9.答案:C 10.答案:B 11.答案:D 12.答案:A13.答案:232514.答案:3π3 3π1×2=3π. 15.答案:1916.答案:43317.解析:(1)因为b =a cos C +33c sin A , 根据正弦定理得sin B =sin A cos C +33sin C sin A ,所以sin(A +C )=sin A cos C +33sin C sin A ,所以sin A cos C +cos A sin C =sin A cos C +33sin C sin A ,所以cos A sin C =33sin C sin A .因为sin C ≠0, 所以t a n A = 3. 又0<A <π,所以A =π3.(2)解法一 在△ABC 中,由余弦定理得b 2+c 2-bc =3. 因为bc ≤b 2+c 22,当且仅当b =c 时取等号,所以b 2+c 2≤6.因为AM 是BC 边上的中线,所以在△ABM 和△ACM 中, 由余弦定理得,c 2=AM 2+34-2AM ·32·cos ∠AMB ,①b 2=AM 2+34-2AM ·32·cos ∠AMC .②由①②得AM 2=b 2+c 22-34≤94,当且仅当b =c =3时,中线AM 的长度取得最大值32.解法二 在△ABC 中,由余弦定理得b 2+c 2-bc =3.因为bc ≤b 2+c 22,当且仅当b =c 时取等号,所以b 2+c 2≤6.因为AM 是BC 边上的中线,所以AM →=AB →+A C →2,两边平方得|AM →|2=14(b 2+c 2+bc ),所以|AM →|2=b 2+c 22-34≤94,当且仅当b =c =3时,中线AM 的长度取得最大值32.18.解析:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,A 1N ∩MN =N ,故B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN .又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B - EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为12×(B 1C 1+EF )·PN =12×(6+2)×6=24.所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.19.解析:(1)因为∑i =110x i =380.0,所以32+31+33+36+37+38+39+43+45+x 10=380,解得x 10=46.(2)(ⅰ)由该城市居民年收入x 与该种商品的销售额y 之间满足线性回归方程y ^=363254x +a ^知b ^=363254,即b^=∑i =110x i y i -10x -y-∑i =110x 2i -10x -2=363254, 即12 875+46y 10-10×38010×340+y 1010254=363254,解得y 10=51.(ⅱ)求得x -=38,y -=39.1,代入y ^=363254x +a ^得39.1=363254×38+a ^,解得a ^≈-15.21,所以y ^=363254x -15.21,当x =40时,y =363254×40-15.21≈41.96,故若该城市居民年收入为40.0亿元,估计这种商品的销售额是41.96万元. 20.解析:(1)设P (x ,y ),依题意有|PF |=|PH |,即x 2+(y -1)2=|y +1|,化简得x 2=4y ,因此轨迹Γ的方程为x 2=4y .(2)由题意知,直线AB 和CD 的斜率均存在且不为0.设直线AB 的方程为y =kx +1(k ≠0),A (x 1,y 1),B (x 2,y 2), 则由{y =kx +1x 2=4y ,得x 2-4kx -4=0,x 1+x 2=4k ,y 1+y 22=k ×x 1+x 22+1=2k 2+1,所以M (2k,2k 2+1),同理,点N ⎝⎛⎭⎫-2k ,2k 2+1,从而直线MN 的斜率为2k 2+1-⎝⎛⎭⎫2k 2+12k +2k=k -1k, 直线MN 的方程为y -(2k 2+1)=⎝⎛⎭⎫k -1k (x -2k ),即y =⎝⎛⎭⎫k -1k x +3,过定点Q (0,3), 从而△FMN 的面积S △FMN =12×|FQ |×⎪⎪⎪⎪2k -⎝⎛⎭⎫-2k =12×2×⎪⎪⎪⎪2k +2k =2⎪⎪⎪⎪k +1k ≥4,当且仅当k =±1时取等号,所以△FMN 的面积的最小值为4.21.解析:(1)对f (x )求导可得f ′(x )=a e x +2x -1x,所以f ′(1)=a e +1.由曲线f (x )在x =1处的切线方程为(e +1)x -y =0可知a e +1=e +1,故a =1.(2)由(1)知f (x )=e x +x 2-ln x ,得f ′(x )=e x +2x -1x,令h (x )=f ′(x ),则h ′(x )=e x +2+1x2>0,所以f ′(x )在(0,+∞)上单调递增.注意到f ′⎝⎛⎭⎫14=e 14+12-4<0,f ′⎝⎛⎭⎫12=e 12+1-2>0,所以由零点存在性定理可知存在x 0∈⎝⎛⎭⎫14,12,使得f ′(x 0)=0,即e x 0+2x 0-1x 0=0,即e x 0=1x 0-2x 0.当0<x <x 0时,f (x )单调递减;当x >x 0时,f (x )单调递增.于是f (x )≥f (x 0)=e x 0+x 20-ln x 0=1x 0-2x 0+x 20-ln x 0=(x 0-1)2+1x 0-ln x 0-1, 设g (x )=(x -1)2+1x -ln x -1,易知g (x )=(x -1)2+1x-ln x -1在⎝⎛⎭⎫14,12上单调递减, 所以f (x )≥f (x 0)>g ⎝⎛⎭⎫12=54+ln 2,所以f (x )的最小值大于54+ln 2. 22.解析:(1)设θ=π3时对应的点为M ,θ=2π3时对应的点为N ,O 为坐标原点,线段AP 扫过的图形的面积=S △AMN +S 弓形=S △OMN +S 弓形=S 扇形OMN =12×12×π3=π6.(2)设P (cos θ,sin θ),∵P 为线段AQ 的中点,∴Q (2cos θ-2,2sin θ), ∵Q 在曲线C 上,曲线C 的普通方程为x 2+y 2=1, ∴(2cos θ-2)2+(2sin θ)2=1,∴8cos θ=7,cos θ=78.此时点P 的直角坐标为⎝⎛⎭⎫78,±158.23.解析:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ac . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2ac +2bc =1,∴3(ab +bc +ac )≤1,即ab +bc +ac ≤13.(2)∵a >0,b >0,c >0,∴a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c ,∴c 2a +b 2c +a2b+(a +b +c )≥2(a +b +c ),即a2b +b2c+c2a≥a+b+c,即a2b +b2c+c2a≥1.。

相关文档
最新文档