高考数学模拟复习试卷试题模拟卷13313

合集下载

2023年全国新高考数学仿真模拟卷(一)数学试题

2023年全国新高考数学仿真模拟卷(一)数学试题

一、单选题1. 袋中装有4个红球、3个白球,甲、乙按先后次序无放回地各摸取一球,在甲摸到了白球的条件下,乙摸到白球的概率是A.B.C.D.2. 若,且,则下列不等式一定成立的是( )A.B.C.D.3. 如图所示,在棱长为1的正方体中,下列结论正确的是()A.与平面所成角的正弦值是B.与平面所成角的正弦值是C.四棱锥的体积是D .三棱锥的体积是4.我国智慧港口的建设飞速发展,作为智能化搬运设备的自动化引导车作用越发凸显.自重吨.再加上集装箱的重量,全车最重可达吨,但其停启位置十分精确,停车误差不超过厘米.码头地面埋设了几万个磁钉,车辆的位置由它们记录下来,传给后台,再由软件精确计算行驶路径,防止碰撞和刮擦.经统计,某港口某次运输中,有台的停车误差为厘米,有台的停车误差为厘米,有台没有停车误差,则该港口本次运输中所有的平均停车误差约为( )A.厘米B .厘米C .厘米D .厘米5. 已知不等式在上恒成立,且函数在上单调递增,则实数的取值范围为( )A.B.C.D.6. 已知集合,,则( )A.B.C.D.7. 已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的是( )A.B.必为偶函数C.D .若,则8.函数的图像大致为( )2023年全国新高考数学仿真模拟卷(一)数学试题2023年全国新高考数学仿真模拟卷(一)数学试题二、多选题三、填空题A.B.C.D.9. 对于直线.以下说法正确的有( )A.的充要条件是B.当时,C.直线一定经过点D .点到直线的距离的最大值为510. 若、、是互不相同的空间直线,、是不重合的平面,则下列命题中为假命题的是A .若,,,则B .若,,则C .若,,则D .若,,则11. 圆与轴相切于点,与轴正半轴交于、两点,且,则( )A .圆的标准方程为B.圆关于直线对称C .经过点与圆相交弦长最短的直线方程为D .若是圆上一动点,则的最大值为12. 已知为抛物线上的三个点,焦点F 是的重心.记直线AB ,AC ,BC 的斜率分别为,则( )A .线段BC的中点坐标为B .直线BC的方程为C.D.13. 已知二项式的展开式中第项与第项的项式系数之比是,则的系数为____________.四、解答题14.已知双曲线:的左、右焦点分别为,,设为双曲线右支上的一点,满足,且,,依次成等差数列,则双曲线的离心率为______.15.若展开式中的常数项为,则实数__________.16. 已知函数.(1)求不等式的解集;(2)若方程有两个不相等的实数根,,证明:.17. 已知函数.(1)求时,在处的切线方程;(2)讨论在上的最值情况;(3)恒成立,求实数的取值范围.18. 如图,在四棱锥中,底面为菱形,平面平面,,为棱的中点.(1)证明:;(2)若,,求二面角的余弦值.19.长方体中,,分别是,的中点,,.(1)求证:平面;(2)求证:平面平面;(3)在线段上是否存在一点,使得二面角为,若存在,求的值;若不存在,说明理由.20. 已知正项等比数列{a n },满足a 2a 4=1,a 5是12a 1与5a 3的等差中项.(1)求数列{a n }的通项公式;(2)设,求数列{b n }的前n 项和S n .21. 民航招飞是指普通高校飞行技术专业(本科)通过高考招收飞行学生,报名的学生参加预选初检、体检鉴定、飞行职业心理学检测、背景调查、高考选拔等5项流程,其中前4项流程选拔均通过,则被确认为有效招飞申请,然后参加高考,由招飞院校择优录取.据统计,每位报名学生通过前4项流程的概率依次约为.假设学生能否通过这5项流程相互独立,现有某校高三学生甲、乙、丙三人报名民航招飞.(1)估计每位报名学生被确认为有效招飞申请的概率;(2)求甲、乙、丙三人中恰好有一人被确认为有效招飞申请的概率;(3)根据甲、乙、丙三人的平时学习成绩,预估高考成绩能被招飞院校录取的概率分别为,设甲、乙、丙三人能被招飞院校录取的人数为X,求X的分布列及数学期望.。

2023年全国新高考数学仿真模拟卷(一)数学试题

2023年全国新高考数学仿真模拟卷(一)数学试题

一、单选题二、多选题1. 已知函数在上单调递减,则实数a 的取值范围是( )A.B.C.D.2. 设,,则“”是“”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知集合,则A.B.C.D.4. 已知i是虚数单位,若,则( )A .1B.C .2D .45.设为坐标原点,为抛物线:的焦点,为上一点,若,则的面积为( )A .2B.C.D .46.已知实数满足,则的最大值为A .1B .2C .3D .47. 随着北京冬奥会的开幕,吉祥物“冰墩墩”火遍国内外,现有甲、乙、丙、丁4名运动员要与1个“冰墩墩”站成一排拍照留恋,已知“冰墩墩”在最中间,甲、乙、丙、丁4名运动员随机站于两侧,则甲、乙2名运动员站“冰墩墩”同一侧的概率为( )A.B.C.D.8. 已知 ,对任意的,都存在,使得成立,则下列选项中,θ可能的值为( )A.B.C.D.9.如图,已知长方形中,,,,则下列结论正确的是()A .当时,B.当时,C .对任意,不成立D.的最小值为410. 设定义在R 上的函数与的导数分别为与,已知,,且的图象关于直线对称,则下列结论一定成立的是( )A.函数的图象关于点对称B.函数的图象关于直线对称C.函数的一个周期为8D .函数为奇函数2023年全国新高考数学仿真模拟卷(一)数学试题2023年全国新高考数学仿真模拟卷(一)数学试题三、填空题四、解答题11.已知点在直线上移动,圆,直线,是圆的切线,切点为,.设,则( )A .存在点,使得B .存在点,使得C.当的坐标为时,的方程为D .点的轨迹长度是12. 已知的顶点在圆上,顶点在圆上.若,则( )A.的面积的最大值为B.直线被圆截得的弦长的最小值为C .有且仅有一个点,使得为等边三角形D.有且仅有一个点,使得直线,都是圆的切线13. 的展开式中,常数项为________.14. 如图,在中,,,,为内的一点,且,,则________.15. 的展开式中的系数为__________.(用数字作答)16. 已知为单调递增的等差数列,设其前项和为,,且,成等比数列.(1)求数列的通项公式;(2)求的最小值及取得最小值时的值.17. 已知,,函数的最小值为1.(1)求的值;(2)若恒成立,求实数的取值范围.18. 已知函数.(1)若有3个零点,求a 的取值范围;(2)若,,求a 的取值范围.19. 今年上海疫情牵动人心,大量医务人员驰援上海.现从这些医务人员中随机选取了年龄(单位:岁)在内的男、女医务人员各100人,以他们的年龄作为样本,得出女医务人员的年龄频率分布直方图和男医务人员的年龄频数分布表如下:年龄(单位:岁)频数2020301515(1)求频率分布直方图中a的值;(2)在上述样本中用分层抽样的方法从年龄在内的女医务人员中抽取4人,从年龄在内的男医务人员中抽取2人,再从这6人中随机抽取2人,求这2人中至少有1人的年龄在内的概率.20. 已知函数.(1)若,求在定义域上的极值;(2)若,求的单调区间.21. 已知中,角,,所对的边分别为,,,满足.(1)求的大小;(2)如图,,在直线的右侧取点,使得,求为何值时,四边形面积的最大,并求出该最大值.。

高考数学模拟复习试卷试题模拟卷21331

高考数学模拟复习试卷试题模拟卷21331

高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案 (1)D (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →, 所以AB →=85AN →-45AM →, 所以λ+μ=45. (2)设BP →=kBN →,k ∈R. 因为AP →=AB →+BP →=AB →+kBN →=AB →+k(AN →-AB →)=AB →+k(14AC →-AB →)=(1-k)AB →+k 4AC →, 且AP →=mAB →+211AC →,所以1-k =m ,k 4=211, 解得k =811,m =311. 【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M(0,20).又∵CN →=ON →-OC →=-2b , ∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N(9,2).∴MN →=(9,-18). 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________.题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________.(2)(·陕西)设0<θ<π2,向量a =(sin2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________.【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.答案 (1)(2,4) (2)60°解析 (1)∵在梯形ABCD 中,DC =2AB ,∴DC →=2AB →. 设点D 的坐标为(x ,y),则DC →=(4,2)-(x ,y)=(4-x,2-y), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). (2)因为p ∥q ,则(a +c)(c -a)-b(b -a)=0, 所以a2+b2-c2=ab , 所以a2+b2-c22ab =12, 结合余弦定理知, cosC =12,又0°<C<180°, 所以C =60°. 【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4) 【答案】A【解析】∵AB OB OA =-=(3,1),∴BC =AC AB -=(7,4),故选A.1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.152 【答案】C【解析】∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b)⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.2.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3) 【答案】B【解析】由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B.3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【解析】(1)由题意知,f(x)==msin 2x +ncos 2x.因为y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=msin π6+ncos π6,-2=msin 4π3+ncos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f(x)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知,g(x)=f(x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g(x)的图像上符合题意的最高点为(x0,2). 由题意知,x20+1=1,所以x0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g(x)得,sin ⎝⎛⎭⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g(x)=2sin ⎝⎛⎭⎫2x +π2=2cos 2x.由2kπ-π≤2x≤2kπ,k ∈Z 得kπ-π2≤x≤kπ,k ∈Z , 所以函数y =g(x)的单调递增区间为⎣⎡⎦⎤kπ-π2,kπ,k ∈Z.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 【答案】12【解析】因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12. 5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.(2)∵OP →=mAB →+nAC →, ∴(x ,y)=(m +2n ,2m +n),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B(2,3)时,t 取得最大值1,故m -n 的最大值为1. 6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 3 【答案】D【解析】由|OA →|=|OB →|=OA →·OB →=2,可得点A ,B 在圆x2+y2=4上且∠AOB =60°,在平面直角坐标系中,设A(2,0),B(1,3),设P(x ,y),则(x ,y)=λ(2,0)+μ(1,3),由此得x =2λ+μ,y =3μ,解得μ=y 3,λ=12x -12 3y ,由于|λ|+|μ|≤1, 所以12x -12 3y +13y≤1,即|3x -y|+|2y|≤2 3.①⎩⎨⎧3x -y≥0,y≥0,3x +y≤2 3或②⎩⎨⎧3x -y≥0,y<0,3x -3y≤2 3或 ③⎩⎨⎧3x -y<0,y≥0,-3x +3y≤23或④⎩⎨⎧3x -y<0,y<0,-3x -y≤2 3.上述四个不等式组在平面直角坐标系中表示的区域如图阴影部分所示,所以所求区域的面积是4 3.7.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+2 【答案】A【解析】由题可知a·b =0,则a ⊥b ,又|a|=|b|=1,且|c -a -b|=1,不妨令c =(x ,y),a =(1,0),b =(0,1),则(x -1)2+(y -1)2=1,又|c|=x2+y2,故根据几何关系可知|c|max =12+12+1=1+2,|c|min =12+12-1=2-1,故选A.8.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-3 【答案】4【解析】以向量a 和b 的交点为原点,水平方向和竖直方向分别为x 轴和y 轴建立直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),则⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,所以λμ=4.9.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35【答案】A【解析】∵AB →=(3,-4),∴与AB →方向相同的单位向量为AB →|AB →|=⎝⎛⎭⎫35,-45,故选A. 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.【答案】1211.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.【答案】2【解析】如图,建立直角坐标系,则AE →=(1,2),BD →=(-2,2),AE →·BD →=2.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-9【解析】(1)由题意知点A(-c ,2)在椭圆上,则(-c )2a2+22b2=1,从而e2+4b2=1. 由e =22得b2=41-e2=8,从而a2=b21-e2=16.故该椭圆的标准方程为x216+y28=1.13.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【答案】D【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 答案 A解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B →|A B →|=⎝⎛⎭⎫35,-45.2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21) 答案 B解析 BC →=3PC →=3(2PQ →-PA →) =6PQ →-3PA →=(6,30)-(12,9)=(-6,21).3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .2 答案 B解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb)∥c ,∴1+λ3=24,∴λ=12,故选B.4.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .5 答案 B5.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 答案 A解析 由题意知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x=23,y =13.6.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________. 答案 12解析 AB →=(a -2,-2),AC →=(-2,b -2), 依题意,有(a -2)(b -2)-4=0, 即ab -2a -2b =0,所以1a +1b =12.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.答案 k≠18.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.答案 1解析 由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°, ∴tan150°=3-3λ,即-33=-33λ,∴λ=1.9.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1). ∵A 、B 、C 三点共线,∴AB →∥AC →, ∴2(b -1)+2(a -1)=0,即a +b =2. (2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2),∴⎩⎪⎨⎪⎧ a -1=4b -1=-4,解得⎩⎪⎨⎪⎧a =5b =-3, ∴点C 的坐标为(5,-3).10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数. 【热点题型】题型一 由数列的前几项求数列的通项 例1、写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3333,….解 (1)各项减去1后为正偶数,所以an =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以an =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以an =(-1)n·2+-1nn. 也可写为an =⎩⎨⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以an =13(10n -1). 【提分秘籍】根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【举一反三】(1)数列-1,7,-13,19,…的一个通项公式是an =________.(2)数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an =________. 答案 (1)(-1)n·(6n -5) (2)2n +1n2+1解析 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为后面的数的绝对值总比前面的数的绝对值大6,故通项公式为an =(-1)n(6n -5).(2)数列{an}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故an =2n +1n2+1.题型二由数列的前n 项和Sn 求数列的通项例2 已知下面数列{an}的前n 项和Sn ,求{an}的通项公式: (1)Sn =2n2-3n ; (2)Sn =3n +b.【提分秘籍】数列的通项an 与前n 项和Sn 的关系是an =⎩⎪⎨⎪⎧S1,n =1,Sn -Sn -1,n≥2.当n =1时,a1若适合Sn -Sn -1,则n =1的情况可并入n≥2时的通项an ;当n =1时,a1若不适合Sn -Sn -1,则用分段函数的形式表示.【举一反三】已知数列{an}的前n 项和Sn =3n2-2n +1,则其通项公式为________________.题型三 由数列的递推关系求数列的通项公式例3 (1)设数列{an}中,a1=2,an +1=an +n +1,则通项an =________. (2)数列{an}中,a1=1,an +1=3an +2,则它的一个通项公式为an =________. (3)在数列{an}中,a1=1,前n 项和Sn =n +23an ,则{an}的通项公式为________.(2)方法一 (累乘法)an +1=3an +2,即an +1+1=3(an +1), 即an +1+1an +1=3,所以a2+1a1+1=3,a3+1a2+1=3,a4+1a3+1=3,…,an +1+1an +1=3.将这些等式两边分别相乘得an +1+1a1+1=3n.因为a1=1,所以an +1+11+1=3n ,即an +1=2×3n -1(n≥1),所以an =2×3n -1-1(n≥2), 又a1=1也满足上式,故数列{an}的一个通项公式为an =2×3n -1-1.(3)由题设知,a1=1.当n>1时,an =Sn -Sn -1=n +23an -n +13an -1. ∴an an -1=n +1n -1. ∴an an -1=n +1n -1,…,a4a3=53, a3a2=42,a2a1=3.以上n -1个式子的等号两端分别相乘, 得到an a1=n n +12, 又∵a1=1,∴an =n n +12. 【提分秘籍】已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现an =an -1+m 时,构造等差数列;当出现an =xan -1+y 时,构造等比数列;当出现an =an -1+f(n)时,用累加法求解;当出现an an -1=f(n)时,用累乘法求解.【举一反三】(1)已知数列{an}满足a1=1,an =n -1n ·an -1(n≥2),则an =________. (2)已知数列{an}的前n 项和为Sn ,且Sn =2an -1(n ∈N*),则a5等于( ) A .-16B .16C .31D .32答案 (1)1n (2)B【高考风向标】【高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于.【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且 ∴{}1a a n 是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S 1.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.【解析】(1)因为anbn +1-an +1bn +2bn +1bn =0,bn≠0(n ∈N*),所以an +1bn +1-anbn =2,即cn +1-cn=2,所以数列{cn}是以c1=1为首项,d =2为公差的等差数列,故cn =2n -1.(2)由bn =3n -1,知an =(2n -1)3n -1,于是数列{an}的前n 项和Sn =1×30+3×31+5×32+…+(2n -1)×3n -1,3Sn =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2Sn =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以Sn =(n -1)3n +1.2.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.3.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式; (2)证明1a1+1a2+…+1an <32.【解析】(1)由an +1=3an +1得an +1+12=3⎝⎛⎭⎫an +12. 又a1+12=32,所以⎩⎨⎧⎭⎬⎫an +12是首项为32,公比为3的等比数列,所以an +12=3n 2,因此数列{an}的通项公式为an =3n -12.(2)证明:由(1)知1an =23n -1.因为当n≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1,即1an =23n -1≤13n -1. 于是1a1+1a2+…+1an ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a1+1a2+…+1an <32.4.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*).(1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论.【解析】(1)方法一:a2=2,a3=2+1.再由题设条件知(an +1-1)2=(an -1)2+1.从而{(an -1)2}是首项为0,公差为1的等差数列,故(an -1)2=n -1,即an =n -1+1(n ∈N*).方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想an =n -1+1.下面用数学归纳法证明上式.当n =1时,结论显然成立.假设n =k 时结论成立,即ak =k -1+1,则ak +1=(ak -1)2+1+1=(k -1)+1+1=(k +1)-1+1,这就是说,当n =k +1时结论成立.所以an =n -1+1(n ∈N*).(2)方法一:设f(x)=(x -1)2+1-1,则an +1=f(an).令c =f(c),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题a2n<c<a2n +1<1.当n =1时,a2=f(1)=0,a3=f(0)=2-1,所以a2<14<a3<1,结论成立.假设n =k 时结论成立,即a2k<c<a2k +1<1.易知f(x)在(-∞,1]上为减函数,从而c =f(c)>f(a2k +1)>f(1)=a2,即1>c>a2k +2>a2.再由f(x)在(-∞,1]上为减函数,得c =f(c)<f(a2k +2)<f(a2)=a3<1,故c<a2k +3<1,因此a2(k +1)<c<a2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a2n<C<a2a +1对所有n ∈N*成立.方法二:设f(x)=(x -1)2+1-1,则an +1=f(an).先证:0≤an≤1(n ∈N*). ①当n =1时,结论明显成立.假设n =k 时结论成立,即0≤ak≤1.易知f(x)在(-∞,1]上为减函数,从而0=f(1)≤f(ak)≤f(0)=2-1<1.即0≤ak +1≤1.这就是说,当n =k +1时结论成立.故①成立.再证:a 2n<a2n +1(n ∈N*). ②当n =1时,a2=f(1)=0,a3=f(a2)=f(0)=2-1,所以a2<a3,即n =1时②成立.假设n =k 时,结论成立,即a2k<a 2k +1.由①及f(x)在(-∞,1]上为减函数,得a2k +1=f(a2k)>f(a2k +1)=a2k +2,a2(k +1)=f(a2k +1)<f(a2k +2)=a2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N*成立.由②得a2n<a22n -2a2n +2-1,即(a2n +1)2<a22n -2a2n +2,因此a2n<14.③又由①②及f(x)在(-∞,1]上为减函数,得f(a2n)>f(a2n +1),即a2n +1>a2n +2.所以a2n +1>a22n +1-2a2n +1+2-1,解得a2n +1>14.④综上,由②③④知存在c =14使a2n<c<a2n +1对一切n ∈N*成立.5.(·安徽卷)如图1-3所示,互不相同的点A1,A2,…,An ,…和B1,B2,…,Bn ,…分别在角O 的两条边上,所有AnBn 相互平行,且所有梯形AnBnBn +1An +1的面积均相等,设OAn =an ,若a1=1,a2=2,则数列{an}的通项公式是________.图1-3【答案】an =3n -26.(·辽宁卷)下面是关于公差d>0的等差数列{}an 的四个命题:p1:数列{}an 是递增数列;p2:数列{}nan 是递增数列;p3:数列⎩⎨⎧⎭⎬⎫an n 是递增数列; p4:数列{}an +3nd 是递增数列.其中的真命题为( )A .p1,p2B .p3,p4C .p2,p3D .p1,p4【答案】D【解析】因为数列{an}中d>0,所以{an}是递增数列,则p1为真命题.而数列{an +3nd}也是递增数列,所以p4为真命题,故选D.7.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【解析】设{an}的公差为d.由S3=a22,得3a2=a22,故a2=0或a2=3.由S1,S2,S4成等比数列得S22=S1S4.又S1=a2-d ,S2=2a2-d ,S4=4a2+2d ,故(2a2-d)2=(a2-d)(4a2+2d).若a2=0,则d2=-2d2,所以d =0,此时Sn =0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d),解得d =0或d =2.因此{an}的通项公式为an =3或an =2n -1.【高考押题】1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是an 等于( ) A.-1n +12B .cos nπ2C .cos n +12πD .cos n +22π答案 D解析 令n =1,2,3,…逐一验证四个选项,易得D 正确.2.已知数列{an}中,a1=1,若an =2an -1+1(n≥2),则a5的值是( )A .7B .5C .30D .31答案 D解析 由题意得a2=2a1+1=3,a3=2×3+1=7,a4=2×7+1=15,a5=2×15+1=31.3.若数列{an}的通项公式是an =(-1)n(3n -2),则a1+a2+…+a10等于( )A .15B .12C .-12D .-15答案 A解析 由题意知,a1+a2+…+a10=-1+4-7+10-…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.4.若Sn 为数列{an}的前n 项和,且Sn =n n +1,则1a5等于( ) A.56B.65C.130D .30答案 D解析 当n≥2时,an =Sn -Sn -1=n n +1-n -1n =1n n +1,所以1a5=5×6=30. 5.已知数列{an}满足a1=1,an +1an =2n(n ∈N*),则a10等于( )A .64B .32C .16D .8答案 B6.若数列{an}满足关系:an +1=1+1an ,a8=3421,则a5=________.答案 85解析 借助递推关系,则a8递推依次得到a7=2113,a6=138,a5=85.7.数列{an}中,a1=1,对于所有的n≥2,n ∈N*,都有a1·a2·a3·…·an =n2,则a3+a5=________.答案 6116解析 由题意知:a1·a2·a3·…·an -1=(n -1)2,∴an =(n n -1)2(n≥2),∴a3+a5=(32)2+(54)2=6116. 8.已知{an}是递增数列,且对于任意的n ∈N*,an =n2+λn 恒成立,则实数λ的取值范围是________.答案 (-3,+∞)解析 因为{an}是递增数列,所以对任意的n ∈N*,都有an +1>an ,即(n +1)2+λ(n +1)>n2+λn ,整理,得2n+1+λ>0,即λ>-(2n+1).(*)因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.9.已知数列{an}的前n项和Sn=2n+1-2.(1)求数列{an}的通项公式;(2)设bn=an+an+1,求数列{bn}的通项公式.解(1)当n=1时,a1=S1=22-2=2;当n≥2时,an=Sn-Sn-1=2n+1-2-(2n-2)=2n+1-2n=2n;因为a1也适合此等式,所以an=2n(n∈N*).(2)因为bn=an+an+1,且an=2n,an+1=2n+1,所以bn=2n+2n+1=3·2n.10.数列{an}的通项公式是an=n2-7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三)(1)

2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三)(1)

一、单选题二、多选题1. 已知为虚数单位,复数是纯虚数,则( ).A.B .4C .3D .22.已知是空间三个不重合的平面,是空间两条不重合的直线,则下列命题为的是( )A .若,,则B .若,,则C .若,,则D .若,,则真命题3.已知函数的最小正周期为,若将的图象上所有的点向右平移个单位,所得图象对应的函数为奇函数,则( )A.B.C.D.4.已知数列的前项和为,且,,则( )A .255B .63C .128D .1275.各项均为正数的等比数列的前项和为,若,,则A.B .40C .40或D .40或6. 已知定义在上的函数满足,若,则( )A.B.C .3D .27. 设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,,,则的值一定等于( ).A .以,为两边的三角形面积B.以,为邻边的平行四边形的面积C .以,为两边的三角形面积D .以,为邻边的平行四边形的面积8. 如图,在四棱锥中,底面为矩形,是等边三角形,平面底面,,四棱锥的体积为,E 为PC 的中点.平面与平面所成二面角的正切值是()A .2B.C.D .19. 已知函数的部分图象如图所示,则下列说法正确的是()A.2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三)(1)2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(三)(1)三、填空题四、解答题B.的单调减区间为C.图象的一条对称轴方程为D .点是图象的一个对称中心10. 已知球O 的半径为R ,正四棱台ABCD -A 1B 1C 1D 1的两底面边长分别为2和4,高为h ,则( )A .对任意h >0,都存在R >0,使点O 到该棱台所有面的距离都等于RB .对任意h >0,都存在R >0,使该棱台的所有顶点都在球O 的球面上C .若点O 到该棱台所有面的距离都等于R,则D .若该棱台所有顶点都在球O 的球面上,且,则11. 在平面直角坐标系中,已知直线:,椭圆:,则下列说法正确的有( )A .恒过点B .若恒过的焦点,则C.对任意实数,与总有两个互异公共点,则D.若,则一定存在实数,使得与有且只有一个公共点12. 已知实数a ,b 满足,,,且,则下列结论正确的是( )A .当时,B .当时,C.D.13. 的值为___________.14.设等比数列的前n项和为,若,且,则λ=________.15. 如图,在矩形ABCD 中,,E 为AB 的中点.将沿DE 翻折,得到四棱锥.设的中点为M ,在翻折过程中,有下列三个命题:①总有平面;②线段BM 的长为定值;③存在某个位置,使DE 与所成的角为90°.其中正确的命题是_______.(写出所有正确命题的序号)16. 已知函数.(1)讨论的单调性;(2)证明:方程在上有且只有一个解;(3)设点,,,若对任意,,都有经过,的直线斜率大于,求实数的取值范围.17. 一个圆锥的底面半径为2cm ,高为6cm ,在其内部有一个高为x cm 的内接圆柱.(1)求圆锥的侧面积;(2)当x 为何值时,圆柱的侧面积最大?并求出侧面积的最大值.18. 如图(1)所示,已知四边形SBCD是由和直角梯形ABCD拼接而成的,其中.且点A为线段SD的中点,,.现将沿AB进行翻折,使得二面角的大小为,得到图形如图(2)所示,连接SC,点E,F分别在线段SB,SC上.(1)证明:;(2)若三棱锥的体积为四棱锥体积的,求点E到平面ABCD的距离.19.已知为坐标原点,点,分别是椭圆的左顶点和上顶点,已知椭圆的离心率为,的面积为.(1)求椭圆的标准方程;(2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线与轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且,求直线的方程.20.如图,四棱台中,底面ABCD是菱形,点M,N分别为棱BC,CD的中点,,,,.(1)证明:平面平面ABCD;(2)当时,求多面体的体积.21. 设数列的前n项和为,已知.(1)求的通项公式;(2)设且,求数列的前n项和为.。

云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(2)

云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(2)

一、单选题二、多选题1.已知函数的最小正周期为,若在上的最大值为,则的最小值为( )A.B.C.D.2.设集合,则A.B.C.D.3.函数和图象的部分,如图所示.的图象由的图象平移而来,,分别在、图象上,是矩形,,,则的表达式是()A.B.C.D.4. 已知向量,,,若,,三点共线,则( )A .2B.C.D.5. 下面函数中为偶函数的是( )A.B.C.D.6. “”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知直线经过点,那么直线的斜率是( )A.B.C .1D .28.函数的大致图象为( )A. B. C. D.9.已知函数的最小正周期为2,则( )A .B .曲线关于直线对称C.的最大值为2D.在区间上单调递增10. 已知定义在上的函数,满足,且,,当时,(为常数),关于的方程(且)有且只有3个不同的根,则( )A .函数的周期B .在单调递减C.的图象关于直线对称D .实数的取值范围是云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(2)云南省昆明市2023届高三“三诊一模”高考模拟考试数学试题(2)三、填空题四、解答题11. 在长方体中,,,动点在体对角线上(含端点),则下列结论正确的有()A.当为中点时,为锐角B .存在点,使得平面C.的最小值D .顶点到平面的最大距离为12. 复数,其中,设在复平面内对应点为,则下列说法正确的是( )A .点在第一象限B.点在第二象限C.点在直线上D .的最大值为13. 已知三棱锥中,,,,底面,且,则该三棱锥的外接球的表面积为_____________.14.若数列与满足,且,设数列的前项和为,则___________.15. 一个容量为100的样本,其数据的分组与各组的频数如下表:组别[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数1213241516137则样本数据落在[10,40)上的频率为________.16. 某赛季甲乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:30,27,9,14,33,25,21,12,36,23,乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39(1)根据两组数据完成甲乙运动员得分的茎叶图,并通过茎叶图比较两名运动员成绩的平均值及稳定程度;(不要求计算出具体数值,给出结论即可)(2)若从甲运动员的十次比赛的得分中选出2个得分,记选出的得分超过23分的个数为,求的分布列和数学期望.17. 已知函数.(1)判断在其定义域上的单调性,并用函数单调性的定义加以证明;(2)讨论函数的奇偶性,并说明理由.18. 设函数.(1)当时,求不等式的解集;(2)若的最大值为3,求的值.19. 已知函数,.(1)若,求实数a的取值范围;(2)证明:对,恒成立.20. 如图①,在等腰直角三角形中,分别是上的点,且满足.将沿折起,得到如图②所示的四棱锥.(1)设平面平面,证明:⊥平面;(2)若,求直线与平面所成角的正弦值.21. 在中,内角的对边分别为,已知 .(1)证明:;(2)若,求边上的高.。

2023年新高考全国I卷数学仿真模拟试卷(2)

2023年新高考全国I卷数学仿真模拟试卷(2)

一、单选题二、多选题1. 下列函数中为偶函数的是( )A.B.C.D.2. 设集合,,则( )A.B.C.D.3. 我们把函数图象上任一点的横坐标与纵坐标之积称为该点的“积值”.设函数图象上存在不同的三点A ,B ,C ,其横坐标从左到右依次为,,,且其纵坐标均相等,则A ,B ,C 三点“积值”之和的最大值为( )A.B.C.D.4. 中国古代数学著作《九章算术》是人类科学史上应用数学的最早巅峰.书里记载了这样一个问题“今有女子善织,日自倍,五日织五尺.问日织几何?”译文是“今有一女子很会织布,每日加倍增长,5天共织5尺,问每日各织布多少尺?”,则该女子第二天织布( )A.尺B .尺C .尺D .尺5.已知椭圆的两个焦点为、,且,弦过点,则的周长为A .10B .20C.D.6. 若双曲线的焦点与椭圆的焦点重合,则的值为( )A .2B .3C .6D .77. 在中,是的中点,已知,,,则的面积为( )A.B.C.D.8. 若点在双曲线的渐近线上,则该双曲线的离心率为( )A.B.C.D.9. 在长方体中,AB =3,,P 是线段上的一动点,则下列说法正确的是( )A .平面B .与平面所成角的正切值的最大值是C.的最小值为D .以A 为球心,5为半径的球面与侧面的交线长是10. 已知函数,,( )A .存在实数使得在单调递减B .若的图象关于点成中心对称,则的最小值为2C .若,将的图象向右平移个单位可以得到的图象D .若,的最大值为11.(多选题)已知等比数列的公比,等差数列的首项,若且,则以下结论正确的有( )A.B.C.D.12. 已知函数,函数的图象在点和点处的两条切线互相垂直,且分别交y 轴于M ,N 两点,若,则( )2023年新高考全国I卷数学仿真模拟试卷(2)2023年新高考全国I卷数学仿真模拟试卷(2)三、填空题四、解答题A.B .的取值范围是C .直线AM 与BN 的交点的横坐标恒为1D .的取值范围是13. 函数,若直线是曲线的一条对称轴,则________.14.已知,下列四个结论正确的序号是______.①函数在区间上是减函数;②点是函数图象的一个对称中心;③函数的图象可以由函数的图象向左平移个单位长度得到;④若,则的值域为.15.在等比数列中,,则的公比______.16.已知数列满足,(),且().(1)求数列的通项公式;(2)若(),求数列的前n 项和.17. 设定义在(0,+∞)上的函数f (x )=ax ++b (a >0).(1)求f (x )的最小值;(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =x ,求a ,b 的值.18. 如图,在三棱锥中,为正三角形,点,分别为,的中点,其中,.(1)证明:平面平面;(2)若点是线段上异于点的一点,直线与平面所成角的正弦值为,求的值.19. 已知直四棱柱中,底面为梯形,分别是上的点,且为上的点.(1)证明:;(2)当时,求平面与平面的夹角的正弦值.20. 已知椭圆的左、右焦点分别为,,过点作直线交椭圆于,两点(与轴不重合),,的周长分别为12和8.(1)求椭圆的方程;(2)在轴上是否存在一点,使得直线与的斜率之积为定值?若存在,请求出所有满足条件的点的坐标;若不存在,请说明理由.21. 已知椭圆C的焦点坐标为和,且椭圆经过点.(1)求椭圆C的方程;(2)若,椭圆C上四点M,N,P,Q满足,,求直线MN的斜率.。

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。

2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(一)

2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(一)

一、单选题1. 已知双曲线C:(a >0,b >0)的右焦点为F ,点A ,B 分别为双曲线的左,右顶点,以AB 为直径的圆与双曲线C 的两条渐近线在第一,二象限分别交于P ,Q 两点,若OQ ∥PF (O 为坐标原点),则该双曲线的离心率为( )A.B .2C.D.2. 已知、是双曲线的左、右焦点,关于其渐近线的对称点为,并使得(为坐标原点),则双曲线的离心率( )A.B.C.D.3. 在计算机尚未普及的年代,人们在计算三角函数时常常需要查表得到正弦和余弦值,三角函数表的制作最早可追溯到古希腊数学家托勒密.下面给出了正弦表的一部分,例如,通过查表可知的正弦值为0.0384,的正弦值为0.5135,等等,则根据该表,的余弦值为()0.000001750349001701920366003502090384005202270401007002440419008702620436010502790454012202970471014003140488015703320506017503490523……0.5000515052995446559250155165531454615606503051805329547656215045519553445490563550605210535855055650507552255373551956645090524053885534567851055255540255485693512052705417556357075135528454325577572151505299544655925736……A .0.5461B .0.5519C .0.5505D .0.57364. 在复平面内,复数和对应的点分别为,则()A.B.C.D.5.已知函数,关于函数有下列四个命题:①;②的图象关于点对称;③是周期为的奇函数;④的图象关于直线对称.其中正确的是( )A .①④B .②③C .①③D .②④6.已知复数,若,则的虚部为( )A .2B .1C.D .-17. 已知菱形沿对角线向上折起,得到三棱锥分别是棱的中点.设三棱锥的外接球为球2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(一)2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(一)二、多选题三、填空题,则下列结论正确的个数为()①;②上存在点,使得平面;③当二面角为时,球的表面积为.④三棱锥的体积最大值为1.A .1B .2C .3D .48. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了A .6里B .12里C .24里D .96里9.已知是函数(且)的三个零点,则的可能取值有( )A .0B .1C .2D .310. 设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.:过空间中任意三点有且仅有一个平面.:若空间两条直线不相交,则这两条直线平行.:若直线平面,直线平面,则.则下述命题中是真命题的有( )A.B.C.D.11.若,且,,则( )A.B.C.D.12. 已知直线交抛物线于两点,且抛物线的焦点为,则( )A.的最小值为B .若,则C.可能是直角D .为定值13.已知正四面体的棱长为2,若球O 与正四面体的每一条棱都相切,点P 为球面上的动点,且点P 在正四面体面ACD 的外部(含正四面体面ACD表面)运动,则的取值范围为______.14. 若函数的反函数为,则不等式的解集为______.15. 有一批同规格的产品,由甲、乙、丙三家工厂生产,其中甲、乙、丙工厂分别生产3000件、3000件、4000件,而且甲、乙、丙工厂的次品率依次为6%、5%、5%,现从这批产品中任取一件,则四、解答题(1)取到次品的概率为____________;(2)若取到的是次品,则其来自甲厂的概率为____________.16. 筒车(chinese noria )亦称“水转筒车”.一种以水流作动力,取水灌田的工具.据史料记载,筒车发明于隋而盛于唐,距今已有1000多年的历史.这种靠水力自动的古老筒车,在家乡郁郁葱葱的山间、溪流间构成了一幅幅远古的田园春色图.水转筒车是利用水力转动的筒车,必须架设在水流湍急的岸边.水激轮转,浸在水中的小筒装满了水带到高处,筒口向下,水即自筒中倾泻入轮旁的水槽而汇流入田.某乡间有一筒车,其最高点到水面的距离为,筒车直径为,设置有8个盛水筒,均匀分布在筒车转轮上,筒车上的每一个盛水筒都做逆时针匀速圆周运动,筒车转一周需要,如图,盛水筒A (视为质点)的初始位置距水面的距离为.(1)盛水筒A经过后距离水面的高度为h (单位:m ),求筒车转动一周的过程中,h 关于t 的函数的解析式;(2)盛水筒B (视为质点)与盛水筒A 相邻,设盛水筒B 在盛水筒A 的顺时针方向相邻处,求盛水筒B 与盛水筒A 的高度差的最大值(结果用含的代数式表示),及此时对应的t .(参考公式:,)17.已知数列满足,且.(1)证明:为等比数列,并求的通项公式;(2)求的前n 项和.18. 已知圆,点圆上一动点,,点在直线上,且,记点的轨迹为曲线.(1)求曲线的方程;(2)已知,过点作直线(不与轴重合)与曲线交于不同两点,线段的中垂线为,线段的中点为点,记与轴的交点为,求的取值范围.19. 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.假设两人射击是否击中目标,互不影响;每次射击是否击中目标,互不影响.(1)记甲击中目标的次数为X ,求X 的分布列;(2)在①甲恰好比乙多击中目标2次,②乙击中目标的次数不超过2次,③甲击中目标3次且乙击中目标2次这三个条件中任取一个,补充在横线中,并解答问题.求___________事件的概率.(注:如果选择多个条件分别解答,按第一个解答计分)20. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知,∠B =45°.(1)求边BC 的长以及三角形ABC 的面积;(2)在边BC 上取一点D,使得,求tan ∠DAC 的值.21.设数列的前项和为,且满足,.(1)求(用表示);(2)求证:当时,不等式成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d (n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为m d 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.【高频考点突破】考点一等差数列的性质及基本量的求解【例1】 (1)设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=()A.-6 B.-4 C.-2 D.2【答案】A(2)(·浙江卷)已知等差数列{an}的公差d>0.设{an}的前n项和为Sn,a1=1,S2·S3=36.①求d及Sn;②求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.规律方法(1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】(1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A.0 B.37 C.100 D.-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________.【答案】(1)C(2)A(3)60考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an-an-1=d(n≥2,d为常数);二是等差中项法,证明2an+1=an+an+2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=Snn+c,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.考点三等差数列前n项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n项和为Sn,且S5=S12,则当n为何值时,Sn有最大值?规律方法求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n项和Sn=A n2+Bn(A,B为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】(1)等差数列{an}的前n项和为Sn,已知a5+a7=4,a6+a8=-2,则当Sn取最大值时,n的值是()A.5 B.6 C.7 D.8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________.【答案】(1)B(2)C(3)110 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【答案】B【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【答案】5【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【答案】9【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.【答案】2,13-1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.【答案】12.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.【答案】83.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .14 【答案】C4.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则() A.d<0 B.d>0 C.a1d<0 D.a1d>0【答案】C7.(·全国卷)等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(1)证明:an+2-an=λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.10.(·陕西卷)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,求cos B的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.【答案】-1212.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π【答案】A14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.6【答案】C15.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.【答案】2016.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{a n}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1. (1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.【答案】-4921.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【答案】64【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d =()A.12 B .2 C .3D .4【答案】B2.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=() A .2B .-2C.12D .-12【答案】D3.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .52【答案】D4.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .12【答案】A5.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或9【答案】C6.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.116【答案】A7.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8 B .Sn 的最小值是S8 C .Sn 的最大值是S7D .Sn 的最小值是S7【答案】D8.在等差数列{an}中,a15=33,a25=66,则a35=________.【答案】999.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________.【答案】-110.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________.【答案】4511.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且Sk =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档