全国卷数学高考模拟试题精编二
2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题 (含答案)

2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,0,1,2},B={y|y=-x-1},则A∩B=()A.{1,2} B.{-2,0}C.{-2,0,1} D.{-2}2.已知a+5i=-2+b i(a,b∈R),则复数z=a+b i5+2i=()A.1 B.-iC.i D.-2+5i3.函数f(x)=sin xln(x2+1)的大致图象是()4.已知(a+2x)7的展开式中的常数项为-1,则x2的系数为()A.560 B.-560C.280 D.-2805.已知抛物线C:y2=12x的焦点为F,经过点P(2,1)的直线l与抛物线C交于A,B两点,且点P恰为AB的中点,则|AF|+|BF|=()A.6 B.8C.9 D.106.已知等比数列{a n}的前n项和为S n,若a1=a2+2a3,S2是S1与mS3的等比中项,则m=()A.1 B.9 761则实数a的最小值为()A.1-1e B.2-1eC.1-e D.2-e8.过点M(a,0)作双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线的平行线,交双曲线的另一条渐近线于点N,O为坐标原点,若锐角三角形OMN的面积为212(a2+b2),则该双曲线的离心率为()A.3 B.3或6 2C.62D. 3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某家庭2019年的总支出是2018年的总支出的1.5倍,下图分别给出了该家庭2018年、2019年的各项支出占该家庭这一年总支出的比例情况,则下列结论中正确的是()①日常生活②房贷还款③旅游④教育⑤保险⑥其他①日常生活②房贷还款③旅游④教育⑤保险⑥其他A.2019年日常生活支出减少B.2019年保险支出比2018年保险支出增加了一倍以上C.2019年其他支出比2018年其他支出增加了两倍以上D.2018年和2019年,每年的日常生活支出和房贷还款支出的和均占该年总支出的一半以上10.直线2x-y+m=0与圆(x-1)2+(y-2)2=1相交的必要不充分条件是()2C.m2+m-12<0 D.3m>111.在三棱锥D-ABC中,AB=BC=CD=DA=1,且AB⊥BC,CD⊥DA,M,N分别是棱BC,CD的中点,则下列结论正确的是()A.AC⊥BDB.MN∥平面ABDC.三棱锥A-CMN的体积的最大值为2 12D.AD与BC一定不垂直12.已知函数f(x)=2x2-a|x|,则下列结论中正确的是()A.函数f(x)的图象关于原点对称B.当a=-1时,函数f(x)的值域为[4,+∞)C.若方程f(x)=14没有实数根,则a<-1D.若函数f(x)在(0,+∞)上单调递增,则a≥0题号123456789101112答案三、填空题:本题共4小题,每小题5分,共20分.13.(一题多解)已知平面单位向量i,j互相垂直,且平面向量a=-2i+j,b=m i-3j,c=4i+m j,若(2a+b)∥c,则实数m=________.14.有一匀速转动的圆盘,其中有一个固定的小目标M,甲、乙两人站在距离圆盘外的2米处,将小圆环向圆盘中心抛掷,他们抛掷的圆环能套上小目标M的概率分别为14与15,现甲、乙两人分别用小圆环向圆盘中心各抛掷一次,则小目标M被套上的概率为________.15.如图,圆锥的高为3,表面积为3π,D为PB的中点,AB是圆锥底面圆的直径,O为AB16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a =30,c =20,若b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,则sin(2C -B )=________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知D 是△ABC 的边AC 上的一点,△ABD 的面积是△BCD 的面积的3倍,∠ABD =2∠CBD =2θ.(1)若∠ABC =π2,求sin Asin C 的值; (2)若BC =2,AB =3,求AC 的长.18.(本小题满分12分)给出以下三个条件:(1)S n +1=4S n +2;(2)3S n =22n +1+λ(λ∈R );(3)3S n =a n +1-2.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a 1=2,且满足________,记b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .19.(本小题满分12分)如图,已知在斜平行六面体ABCD -A 1B 1C 1D 1中,AB 1⊥A 1D 1,A 1B =AB =BB 1=4,AD =2,A 1C =2 5.(1)(一题多解)求证:平面ABB 1A 1⊥平面A 1BC ; (2)求二面角A -CA 1B 的余弦值.20.(本小题满分12分)2019年12月9日,记者走进浙江缙云北山村,调研“中国淘宝村”的真实模样,作为最早追赶电商大潮的中国村庄,地处浙中南偏远山区的北山村,是电商改变乡村、改变农民命运的生动印刻.互联网的通达,让这个曾经的空心村在高峰时期生长出400多家网店,网罗住500多位村民,销售额达两亿元.一网店经销缙云土面,在一个月内,每售出1 t 缙云土面可获利800元,未售出的缙云土面,每1 t 亏损500元.根据以往的销售统计,得到一个月内五地市场对缙云土面的需求量的频率分布直方图,如图所示.该网店为下一个月购进了100 t 缙云土面,用x (单位:t ,70≤x ≤120)表示下一个月五地市场对缙云土面的需求量,y (单位:元)表示下一个月该网店经销缙云土面的利润.(1)将y 表示为x 的函数;(2)根据直方图估计利润y 不少于67 000元的概率;(3)在直方图的需求量分组中,同一组中的数据用该组区间的中点值为代表,将需求量落入该区间的频率作为需求量取该区间中点值时的概率(例如:若需求量x ∈[80,90),则取x =85,且x =85的概率等于需求量落入[80,90)的频率),求该网店下一个月利润y 的分布列和期望.21.(本小题满分12分)已知椭圆G :x 2a 2+y 2b 2=1(a >b >0),椭圆短轴的端点B 1,B 2与椭圆的左、右焦点F 1,F 2构成边长为2的菱形,MN 是经过椭圆右焦点F 2(1,0)的椭圆的一条弦,点P 是椭圆上一点,且OP ⊥MN (O 为坐标原点).(1)求椭圆G 的标准方程; (2)求|MN |·|OP |2的最小值.22.(本小题满分12分)已知函数f(x)=12x2ln x,函数f(x)的导函数为f′(x),h(x)=f′(x)-12x-mx2(m∈R).(1)求函数f(x)的单调区间;(2)若函数h(x)存在单调递增区间,求m的取值范围;(3)若函数h′(x)存在两个不同的零点x1,x2,且x1<x2,求证:e x1x22>1.2022普通高等学校招生全国统一考试(新高考地区)仿真模拟训练(二)数学试题参考答案1.解析:选B.因为y =-x -1≤0,所以B ={y |y ≤0}.因为A ={-2,0,1,2},所以A ∩B ={-2,0}.故选B.2.解析:选C.由a +5i =-2+b i(a ,b ∈R )及复数相等的定义可得⎩⎨⎧a =-2,b = 5.所以z =a +b i5+2i =-2+5i 5+2i =(-2+5i )(5-2i )(5+2i )(5-2i )=9i9=i ,故选C. 3.解析:选 B.由题意知函数f (x )的定义域为{x |x ≠0}.因为f (-x )=sin (-x )ln[(-x )2+1]=-sin xln (x 2+1)=-f (x ),所以f (x )是奇函数,其图象关于原点对称,所以C 不正确;又f (k π)=0(k ∈Z ,k ≠0),所以A 不正确;当x ∈(0,π)时,f (x )>0,故D 不正确.故选B.4.解析:选B.由题意可知(a +2x )7的展开式的通项公式为T r +1=C r 7⎝⎛⎭⎪⎫2x 12r a 7-r=C r 72r a 7-rx r 2.因为展开式中的常数项为-1,所以令r =0,得C 0720a 7=-1,所以a =-1.令r =4,得x 2的系数为C 47×24×(-1)7-4=-560.5.解析:选D.分别过点A ,B ,P 向抛物线的准线x =-3作垂线,设垂足分别为A 1,B 1,P 1.由抛物线的定义及梯形的中位线定理,得|P 1P |=12(|A 1A |+|B 1B |)=12(|AF |+|BF |)=2-(-3)=5,所以|AF |+|BF |=10,故选D.6.解析:选B.设数列{a n }的公比为q ,则由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,易知a 1≠0,所以2q 2+q -1=0,解得q =-1或q =12.当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾;当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1·mS 3,即94a 21=m ·74a 21,所以m =97.故选B.7.解析:选C.f (x )=x ln x ,则f ′(x )=ln x +1.对任意的x ∈[1,+∞),f ′(x )≤a +e x 恒成立,即a ≥ln x +1-e x 对任意的x ∈[1,+∞)恒成立.设g (x )=ln x +1-e x (x ≥1),则g ′(x )=1x -e x <0,因而g (x )在[1,+∞)上单调递减,g (x )≤ln 1+1-e =1-e ,所以实数a 的最小值为1-e.8.解析:选D.不妨设点N 在第一象限,如图,由题意知∠1=∠2=∠3,所以△OMN 是以∠ONM 为顶角的等腰三角形.因为△OMN 是锐角三角形,所以∠1>45°,即有b a >1,进而e 2=1+b 2a 2>2.由y =b a x 与y =-b a (x -a ),得y N =b 2,所以12×a ×b 2=212(a 2+b 2),即9a 2(c 2-a 2)=2c 4,所以2e 4-9e 2+9=0,得e 2=32(舍)或e 2=3,所以e = 3.9.解析:选BD.设2018年的总支出为x ,则2019年的总支出为1.5x ,2018年日常生活支出为0.35x ,2019年日常生活支出为0.34×1.5x =0.51x ,故2019年日常生活支出增加,A 错误;2018年保险支出为0.05x ,2019年保险支出为0.07×1.5x =0.105x ,B 正确;2018年其他支出为0.05x ,2019年其他支出为0.09×1.5x =0.135x ,(0.135x -0.05x )÷0.05x =1.7,故C 错误;由题图可知,D 正确.10.解析:选BC.若直线2x -y +m =0与圆(x -1)2+(y -2)2=1相交,则|2×1-2+m |22+(-1)2<1,解5<m < 5.A 项中,由m 2≤1,得-1≤m ≤1,因为{m |-1≤m ≤1}⊆{m |-5<m <5},所以m 2≤1不是-5<m <5的必要不充分条件;B 项中,因为{m |m ≥-3}⊇{m |-5<m <5},所以m ≥-3是-5<m <5的必要不充分条件;C 项中,由m 2+m -12<0,得-4<m <3,因为{m |-4<m <3}⊇{m |-5<m <5},所以m 2+m -12<0是-5<m <5的必要不充分条件;D 项中,由3m >1,得0<m <3,所以3m >1不是-5<m <5的必要不充分条件.11.解析:选ABD.设AC 的中点为O ,连接OB ,OD ,则AC ⊥OB ,AC ⊥OD ,又OB ∩OD =O ,所以AC ⊥平面OBD ,所以AC ⊥BD ,故A 正确;因为M ,N 分别是棱BC ,CD 的中点,所以MN ∥BD ,且MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故B 正确;当平面DAC 与平面ABC 垂直时,V A -CMN 最大,最大值V A -CMN =V N -ACM =13×14×24=248,故C 错误;若AD 与BC 垂直,因为AB ⊥BC ,AD ∩AB =A ,所以BC ⊥平面ABD ,所以BC ⊥BD ,又BD ⊥AC ,BC ∩AC =C ,所以BD ⊥平面ABC ,所以BD ⊥OB ,因为OB =OD ,所以显然BD 与OB 不可能垂直,故D 正确.12.解析:选BD.由题意知,函数f (x )的定义域为{x |x ≠0},且f (-x )=2(-x )2-a|-x |=f (x ),因此函数f (x )是偶函数,其图象不关于原点对称,故A 选项错误;当a =-1时,f (x )=2x 2+1|x |,而x 2+1=|x |+1|x |≥2,所以f (x )=2x 2+1|x |≥4,即函数f (x )的值域为[4,+∞),B 选项正确;由f (x )=14,得x 2-a |x |=-2,得x 2+2|x |-a =0.要使原方程没有实数根,应使方程x 2+2|x |-a =0没有实数根.令|x |=t (t >0),则方程t 2+2t -a =0应没有正实数根,于是需Δ<0或⎩⎨⎧Δ≥0,-2≤0,-a ≥0,即4+4a <0或⎩⎨⎧4+4a ≥0,-2≤0,-a ≥0,解得a <-1或-1≤a ≤0,综上,a ≤0,故C 选项错误;要使函数f (x )在(0,+∞)上单调递增,需g (x )=x 2-a |x |在(0,+∞)上单调递增,需φ(x )=x 2-a x =x -a x 在(0,+∞)上单调递增,需φ′(x )=1+ax 2≥0在(0,+∞)上恒成立,得a ≥0,故D 选项正确.13.解析:方法一:因为a =-2i +j ,b =m i -3j ,所以2a +b =(m -4)i -j .因为(2a +b )∥c ,所以(2a +b )=λc ,所以(m -4)i -j =4λi +mλj ,所以⎩⎨⎧m -4=4λ,-1=mλ,所以m =2.方法二:不妨令i =(1,0),j =(0,1),则a =(-2,1),b =(m ,-3),c =(4,m ),所以2a +b =(m -4,-1).因为(2a +b )∥c ,所以m (m -4)=-4,所以m =2.答案:214.解析:小目标M 被套上包括甲抛掷的套上了、乙抛掷的没有套上;乙抛掷的套上了、甲抛掷的没有套上;甲、乙抛掷的都套上了.所以小目标M 被套上的概率P =14×⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫1-14×15+14×15=25.答案:25 15.解析:如图,连接OD ,OC ,BC ,OP ,设圆锥的底面半径为r ,由题意得,πr 2+12×2πr ×3+r 2=3π,得r =1,则OC =1,PA =2.因为点O ,D 分别为AB ,PB 的中点,所以OD ∥PA ,且OD =12PA =1,所以∠ODC 为异面直线PA 与CD 所成的角(或其补角).过点D 作DH ⊥AB ,垂足为H ,连接HC ,易得DH ⊥HC ,DH =12PO =32.由弧AC 与弧BC 的长度之比为2∶1,得△OCB 为等边三角ODC =1+⎝ ⎛⎭⎪⎫622-12×1×62=64,所以异面直线PA 与CD 所成角的正弦值为1-⎝ ⎛⎭⎪⎫642=104.答案:10416.解析:在△ABC 中,由正弦定理c sin C =b sin B ,得b sin C =c sin B .又b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,所以c sin B =c cos ⎝ ⎛⎭⎪⎫B -π6,所以sin B =cos ⎝⎛⎭⎪⎫B -π6,所以tan B = 3.又0<B <π,所以B =π3.在△ABC 中,由余弦定理得b 2=202+302-2×20×30×cos π3=700,所以b =107,由b ·sin C =20cos ⎝ ⎛⎭⎪⎫B -π6,得sin C =217.因为a >c ,所以cos C =277,所以sin(2C -B )=sin 2C cos B -cos 2C sinB =2sinC cos C cos π3-(cos 2C -sin 2C )sin π3=2×217×277×12-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2772-⎝ ⎛⎭⎪⎫2172×32=3314. 答案:331417.解:(1)因为∠ABC =π2,∠ABD =2∠CBD =2θ,所以θ=π6. 所以12AB ·BD sin π3=3×12BC ·BD sin π6, 所以BC AB =sin A sin C =33.(2)因为12AB ·BD sin 2θ=3×12BC ·BD sin θ, 即2AB cos θ=3BC ,所以cos θ=22,所以θ=π4,∠ABC =3θ=3π4,AC 2=9+2-2×3×2×⎝ ⎛⎭⎪⎫-22=17,所以AC =17.18.解:方案一:选(1),已知S n +1=4S n +2 ①, 当n ≥2时,S n =4S n -1+2 ②,①-②得,a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n , 当n =1时,S 2=4S 1+2,即2+a 2=4×2+2, 所以a 2=8,满足a 2=4a 1,故{a n }是以2为首项、4为公比的等比数列,所以a n =22n -1.c n =n 2+n b n b n +1=n (n +1)n 2(n +1)2=1n (n +1)=1n -1n +1,所以T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.方案二:选(2),已知3S n =22n +1+λ ③, 当n ≥2时,3S n -1=22n -1+λ ④, ③-④得,3a n =22n +1-22n -1=3·22n -1, 即a n =22n -1,当n =1时,a 1=2满足a n =22n -1, 下同方案一.方案三:选(3),已知3S n =a n +1-2 ⑤, 当n ≥2时,3S n -1=a n -2 ⑥,⑤-⑥得,3a n =a n +1-a n ,即a n +1=4a n ,当n =1时,3a 1=a 2-a 1,而a 1=2,得a 2=8,满足a 2=4a 1, 故{a n }是以2为首项、4为公比的等比数列, 所以a n =22n -1.下同方案一.19.解:(1)证明:方法一:由题意知BC ∥A 1D 1, 因为AB 1⊥A 1D 1,所以AB 1⊥BC .在△A 1BC 中,A 1B =4,BC =AD =2,A 1C =25, 所以A 1B 2+BC 2=A 1C 2,所以BC ⊥A 1B .又A 1B ,AB 1是平行四边形ABB 1A 1的两条对角线, 所以BC ⊥平面ABB 1A 1.因为BC ⊂平面A 1BC ,所以平面A 1BC ⊥平面ABB 1A 1. 方法二:由题意知BC ∥A 1D 1, 因为AB 1⊥A 1D 1,所以AB 1⊥BC . 在平行四边形ABB 1A 1中,BB 1=AB , 所以四边形ABB 1A 1为菱形, 所以AB 1⊥A 1B .因为A 1B ∩BC =B ,A 1B ,BC ⊂平面A 1BC ,所以AB 1⊥平面A 1BC , 因为AB 1⊂平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC . (2)由(1)知BC ⊥平面ABB 1A 1,因为BC ⊂平面ABCD ,所以平面ABCD ⊥平面ABB 1A 1,所以平面ABCD ⊥平面CDD 1C 1.在斜平行六面体ABCD -A 1B 1C 1D 1中,由AB =BB 1=4得四边形ABB 1A 1为菱形, 所以四边形CDD 1C 1为菱形.连接BD ,设AC ,BD 交于点E ,取DC 的中点O ,连接D 1O ,OE ,易证得D 1O ⊥平面ABCD ,故以OE ,OC ,OD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系O -xyz ,则C (0,2,0),B (2,2,0),A (2,-2,0),A 1(2,0,23),所以A 1C →=(-2,2,-23),AC →=(-2,4,0),BC →=(-2,0,0). 设平面AA 1C 的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n ·A 1C →=0,n ·AC →=0,即⎩⎨⎧-2x 1+2y 1-23z 1=0,-2x 1+4y 1=0,令x 1=2,得y 1=1,z 1=-33,所以平面AA 1C 的一个法向量为m =⎝ ⎛⎭⎪⎫2,1,-33.设平面BA 1C 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·A 1C →=0,n ·BC →=0,即⎩⎨⎧-2x 2+2y 2-23z 2=0,-2x 2=0,令z 2=1,得y 2=3,所以平面BA 1C 的一个法向量为n =(0,3,1). cos 〈m ,n 〉=m ·n |m ||n |=3-3322+12+⎝ ⎛⎭⎪⎫-332×02+(3)2+12=14.由图可知二面角A -CA 1B 为锐二面角,故二面角A -CA 1B 的余弦值为14. 20.解:(1)依题意知,当x ∈[70,100)时, y =800x -500(100-x )=1 300x -50 000; 当x ∈[100,120]时,y =800×100=80 000.所以y =⎩⎨⎧1 300x -50 000,70≤x <100,80 000,100≤x ≤120.(2)由1 300x -50 000≥67 000,得x ≥90,所以90≤x ≤120.由直方图知需求量x ∈[90,120]的频率为(0.030+0.025+0.015)×10=0.7, 所以利润y 不少于67 000元的概率为0.7. (3)依题意可得该网店下一个月利润y 的分布列为所以利润y 的期望E (y )×0.4=70 900. 21.解:(1)因为椭圆短轴的端点B 1,B 2与左、右焦点F 1,F 2构成边长为2的菱形,所以a =2, 又椭圆的右焦点F 2(1,0),所以c =1, 所以b 2=a 2-c 2=3,所以椭圆G 的标准方程为x 24+y 23=1.(2)①当MN ⊥x 轴时,|MN |=2b 2a =3,|OP |=a =2, 此时|MN |·|OP |2=12.②当MN 不垂直于x 轴且斜率不为0时,可设直线MN 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2),将直线MN 的方程与椭圆G 的方程联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),化简并整理得(4k 2+3)x 2-8k 2x +4k 2-12=0, 所以x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=1+k2(x 1+x 2)2-4x 1x 2=12(1+k 2)4k 2+3.因为OP ⊥MN ,所以直线OP 的方程为y =-1k x , 将直线OP 的方程与椭圆G 的方程联立, 得⎩⎪⎨⎪⎧x 24+y 23=1,y =-1k x ,得x 2P =12k 23k 2+4,y 2P=123k 2+4,所以|OP |2=x 2P +y 2P =12(1+k 2)3k 2+4,所以|MN |·|OP |2=12(1+k 2)4k 2+3×12(1+k 2)3k 2+4=144(1+k 2)2(4k 2+3)(3k 2+4)=144⎝ ⎛⎭⎪⎫11+k 2+3⎝ ⎛⎭⎪⎫4-11+k 2. 令11+k 2=t ,因为k ∈R 且k ≠0,所以0<t <1, |MN |·|OP |2=144(t +3)(4-t )=144-t 2+t +12=144-⎝ ⎛⎭⎪⎫t -122+494, 所以当t =12时,|MN |·|OP |2取得最小值,且(|MN |·|OP |2)min =57649. ③当MN 的斜率为0时,|MN |=4,此时|OP |2=b 2=3, 所以|MN |·|OP |2=12.由①②③可知,(|MN |·|OP |2)min =57649. 22.解:(1)易知函数f (x )=12x 2ln x 的定义域为(0,+∞). f ′(x )=x ln x +12x .令f ′(x )>0,得x >e -12,令f ′(x )<0,得0<x <e -12,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫e -12,+∞,单调递减区间为⎝ ⎛⎭⎪⎫0,e -12.(2)依题意得,h (x )=x ln x -mx 2,若函数h (x )存在单调递增区间,则h ′(x )=ln x +1-2mx >0在(0,+∞)上有解,即存在x >0,使2m <ln x +1x .令φ(x )=ln x +1x ,则φ′(x )=-ln xx 2,当x >1时,φ′(x )<0,当0<x <1时,φ′(x )>0, 所以φ(x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减, 所以φ(x )max =φ(1)=1,所以2m <1,所以m <12. 故m 的取值范围为⎝ ⎛⎭⎪⎫-∞,12.(3)证明:因为函数h ′(x )存在两个不同的零点x 1,x 2,且x 1<x 2,所以h ′(x )=ln x +1-2mx =0有两个不相等的实数根x 1,x 2,且0<x 1<x 2, 所以ln x 1+1-2mx 1=0,ln x 2+1-2mx 2=0,所以ln x 1+2ln x 2=2m (x 1+2x 2)-3,ln x 1-ln x 2=2m (x 1-x 2),所以ln x 1+2ln x 2=ln x 1-ln x 2x 1-x 2(x 1+2x 2)-3.要证e x 1x 22>1,只需证ln x 1+2ln x 2>-1,即证ln x 1-ln x 2x 1-x 2(x 1+2x 2)>2(0<x 1<x 2),即证ln x 1x 2<2(x 1-x 2)x 1+2x 2,即证ln x 1x 2<2⎝ ⎛⎭⎪⎫x 1x 2-1x 1x 2+2,令t =x 1x 2,因为0<x 1<x 2,所以0<t <1,即证ln t <2(t -1)t +2在(0,1)上恒成立.令g (t )=ln t -2(t -1)t +2(t ∈(0,1)),则g ′(t )=1t -6(t +2)2=(t -1)2+3t (t +2)2>0在(0,1)上恒成立.所以g (t )=ln t -2(t -1)t +2在(0,1)上单调递增,所以g (t )<g (1)=0-0=0,所以ln t <2(t -1)t +2在(0,1)上恒成立.故e x 1x 22>1得证.。
2023年全国新高考仿真模拟卷(二)数学试题(高频考点版)

一、单选题二、多选题三、填空题1. 已知函数及其导数满足,则的图象在点处的切线斜率为( )A .4B.C .12D.2. 已知函数在定义域内单调递增,则实数的取值范围为( )A.B.C.D.3. 设为虚数单位,且,则( )A.B.C.D.4.在等差数列中,,,那么等于( )A .44B .40C .20D.5. 如图,在正方体ABCD -A 1B 1C 1D 1中,点M 为棱BC 的中点,用平行于体对角线BD 1且过点A ,M 的平面去截正方体ABCD -A 1B 1C 1D 1,得到的截面的形状是()A .平行四边形B .梯形C .五边形D .以上都不对6.方程所有根之和为( )A.B.C.D.7. 下列说法正确的是( ).A .用简单随机抽样的方法从含有60个个体的总体中抽取一个容量为6的样本,则个体m 被抽到的概率是0.1B .已知一组数据1,2,3,4,4,5的众数大于中位数C .数据27,12,14,30,15,17,19,29的第70百分位数是23D .甲乙丙三种个体按的比例分层抽样,如果抽取的甲个体数为9,则样本容量为188. 某市实行居民阶梯电价收费政策后有效促进了节能减排.现从某小区随机调查了200户家庭十月份的用电量(单位:kW·h ),将数据进行适当分组后(每组为左闭右开的区间),画出如图所示的频率分布直方图,则()A .图中a 的值为0.015B .样本的第25百分位数约为217C .样本平均数约为198.4D .在被调查的用户中,用电量落在内的户数为1082023年全国新高考仿真模拟卷(二)数学试题(高频考点版)2023年全国新高考仿真模拟卷(二)数学试题(高频考点版)四、解答题9. ______.10. 已知椭圆:的左焦点为,过作一条倾斜角为的直线与椭圆交于,两点,若为线段的中点,则椭圆的离心率是___________.11. 已知非零向量满足x 2+x +=0,x ∈R .记△=2-4,下列说法正确的是___.(只填序号)①若△=0,则x 有唯一解;②若△>0,则x 有两解;③若△<0,则x 无解.12.已知函数及其导函数的定义域均为R ,若,,且当时单调递减,则的解集为______.13. 为了助力北京2022年冬奥会、冬残奥会,某校组织全校学生参与了奥运会项目知识竞赛.为了解学生的竞赛成绩(竞赛成绩都在区间内)的情况,随机抽取n 名学生的成绩,并将这些成绩按照,,,,分成5组,制成了如图所示的频率分布直方图.其中,,三组的频率成等比数列,且成绩在的有16人.(1)求n 的值;(2)在这n 名学生中,将成绩在的学生定义为“冬奥达人”,成绩在的学生定义为“非冬奥达人”.请将下面的列联表补充完整:男生女生合计冬奥达人30非冬奥达人36合计并判断是否有99%的把握认为“是否是冬奥达人与性别有关”?并说明你的理由;(3)用样本估计总体,将频率视为概率,从该校学生中随机抽取2人,记被抽取的2人中“冬奥达人”的人数为X ,若每次抽取的结果是相互独立的,求X 的数学期望.参考公式:,其中.临界值表:0.0500.0250.0100.0013.841 5.024 6.63510.82814. 已知函数.(1)求曲线在点处的切线方程;(2)若函数在上单调递减,求实数的取值范围.15. (1)已知,试比较与的大小;(2)求证:对任意,均有.16. 已知函数.(1)求的最小正周期及单调递减区间;(2)在中,,,分别是角,,的对边,若,,的面积为,求的值.。
课标全国卷数学高考模拟试题精编(二)

课标全国卷数学高考模拟试题精编二【说明】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A={1,4,2x},B={1,x2},若B⊆A,则x=()A.0 B.-2C.0或-2 D.0或±22.命题“若x>1,则x>0”的否命题是()A.若x>1,则x≤0 B.若x≤1,则x>0C.若x≤1,则x≤0 D.若x<1,则x<03.若复数z=2-i,则z+10z=()A.2-i B.2+i C.4+2i D.6+3i4.(理)已知双曲线x2a2-y2b2=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为()A.5x2-45y2=1 B.x25-y24=1C.y25-x24=1 D.5x2-54y2=1(文)已知双曲线y2a2-x2b2=1(a>0,b>0)的离心率为3,则双曲线的渐近线方程为()A.y=±22x B.y=±2xC .y =±2xD .y =±12x5.设函数f (x )=sin x +cos x ,把f (x )的图象按向量a =(m,0)(m >0)平移后的图象恰好为函数y =-f ′(x )的图象,则m 的最小值为( ) A.π4 B.π3 C.π2 D.2π36.(理)已知⎝ ⎛⎭⎪⎫x 2+1x n的展开式的各项系数和为32,则展开式中x 4的系数为( )A .5B .40C .20D .10(文)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为( ) A .7 B .9 C .10 D .157.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是( ) A .5 B .6 C .7 D .88.点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( )A.125π6 B .8π C.25π4 D.25π169.(理)已知实数a ,b ,c ,d 成等比数列,且函数y =ln(x +2)-x 当x =b 时取到极大值c ,则ad 等于( ) A .1 B .0 C .-1 D .2(文)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( ) A .2 B .-1 C .1 D .-210.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34 B.32 C .1 D .211.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π有零点的概率为( ) A.78 B.34 C.12 D.1412.(理)设函数f (x )=x -1x ,对任意x ∈[1,+∞),f (2mx )+2mf (x )<0恒成立,则实数m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,-12 B.⎝ ⎛⎭⎪⎫-12,0 C.⎝ ⎛⎭⎪⎫-12,12 D.⎝ ⎛⎭⎪⎫0,12 (文)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞) 答题栏二、填空题(本大题共4小题,每小题5分,共20分.将答案填写在题中的横线上)13.一个几何体的三视图如图所示,则该几何体的体积为________.14.若x ,y 满足条件⎩⎨⎧3x -5y +6≥02x +3y -15≤0,y ≥0当且仅当x =y =3时,z =ax -y 取得最小值,则实数a 的取值范围是________.15.已知函数f (x )满足:当x ≥4时,f (x )=⎝ ⎛⎭⎪⎫12x ;当x <4时f (x )=f (x +1),则f (2+log 23)=________.16.(理)已知a n =∫n0(2x +1)d x ,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,数列{b n }的通项公式为b n =n -8,则b n S n 的最小值为________.(文)在△ABC 中,2sin 2A 2=3sin A ,sin (B -C)=2cos B sin C ,则ACAB =________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程及演算步骤)17.(本小题满分12分)已知函数f(x)=x 2-2(n +1)x +n 2+5n -7.(Ⅰ)设函数y =f(x)的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列;(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{b n},求{b n}的前n项和S n.18.(理)(本小题满分12分)某高校组织自主招生考试,共有2 000名优秀同学参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成8组:第1组[195,205),第2组[205,215),…,第8组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.(1)估计所有参加笔试的2 000名同学中,参加面试的同学人数;(2)面试时,每位同学抽取三个问题,若三个问题全答错,则不能取得该校的自主招生资格;若三个问题均回答正确且笔试成绩在270分以上,则获A类资格;其他情况下获B类资格.现已知某中学有3人获得面试资格,且仅有1人笔试成绩在270分以上,在回答三个面试问题时,3人对每一个问题正确回答的概率均为1 2,用随机变量X表示该中学获得B类资格的人数,求X的分布列及期望EX. (文)(本小题满分12分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区某年全年每天的PM2.5日均值监测数据中随机地抽取12天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)求空气质量为超标的数据的平均数与方差;(2)从空气质量为二级的数据中任取两个,求这两个数据的和小于100的概率;(3)以这12天的PM2.5日均值来估计该年的空气质量情况,估计该年(366天)大约有多少天的空气质量达到一级或二级.19.(理)(本题满分12分)如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.(文)(本小题满分12分)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1的中点.(1)求证:AB1⊥平面A1BD;(2)设点O 为AB 1上的动点,当OD ∥平面ABC 时,求AOOB 1的值.20.(本小题满分12分)如图,已知椭圆C :x 24+y 23=1,直线l 的方程为x =4,过右焦点F 的直线l ′与椭圆交于异于左顶点A 的P ,Q 两点,直线AP 、AQ 交直线l 分别于点M 、N.(Ⅰ)当AP →·AQ →=92时,求此时直线l ′的方程;(Ⅱ)试问M 、N 两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.21.(理)(本小题满分12分)已知函数f(x)=ax sin x +cos x ,且f(x)在x =π4处的切线斜率为2π8.(1)求a 的值,并讨论f(x)在[-π,π]上的单调性; (2)设函数g(x)=ln (mx +1)+1-x1+x,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈[0,π2],使得g(x 1)≥f(x 2)成立,求m 的取值范围.(文)(本小题满分12分)已知函数f(x)=12x 2-13ax 3(a >0),函数g(x)=f(x)+e x (x -1),函数g(x)的导函数为g ′(x). (1)求函数f(x)的极值; (2)若a =e ,(ⅰ)求函数g(x)的单调区间;(ⅱ)求证:x >0时,不等式g ′(x)≥1+ln x 恒成立.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)如图,A ,B ,C ,D 四点共圆,BC 与AD 的延长线交于点E ,点F 在AB 的延长线上.(1)若EA =2ED ,EB =3EC ,求ABCD 的值;(2)若EF ∥CD ,求证:线段FA ,FE ,FB 成等比数列. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是⎩⎨⎧x =2+2cos φy =2sin φ(φ为参数)和⎩⎨⎧x =cos φy =1+sin φ(φ为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点为O 、P ,与圆C 2的交点为O 、Q ,求|OP|·|OQ|的最大值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数f(x)=|2x -1|+|x -2a|. (1)当a =1时,求f(x)≤3的解集;(2) 当x ∈[1,2]时,f(x)≤3恒成立,求实数a 的取值范围. 课标全国卷高考模拟试题精编二1.C ∵B ⊆A ,∴x 2=4或x 2=2x ,∴x =±2,或x =2,x =0,检验知x =2时,不适合,∴x =-2或x =0. 2.C 由否命题的定义知应选C.3.D ∵z =2-i ,∴z +10z =(2+i)+102-i =(2+i)+10(2+i )(2-i )(2+i )=6+3i.4.(理)D 因为双曲线x 2a 2-y 2b 2=1的一个焦点与抛物线y 2=4x 的焦点重合,所以c =1,又因为双曲线的离心率等于5,所以c a =5,所以a =55,所以b 2=c 2-a 2=45,所以该双曲线的方程为5x 2-54y 2=1.(文)A 由题意得,双曲线的离心率e =c a =3,故a b =22,故双曲线的渐近线方程为y =±22x ,选A.5.C f (x )=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,y =-f ′(x )=-(cos x -sin x )=2sin ⎝ ⎛⎭⎪⎫x -π4,∵将f (x )的图象按向量a =(m,0)(m >0)平移后得到y =2sin ⎝ ⎛⎭⎪⎫x -π4的图象,∴2sin ⎝ ⎛⎭⎪⎫x +π4-m =2sin ⎝ ⎛⎭⎪⎫x -π4.故m =π2+2k π,k ∈N ,故m 的最小值为π2. 6.(理)D 令x =1,得2n =32,所以n =5,C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r =C r 5x 10-3r,由10-3r =4,得r =2,所以展开式中x 4的系数为C 25=10.(文)A 设n 抽到的号码为a n ,则a n =9+30(n -1)=30n -21,由750<30n -21≤960,得:25.7<n <32.7,所以n 的取值为26、27、28、29、30、31、32,共七个,因此做问卷C 的人数为7.7.B 按框图所示程序运行可得S =1,A =1;S =3,A =2;S =7,A =3;S =15,A =4;S =31,A =5;S =63,A =6.此时输出S ,故M 为6. 8.C如图所示,O 为球的球心,由AB =BC =2,AC =2可知∠ABC =π2,即△ABC 所在的圆面的圆心O 1为AC 的中点,故AO 1=1,S △ABC =1,当D 为OO 1的延长线与球面的交点时,D 到平面ABC 的距离最大,四面体ABCD 的体积最大.连接OA ,设球的半径为R ,则DO 1=R +R 2-1,此时V A -BCD =13×S △ABC ×DO 1=13(R +R 2-1)=23,解得R =54,故这个球的表面积为4π⎝ ⎛⎭⎪⎫542=25π4.9.(理)C 因为y ′=1x +2-1=-x -1x +2,由y ′=0得x =-1,又f (-1)=ln 1+1=1,所以b =-1,c =1,所以ad =bc =-1.(文)C ∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),y =x 3+ax +b 的导数y ′=3x 2+a . ∴⎩⎨⎧3=k ×1+13=13+a ×1+b k =3×12+a,解得a =-1,b =3,∴2a +b =1.10.D 由题意知,抛物线的准线l :y =-1,过A 作AA 1⊥l 于A 1,过B 作BB 1⊥l 于B 1,设弦AB 的中点为M ,过M 作MM 1⊥l 于M 1,则|MM 1|=|AA 1|+|BB 1|2.|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,|AA 1|+|BB 1|≥6,2|MM 1|≥6,|MM 1|≥3,故M 到x 轴的距离d ≥2,选D.11.B 在区间[-π,π]内随机取两个数分别记为(a ,b ),表示边长为2π的正方形.要使函数f (x )=x 2+2ax -b 2+π有零点,需4a 2+4b 2-4π≥0,即a 2+b 2≥π,表示以原点为圆心,π为半径的圆的外部,且在正方形的内部,所以其面积为4π2-π2=3π2,所以有零点的概率为3π24π2=34.12.(理)A 对任意x ∈[1,+∞),f (2mx )+2mf (x )<0恒成立,即2mx -12mx +2m ⎝ ⎛⎭⎪⎫x -1x <0在x ∈[1,+∞)上恒成立,即8m 2x 2-(1+4m 2)2mx <0在x ∈[1,+∞)上恒成立,故m <0,因为8m 2x 2-(1+4m 2)>0在x ∈[1,+∞)上恒成立,所以x 2>1+4m 28m 2在x ∈[1,+∞)上恒成立,所以1>1+4m 28m 2,解得m <-12或m >12(舍去),故m <-12.(文)B 若a =0,当x ≤0时,f (x )=0,故f (f (x ))=f (0)=0有无数解,不符合题意,故a ≠0.显然当x ≤0时,a ·2x ≠0,故f (x )=0的根为1,从而f (f (x ))=0有唯一根,即为f (x )=1有唯一根.而x >0时,f (x )=1有唯一根12,故a ·2x =1在(-∞,0]上无根,当a ·2x =1在(-∞,0]上有根可得a =12x ≥1,故由a ·2x =1在(-∞,0]上无根可知a <0或0<a <1.13.解析:由三视图知:原几何体是一个圆柱和三棱锥的组合体,圆柱的底面半径为1,高为1,所以圆柱的体积为π×12×1=π;三棱锥的底面是等腰直角三角形,两直角边为2,高为3,所以三棱柱的体积为13×12×2×2×3=33,所以该几何体的体积为π+33. 答案:π+33 14.解析:画出可行域,如图中阴影部分所示,直线3x -5y +6=0与2x +3y -15=0交于点M (3,3),由目标函数z =ax -y ,得y =ax -z ,纵截距为-z ,当z 最小时,-z 最大.欲使纵截距-z 最大,则-23<a <35. 答案:⎝ ⎛⎭⎪⎫-23,3515.解析:因为3=2+log 22<2+log 23<2+log 24=4,所以f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫12log 23=124. 答案:12416.(理)解析:∵a n =∫n 0(2x +1)d x =n 2+n ,∴1a n =1n 2+n =1n (n +1)=1n -1n +1,∴⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n =1-1n +1.∴b n S n =(n -8)⎝ ⎛⎭⎪⎫1-1n +1=n -8-n -8n +1=(n +1)+9n +1-10≥29-10=-4,当且仅当n +1=9n +1,即n =2时,取“=”.故b n S n 的最小值为-4. 答案:-4(文)解析:由2sin 2A2=3sin A 可得1-cos A =3sin A ,cos A +3sin A =1,即sin ⎝ ⎛⎭⎪⎫A +π6=12,又0<A <π,π6<A +π6<7π6,故A +π6=5π6,A =2π3,由sin (B -C)=2cos B sin C ,可得sin B cos C =3cos B sin C .设a ,b ,c 为角A ,B ,C 的对边,由余弦定理可得a 2=b 2+c 2-2bc cos A =b 2+c 2+bc ,由sin B cos C =3cos B sin C 得b cos C =3c cos B ,从而b (a 2+b 2-c 2)2ab =3c (c 2+a 2-b 2)2ca ,故可得b 2-bc -3c 2=0,从而可得⎝ ⎛⎭⎪⎫b c 2-⎝ ⎛⎭⎪⎫b c -3=0,从而b c =1+132. 答案:1+13217.解:(Ⅰ)∵f(x)=x 2-2(n +1)x +n 2+5n -7=[x -(n +1)]2+3n -8, ∴a n =3n -8,∴a n +1-a n =3(n +1)-8-(3n -8)=3, ∴数列{a n }为等差数列. (Ⅱ)由题意知,b n =|a n |=|3n -8|, ∴当1≤n ≤2时,b n =8-3n ,S n =b 1+…+b n =n (b 1+b n )2=n[5+(8-3n )]2=13n -3n 22;当n ≥3时,b n =3n -8,S n =b 1+b 2+b 3+…+b n =5+2+1+…+(3n -8) =7+(n -2)[1+(3n -8)]2=3n 2-13n +282.∴S n =⎩⎪⎨⎪⎧13n -3n 22,1≤n ≤23n 2-13n +282,n ≥3.18.(理)解:(1)设第i(i =1,2,…,8)组的频率为f i ,则由频率分布直方图知f 7=1-(0.004+0.01+0.01+0.02+0.02+0.016+0.008)×10=0.12.所以笔试成绩在260分以上的同学的概率P ≈f 72+f 8=0.14,故这2 000名同学中,参加面试的约为2 000×0.14=280人.(2)不妨设三名同学为甲、乙、丙,且甲的笔试成绩在270分以上,记事件M 、N 、R 分别表示甲、乙、丙获得B 类资格,则P(M)=1-18-18=34,P(N)=P(R)=1-18=78,所以P(X =0)=P(M N R )=1256,P(X =1)=P(M N R +M N R +M N R)=17256, P(X =2)=P(MN R +M NR +M N R)=91256, P(X =3)=P(MNR)=147256, 所以随机变量X 的分布列为:EX =0×1256+1×17256+2×91256+3×147256=52.(文)解:(1)由茎叶图可知,空气质量为超标的数据有四个:77,79,84,88, 平均数为x =77+79+84+884=82,方差为s 2=14×[(77-82)2+(79-82)2+(84-82)2+(88-82)2]=18.5.(2)由茎叶图可知,空气质量为二级的数据有五个:47,50,53,57,68,任取两个有十种可能结果:{47,50},{47,53},{47,57},{47,68},{50,53},{50,57},{50,68},{53,57},{53,68},{57,68},两个数据的和小于100的结果只有一种:{47,50}. 记“两个数据的和小于100”为事件A ,则P(A)=110,故从空气质量为二级的数据中任取两个,这两个数据的和小于100的概率为110. (3)由茎叶图可知,空气质量为一级或二级的数据共八个,所以可以估计空气质量为一级或二级的概率为812=23,又366×23=244,所以2012年大约有244天空气质量达到一级或二级.19.(理)解:设AB =a ,PA =b ,建立空间坐标系,使得A(0,0,0),B(a,0,0),P(0,0,b),C(2a,2a,0),D(0,2a,0),E ⎝ ⎛⎭⎪⎫a ,a ,b 2.(Ⅰ)BE →=⎝ ⎛⎭⎪⎫0,a ,b 2,AD →=(0,2a,0),AP →=(0,0,b),所以BE→=12AD →+12AP →,BE ⊄平面PAD ,∴BE ∥平面PAD.(Ⅱ)∵BE ⊥平面PCD ,∴BE ⊥PC ,即BE →·PC →=0PC →=(2a,2a ,-b),∴BE →·PC →=2a 2-b 22=0,即b =2a.平面BDE 和平面BDC 中,BE→=(0,a ,a),BD →=(-a,2a,0)BC →=(a,2a,0), 所以平面BDE 的一个法向量为n 1=(2,1,-1);平面BDC 的一个法向量为n 2=(0,0,1);cos 〈n 1,n 2〉=-16,所以平面EBD 与平面BDC 夹角的余弦值为66.(文)解:(1)取BC 的中点为M ,连接AM ,B 1M , 在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, △ABC 为正三角形,所以AM ⊥BC ,故AM ⊥平面BCC 1B 1,又BD ⊂平面BCC 1B 1, 所以AM ⊥BD .又正方形BCC 1B 1中,tan ∠BB 1M =tan ∠CBD =12, 所以BD ⊥B 1M ,又B 1M ∩AM =M , 所以BD ⊥平面AB 1M ,故AB 1⊥BD ,正方形BAA 1B 1中,AB 1⊥A 1B ,又A 1B ∩BD =B , 所以AB 1⊥平面A 1BD .(2)取AA 1的中点为N ,连接ND ,OD ,ON .因为N ,D 分别为AA 1,CC 1的中点,所以ND ∥平面ABC , 又OD ∥平面ABC ,ND ∩OD =D ,所以平面NOD ∥平面ABC , 所以ON ∥平面ABC ,又ON ⊂平面BAA 1B 1,平面BAA 1B 1∩平面ABC =AB , 所以ON ∥AB ,注意到AB ∥A 1B 1,所以ON ∥A 1B 1,又N 为AA 1的中点, 所以O 为AB 1的中点,即AOOB 1=1.20.解:(Ⅰ)①当直线PQ 的斜率不存在时,由F (1,0)可知PQ 方程为x =1 代入椭圆C :x 24+y 23=1得P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32,又A (-2,0)∴AP →=⎝ ⎛⎭⎪⎫3,32,AQ →=⎝ ⎛⎭⎪⎫3,-32,AP →·AQ →=274不满足 ②当直线PQ 的斜率存在时,设PQ 方程为y =k (x -1)(k ≠0) 代入椭圆C :x 24+y 23=1得(3+4k 2)x 2-8k 2x +4k 2-12=0 设P (x 1,y 1),Q (x 2,y 2)得x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2y 1y 2=k 2(x 1-1)(x 2-1)=k 2(-x 1-x 2+x 1x 2+1)=-9k23+4k 2AP →·AQ →=(x 1+2)(x 2+2)+y 1y 2=x 1x 2+2(x 1+x 2)+4+y 1y 2=27k 23+4k 2=92 ∴k =±62故直线l ′的方程:y =±62(x -1)(Ⅱ)AP 的方程为y =y 1x 1+2(x +2)与l 的方程:x =4联立得M ⎝ ⎛⎭⎪⎫4,6y 1x 1+2同理得N ⎝ ⎛⎭⎪⎫4,6y 2x 2+2 ∴y M y N =6y 1x 1+2·6y 2x 2+2=36y 1y 2x 1x 2+2(x 1+x 2)+4①k 不存在时,y M y N =36·32·⎝ ⎛⎭⎪⎫-321+2(1+1)+4=-9②k 存在时y M y N =-324k 23+4k 24k 2-123+4k 2+16k 23+4k 2+4=-9M 、N 两点的纵坐标之积为定值-9.21.(理)解:(1)∵f ′(x )=a sin x +ax cos x -sin x =(a -1)sin x +ax cos x , f ′⎝ ⎛⎭⎪⎫π4=(a -1)·22+π4·a ·22=2π8, ∴a =1,f ′(x )=x cos x .当f ′(x )>0时,-π<x <-π2或0<x <π2;当f ′(x )<0时,-π2<x <0或π2<x <π,∴f (x )在⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2上单调递增;在⎝ ⎛⎭⎪⎫-π2,0,⎝ ⎛⎭⎪⎫π2,π上单调递减.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )单调递增,∴f (x )min =f (0)=1,则只需g (x )≥1在x ∈[0,+∞)上恒成立即可. g ′(x )=m ⎝⎛⎭⎪⎫x 2+m -2m (mx +1)(x +1)2(x ≥0,m >0),①当m ≥2时,m -2m ≥0,∴g ′(x )≥0在[0,+∞)上恒成立,即g (x )在[0,+∞)上单调递增,又g (0)=1,∴g (x )≥1在x ∈[0,+∞)上恒成立,故m ≥2时成立.②当0<m <2,x ∈⎝ ⎛⎭⎪⎫0,2-m m 时,g ′(x )<0,此时g (x )单调递减,∴g (x )<g (0)=1,故0<m <2时不成立. 综上,m ≥2.(文)解:(1)f ′(x )=x -ax 2=-ax ⎝ ⎛⎭⎪⎫x -1a ,∴当f ′(x )=0时,x =0或x =1a ,又a >0,∴当x ∈(-∞,0)时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,∴f (x )的极小值为f (0)=0,f (x )的极大值为f ⎝ ⎛⎭⎪⎫1a =16a 2.(2)∵a =e ,∴g (x )=12x 2-13e x 3+e x (x -1), g ′(x )=x (e x -e x +1).(ⅰ)记h (x )=e x -e x +1,则h ′(x )=e x -e ,当x ∈(-∞,1)时,h ′(x )<0,h (x )是减函数;x ∈(1,+∞)时,h ′(x )>0,h (x )是增函数,∴h (x )≥h (1)=1>0,则在(0,+∞)上,g ′(x )>0;在(-∞,0)上,g ′(x )<0,故函数g (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0). (ⅱ)x >0时,g ′(x )=x (e x -e x +1)≥1+ln x ⇔e x -e x +1≥1+ln xx ,由(ⅰ)知,h (x )=e x -e x +1≥1,记φ(x )=1+ln x -x (x >0),则φ′(x )=1-xx, 在区间(0,1)上,φ′(x )>0,φ(x )是增函数;在区间(1,+∞)上,φ′(x )<0,φ(x )是减函数,∴φ(x )≤φ(1)=0,即1+ln x -x ≤0,1+ln xx ≤1,∴e x -e x +1≥1≥1+ln xx ,即g ′(x )≥1+ln x 恒成立.22.解:(1)由A,B,C,D四点共圆,得∠CDE=∠ABE,又∠DEC=∠BEA,∴△ABE∽△CDE,于是ABCD=BEDE=AECE.①设DE=a,CE=b,则由BEDE=AECE,得3b2=2a2,即b=23a代入①,得ABCD=3ba= 6.(2)证明:由EF∥CD,得∠AEF=∠CDE. ∵∠CDE=∠ABE,∴∠AEF=∠EBF.又∠BFE=∠EF A,∴△BEF∽△EAF,于是F AFE=FEFB,故F A,FE,FB成等比数列.23.解:(1)圆C1和C2的普通方程分别是(x-2)2+y2=4和x2+(y-1)2=1,所以圆C1和C2的极坐标方程分别是ρ=4cos θ和ρ=2sin θ.(2)依题意得,点P,Q的极坐标分别为P(4cos α,α),Q(2sin α,α),所以|OP|=|4cos α|,|OQ|=|2sin α|.从而|OP|·|OQ|=|4sin 2α|≤4,当且仅当sin 2α=±1时,上式取“=”,即|OP|·|OQ|的最大值是4.24.解:(1)当a=1时,原不等式可化为|2x-1|+|x-2|≤3,当x>2时,3x-3≤3,则x≤2,无解;当12≤x≤2时,x+1≤3,则x≤2,所以12≤x≤2;当x<12时,3-3x≤3,则x≥0,所以0≤x<12.综上所述,原不等式的解集为[0,2].(2)原不等式可化为|x-2a|≤3-|2x-1|,因为x∈[1,2],所以|x-2a|≤4-2x,即2x-4≤2a-x≤4-2x,故3x-4≤2a≤4-x对x∈[1,2]恒成立.当1≤x≤2时,3x-4的最大值为2,4-x的最小值为2,所以a的值为1.。
全国高考模拟卷二(数学)

全国高考模拟卷二(数学)一.选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 集合U R =,{}2230|A x x x −=−>,{}|31x B y y ==−,则()U A B =( )A .()3,+∞B .[]0,3C .()1,3D .(]0,32. 设复数2312z iz i+=+,则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限3. 鲁洛克斯三角形是一种特殊三角形,指分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形。
在鲁洛克斯三角形ABC 内随机取一点, 则此点取自正三角形ABC (阴影区域)的概率是( )A .14B . 2πCD4. 数列{}n a 是等差数列,其前n 项和为n S ,满足20210S <,20220S >,当n S 取到最小值时,n 的值为( )A .1010B .1011C .2021D .20225. 函数()f x x =在()1,0处的切线方程是( )A .10x y −−=B .10x y +−=C .220x y −−=D .210x y −−=6. 向量()2,sin a x =,()5cos ,1b x =,且//a b ,则2sin cos sin 2cos x xx x+=+( )A .54B .45C .45或54D .以上都不对7. 已知直线()():2123110l m x m y m −−+++=经过定点P ,Q ,R 为圆22:4240O x y x y ++−−=上两动点,设QPR ∠的最大值为θ,则tan θ=( )A . 34B .724 C . 13D .2478. 已知()()()202122021012202121111x a a x a x a x x x ++=+++++++++,则2101223a a a a +=+++( )A .202222023−B .202221−C .202121−D .202122022−9. 函数()()sin ,0f x x x ααπ=+≤≤的图象不可能是( )A .B .C .D .10. 过双曲线()2222:10,0x y C a b a b−=>>的左焦点1F 作倾斜角为45︒的直线l 与双曲线的渐近线依次交于,A B 两点,与y 轴交于点C ,且13AC CB =,则双曲线的离心率为( )A B C . 2 D11. AB 是球O 的一条直径,4AB =,C .D 是球面上两点,直线AB 与CD 所成角为60︒,则A BCD −的体积最大值是( )A. B. C .12 D.12. 若函数()()()2211x x f x e a xe a x =−+++恰有一个零点,则a 的取值范围是A . (),1−∞B . (),1−∞−C . ()21,11e e e ⎧⎫−+−∞−⎨⎬−⎩⎭ D . (]21,11e e e ⎧⎫−+−∞−⎨⎬−⎩⎭二.填空题:本大题共4小题,每小题5分,共20分。
2023年全国新高考仿真模拟卷(二)数学试题(高频考点版)

一、单选题二、多选题三、填空题1.已知点是抛物线的焦点,若点在抛物线上,且,斜率为的直线经过点,且与抛物线交于,(异于)两点,则直线与直线的斜率之积为( )A .2B .-2C.D.2.已知为坐标原点,抛物线上一点到焦点的距离为,若点为抛物线准线上的动点,给出以下命题: ①当为正三角形时,的值为;②存在点,使得;③若,则等于;④的最小值为,则等于或.其中正确的是( )A .①③④B .②③C .①③D .②③④3.如图,为的中点,以为基底,,则实数组等于( )A.B.C.D.4. 已知的通项公式为恒成立,则实数的最小值为( )A .1B.C.D.5. 椭圆与(0<k <9)的关系为( )A .有相等的长、短轴B .有相等的焦距C .有相同的焦点D .有相等的离心率6. 已知方程+=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m <-1或1<m <B .1<m <2C .m <-1或1<m <2D .m <27. 下列关于x 的不等式有实数解的有( ).A.B.C.D.8. 已知是定义在上的函数,且对于任意实数恒有.当时,.则( )A .为奇函数B .在上的解析式为C .的值域为D.2023年全国新高考仿真模拟卷(二)数学试题(高频考点版)2023年全国新高考仿真模拟卷(二)数学试题(高频考点版)四、解答题9. 若复数z =为纯虚数(),则|z |=_____.10.已知集合,集合,则_______.11. 已知焦点在x 轴上的椭圆离心率为,则实数m 等于 _____.12.四面体的三条棱两两垂直,,,为四面体外一点,给出下列命题:①不存在点,使四面体三个面是直角三角形;②存在点,使四面体是正三棱锥;③存在无数个点,使点在四面体的外接球面上;④存在点,使与垂直且相等,且.其中真命题的序号是___________.13. 已知函数.再从条件①、条件②、条件③这三个条件中选择两个,使得函数的解析式唯一确定(1)求的解析式及最小值;(2)若函数在区间上有且仅有2个零点,求t 的取值范围.条件①:函数图象的相邻两条对称轴之间的距离为;条件②:函数的图象经过点;条件③:函数的最大值与最小值的和为1.14.已知凸五边形内接于半径为1的圆,且,,,,,求证:.15. 若,解不等式.16.若,求的最大值.。
2023年高考数学模拟试题(二)参考答案

面上,
球的半径为 R ,
则r=R ,
又球的表面积
正确;
两人 至 少 一 人 获 得 满 分 的 概 率 为 1-
以 △ABD 为 等 边 三 角 形。
BE ⊥AD ,且 AE =DE =1。
提示:
设直角圆锥 SO 的底面圆 的
P(
AB)
=P (
A)
P(
B )=
提 示:如 图 2,因
又 E 是 AD 的 中 点,所 以
的公比为q,
an }
8.
A
图3
2
2
2
=1,
PD = 2,即 PE + DE = PD ,所 以
PE ⊥DE 。又因为 PE ∩BE =E ,
PE ,
BE ⊂
平面 PBE ,所 以 DE ⊥ 平 面 PBE 。 又 DE∥
BC,则 BC ⊥ 平 面 PBE 。 又 BC ⊂ 平 面
所以平面 PBE ⊥ 平面 PBC,
2
所以椭圆 C 的方 程 为 +
a -c =4-1=3,
形,
设|NF2|=m ,则|PF2|
=3m ,|NF1 | = 2
a + m,
|PF1|= 2
a
+ 3m , 在
由勾股定理得
R
t△PNF1 中,
图4
2
2
2
(
2
a+m )+ (
4m ) = (
2
a+3m ),整 理 可 得
m =a,在 Rt△F2NF1 中,由 勾 股 定 理 得
2
2
2
2
2
(
3
a)+a = (
2023_年普通高等学校招生全国统一考试模拟考试新高考Ⅱ卷数学试卷

2023年普通高等学校招生全国统一考试模拟考试新高考Ⅱ卷数学试卷李昌成(新疆乌鲁木齐市第八中学ꎬ新疆乌鲁木齐830002)中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)13-0091-05收稿日期:2023-02-05作者简介:李昌成(1977-)ꎬ男ꎬ四川省资阳人ꎬ本科ꎬ中学正高级教师ꎬ从事中学数学教学研究.㊀㊀一㊁单选题:本题共8小题ꎬ共40分.在每小题列出的选项中ꎬ选出符合题目的一项.1.设i是虚数单位ꎬ则复数2i1-i在复平面内所对应的点位于(㊀㊀).A.第一象限㊀㊀㊀B.第二象限C.第三象限D.第四象限2.已知U=RꎬA={x|x<0}ꎬB={-2ꎬ-1ꎬ0ꎬ1}ꎬ则(∁UA)ɘB=(㊀㊀).A.1{}㊀B.{-2ꎬ-1}㊀C.0ꎬ1{}㊀D.Ø3.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切ꎬ则p的值为(㊀㊀).A.12㊀㊀B.1㊀㊀C.2㊀㊀D.44.阻尼器是一种以提供运动的阻力ꎬ从而达到减振效果的专业工程装置.深圳第一高楼平安金融中心的阻尼器减震装置ꎬ是亚洲最大的阻尼器ꎬ被称为 镇楼神器 .由物理学知识可知ꎬ某阻尼器模型的运动过程可近似为单摆运动ꎬ其离开平衡位置的位移s(cm)和时间t(s)的函数关系式为s=2sin(ωx+φ)ꎬ其中ω>0ꎬ若该阻尼器模型在摆动过程中连续三次位移为s0(-2<s0<2)的时间分别为t1ꎬt2ꎬt3ꎬ且t3-t1=2ꎬ则ω=(㊀㊀).A.π2㊀㊀B.π㊀㊀C.3π2㊀㊀D.2π5.已知圆台的上下底面圆的半径分别为1与2ꎬ高为3ꎬ则圆台的侧面积为(㊀㊀).A.73π㊀㊀B.33π㊀㊀C.6π㊀㊀D.11π6.某实验室针对某种新型病毒研发了一种疫苗ꎬ并在500名志愿者身上进行了人体注射实验ꎬ发现注射疫苗的志愿者均产生了稳定的免疫应答.若这些志愿者的某免疫反应蛋白M的数值X(单位:mg/L)近似服从正态分布N15ꎬσ2()ꎬ且X在区间10ꎬ20()内的人数占总人数的19/25ꎬ则这些志愿者中免疫反应蛋白M的数值X不低于20的人数大约为(㊀㊀).A.30㊀㊀B.60㊀㊀C.70㊀㊀D.1407.已知55<84ꎬ134<85ꎬ设a=log53ꎬb=log85ꎬc=log138ꎬ则(㊀㊀).A.a<b<c㊀㊀㊀㊀B.b<a<cC.b<c<aD.c<a<b8.设函数f(x)的定义域为Rꎬf(x+1)为奇函数ꎬf(x+2)为偶函数ꎬ当xɪ[1ꎬ2]时ꎬf(x)=ax2+b.若f(0)+f(3)=6ꎬ则f(92)=(㊀㊀).A.-94㊀㊀B.-32㊀㊀C.74㊀㊀D.52二㊁多选题:本题共4小题ꎬ共20分ꎬ每小题有多项符合题目要求.9.若数据x1ꎬx2ꎬ ꎬxm的平均数为xꎬ方差为s2xꎬ数据y1ꎬy2ꎬ ꎬyn的平均数为yꎬ方差为s2yꎬ下列说法中一定正确的有(㊀㊀).A.这m+n个数据的平均数为mx+nym+nB.若这m+n个数据的平均数为ωꎬ则这m+n个数据的方差为s2=m[s2x+(x-ω)2]+n[s2y+(y-ω)2]m+nC.若m=nꎬyi=axi+b(i=1ꎬ2ꎬ ꎬn)ꎬ则y=ax+bD.若m=nꎬyi=axi+b(i=1ꎬ2ꎬ ꎬn)ꎬ则s2y=a2s2x+b10.如图1ꎬ在长方体ABCD-A1B1C1D1中ꎬAB=3ꎬAD=AA1=1ꎬ点P为线段A1C上的动点ꎬ则下列说法正确的是(㊀㊀).图1A.当A1C=3A1P时ꎬD1Pʊ平面BDC1B.当A1C=3A1P时ꎬAꎬPꎬC1三点共线C.当A1C=5A1P时ꎬA1Cʅ平面D1APD.当A1C=5A1P时ꎬøD1PA取得最大值11.已知圆M:(x-1-cosθ)2+(y-2-sinθ)2=1ꎬ直线l:kx-y-k+2=0ꎬ下列四个选项ꎬ其中正确的是(㊀㊀).A.对任意实数k与θꎬ直线l和圆M有公共点B.存在实数k与θꎬ直线l和圆M相离C.对任意实数kꎬ必存在实数θꎬ使得直线l与圆M相切D.对任意实数θꎬ必存在实数kꎬ使得直线l与圆M相切12.设1-2x()n=a0+a1x+a2x2+a3x3+ +anxnꎬxɪRꎬnɪN∗ꎬ则下列结论中正确的是(㊀㊀).A.-a12+a222-a323+ +-1()nan2n=2n-1B.当nȡ3时ꎬ2a2+6a3+ +nn-1()an=4nn-1()C.若a8>a7ꎬa8>a9ꎬ则n=12D.当x=-12000ꎬn=2022时ꎬ1-2x()n>10915三㊁填空题:本题共4小题ꎬ共20分.13.已知双曲线C的焦点在坐标轴上ꎬ中心为坐标原点ꎬ其渐近线方程为y=ʃ2xꎬ则该双曲线C的离心率为.14.әABC中ꎬAB=2ꎬøACB=π4ꎬO是әABC外接圆的圆心ꎬ则OCң ABң+CAң CBң的最大值为.15.写出一个定义在R上且值域为(-1ꎬ1)的奇函数f(x)=.16.设函数f(x)=exx+a(x-1)+b(aꎬbɪR)在区间1ꎬ3[]上总存在零点ꎬ则a2+b2的最小值为.四㊁解答题:本题共6小题ꎬ共70分.解答应写出文字说明㊁证明过程或演算步骤.17.(本小题10分)已知正项等比数列an{}满足a3=9ꎬa4-a2=24.(1)求数列an{}的通项公式anꎻ(2)设bn=n anꎬ求数列bn{}的前n项的和Sn.18.(本小题12分)在әABC中ꎬ内角AꎬBꎬC的对边分别为aꎬbꎬcꎬ且acosB+bcosA=2ccosC.(1)求Cꎻ(2)若әABC的面积为103ꎬD为AC的中点ꎬ求BD的最小值.19.(本小题12分)如图2ꎬ已知四棱锥P-AB ̄CDꎬ底面ABCD为菱形ꎬPAʅ平面ABCDꎬøABC=60ʎꎬEꎬF分别是BCꎬPC的中点.(1)证明:AEʅPDꎻ(2)若H为PD上的动点ꎬEH与平面PAD所成最大角的正切值为6/2ꎬ求二面角E-AF-C的余弦值.图220.(本小题12分)已知椭圆C:x2a2+y2b2=1(a>b>0)ꎬa=3bꎬ点(1ꎬ223)在椭圆C上.(1)求椭圆C的方程ꎻ(2)若过点Q(1ꎬ0)且不与y轴垂直的直线l与椭圆C交于MꎬN两点ꎬT(3ꎬ0)ꎬ证明TMꎬTN斜率之积为定值.21.(本小题12分)现有一批疫苗试剂ꎬ拟进入动物试验阶段ꎬ将1000只动物平均分成100组ꎬ任选一组进行试验.第一轮注射ꎬ对该组的每只动物都注射一次ꎬ若检验出该组中有9只或10只动物产生抗体ꎬ说明疫苗有效ꎬ试验终止ꎻ否则对没有产生抗体的动物进行第二轮注射ꎬ再次检验.如果被二次注射的动物都产生抗体ꎬ说明疫苗有效ꎬ否则需要改进疫苗.设每只动物是否产生抗体相互独立ꎬ两次注射疫苗互不影响ꎬ且产生抗体的概率均为p(0<p<1).(1)求该组试验只需第一轮注射的概率(用含p的多项式表示)ꎻ(2)记该组动物需要注射次数X的数学期望为E(X)ꎬ求证:10<E(X)<10(2-p).22.(本小题12分)已知f(x)=(x-1)ex+12ax2+1ꎬaɪR.(1)讨论函数f(x)的单调性ꎻ(2)若函数g(x)=f(x)-(x-1)ex-1+xcosx-sinx在(0ꎬπ2]上有1个零点ꎬ求实数a的取值范围.参考答案1.B㊀2.C㊀3.C㊀4.B㊀5.C㊀6.B㊀7.A㊀8.D9.ABC㊀10.ACD㊀11.AC㊀12.ACD13.5或52㊀14.3㊀15.ex-1ex+1㊀16.e4817.(1)设数列an{}的公比为qꎬ由a4-a2=24ꎬ得9q-9q=24.即3q2-8q-3=0.解得q=3或q=-13.又因为an>0ꎬ则q>0.所以q=3.所以an=9ˑ3n-3=3n-1.(2)因为an=3n-1ꎬ所以bn=n an=nˑ3n-1.所以Sn=1ˑ30+2ˑ31+3ˑ32+ +nˑ3n-1ꎬ3Sn=1ˑ31+2ˑ32+ +n-1()3n-1+nˑ3n.所以-2Sn=1+31+32+ +3n-1-n 3n=(1-2n) 3n-12.所以Sn=(2n-1) 3n+14.18.(1)在әABC中ꎬacosB+bcosA=2ccosCꎬ所以由正弦定理可得sinAcosB+sinBcosA=2sinCcosC.所以sin(A+B)=2sinCcosC.所以sinC=2sinCcosC.因为sinCʂ0ꎬ所以cosC=12.所以由三角形内角的范围可得角C=π3.2()由题意知SәABC=12absinC=12ab 32=103.所以ab=40.在әBCD中ꎬ由余弦定理ꎬ得|BD|2=a2+b24-abcosC=a2+b24-12abȡ2ab2-12ab=12ab=20ꎬ当且仅当a=12b且ab=40ꎬ即a=25ꎬb=45时取等号.所以BD的最小值为25.19.1()由四边形ABCD为菱形ꎬøABC=60ʎꎬ可得әABC为正三角形.图3因为E为BC的中点ꎬ所以AEʅBC.又BCʊADꎬ因此AEʅAD.因为PAʅ平面ABCDꎬAE⊂平面ABCDꎬ所以PAʅAE.而PA⊂平面PADꎬAD⊂平面PAD且PAɘAD=Aꎬ所以AEʅ平面PAD.又PD⊂平面PADꎬ所以AEʅPD.2()如图3ꎬ设AB=2ꎬH为PD上任意一点ꎬ连接AHꎬEHꎬ由1()知AEʅ平面PAD.所以øEHA为EH与平面PAD所成的角.在RtәEAH中ꎬAE=3ꎬ所以当AH最短时ꎬøEHA最大ꎬ即当AHʅPD时ꎬøEHA最大.因为tanøEHA=62ꎬ所以AEAH=3AH=62.因此AH=2.又AD=2ꎬ所以øADH=45ʎ.所以PA=2.因为PAʅ平面ABCDꎬPA⊂平面PACꎬ所以平面PACʅ平面ABCD.过点E作EOʅAC于点Oꎬ则EOʅ平面PAC.过点O作OSʅAF于点Sꎬ连接ESꎬ则øESO为二面角E-AF-C的平面角.在RtәAOE中ꎬEO=AE sin30ʎ=32ꎬAO=AE cos30ʎ=32ꎬ又点F是PC的中点ꎬ在RtәASO中ꎬSO=AO sin45ʎ=324ꎬ又SE=EO2+SO2=34+98=304ꎬ在RtәESO中ꎬcosøESO=32/430/4=155ꎬ即所求二面角的余弦值为155.20.1()由点(1ꎬ223)在椭圆C上ꎬ可得1a2+89b2=1.又a=3bꎬ解得a=3ꎬb=1.所以椭圆C的方程为x29+y2=1.2()过点Q(1ꎬ0)且不与y轴垂直的直线l的方程设为x=my+1ꎬ与椭圆方程x2+9y2=9联立ꎬ消去x可得(9+m2)y2+2my-8=0.设M(x1ꎬy1)ꎬN(x2ꎬy2)ꎬ则y1+y2=-2m9+m2ꎬy1y2=-89+m2.则kTM kTN=y1x1-3y2x2-3=y1y2(my1-2)(my2-2)=y1y2m2y1y2+4-2m(y1+y2)=-29.则TMꎬTN斜率之积为定值-29.21.1()平均每组1000100=10人ꎬ设第一次注射有Y只动物产生抗体ꎬ则YʐB(10ꎬp).所以P(Y=9)+P(Y=10)=p10+10p9(1-p)=10p9-9p10.所以该组试验只需第一轮注射的概率为10p9-9p10.2()由1()得P(X=10)=10p9-9p10.又P(X=10+k)=C10-k10(1-p)kp10-kꎬk=2ꎬ3ꎬ ꎬ10ꎬ所以E(X)=10P(X=10)+ð10k=2(10+k)P(X=10+k)=10p10+10p9(1-p)[]+ð10k=2(10+k)C10-k10 (1-p)kp10-k=10ð10k=0C10-k10(1-p)kp10-k+ð10k=0kC10-k10(1-p)kp10-k-C910(1-p)p9.设ξʐB(10ꎬ1-p)ꎬ则E(ξ)=ð10k=0kCk10(1-p)kp10-k=10(1-p).又ð10k=0C10-k10(1-p)kp10-k=(1-p+p)10ꎬ所以E(X)=10(1-p+p)10+10(1-p)-10(1-p)p9=10+10(1-p)-10(1-p)p9=20-10p-10p9+10p10=10+10(1-p)(1-p9).因为0<p<1ꎬ所以E(X)>10.又E(X)=10+101-p()1-p9()=20-10p-10p9+10p10=102-p()-10p91-p()ꎬ因为0<p<1ꎬ所以E(X)<102-p().所以10<E(X)<10(2-p).22.1()函数f(x)的定义域为Rꎬ求导ꎬ得fᶄ(x)=xex+ax=xex+a().当aȡ0时ꎬ当x<0时ꎬfᶄ(x)<0ꎬ当x>0时ꎬfᶄ(x)>0ꎬ则f(x)在(-ɕꎬ0)上单调递减ꎬ在(0ꎬ+ɕ)上单调递增.当a<0时ꎬ令fᶄ(x)=0ꎬ得x1=0ꎬx2=ln(-a).若ln(-a)=0ꎬ即a=-1时ꎬfᶄ(x)ȡ0ꎬ则有f(x)在R上单调递增ꎻ若ln(-a)<0ꎬ即-1<a<0时ꎬ当x<ln(-a)或x>0时ꎬfᶄ(x)>0ꎬ当ln(-a)<x<0时ꎬfᶄ(x)<0ꎬ则有f(x)在(-ɕꎬln(-a))ꎬ(0ꎬ+ɕ)上都单调递增ꎬ在(ln(-a)ꎬ0)上单调递减ꎻ若ln(-a)>0ꎬ即a<-1时ꎬ当x<0或x>ln(-a)时ꎬfᶄ(x)>0ꎬ当0<x<ln(-a)时ꎬfᶄ(x)<0ꎬ则有f(x)在(-ɕꎬ0)ꎬ(ln(-a)ꎬ+ɕ)上都单调递增ꎬ在(0ꎬln(-a))上单调递减.所以ꎬ当aȡ0时ꎬf(x)在(-ɕꎬ0)上单调递减ꎬ在(0ꎬ+ɕ)上单调递增ꎻ当-1<a<0时ꎬf(x)在(-ɕꎬln(-a))ꎬ(0ꎬ+ɕ)上都单调递增ꎬ在(ln(-a)ꎬ0)上单调递减ꎻ当a=-1时ꎬf(x)在R上单调递增ꎻ当a<-1时ꎬf(x)在(-ɕꎬ0)ꎬ(ln(-a)ꎬ+ɕ)上都单调递增ꎬ在(0ꎬln(-a))上单调递减.2()依题意ꎬg(x)=12ax2+xcosx-sinxꎬxɪ(0ꎬπ2]ꎬgᶄ(x)=x(a-sinx)ꎬ当xɪ(0ꎬπ2]时ꎬ0<sinxɤ1ꎬ当aȡ1时ꎬa-sinxȡ0ꎬgᶄ(x)ȡ0ꎬ则函数g(x)在(0ꎬπ2]上单调递增ꎬ有g(x)>g(0)=0ꎬ无零点ꎻ当aɤ0时ꎬa-sinxɤ0ꎬgᶄ(x)<0ꎬ函数g(x)在(0ꎬπ2]上单调递减ꎬg(x)<g(0)=0ꎬ无零点ꎻ当0<a<1时ꎬ∃x0ɪ(0ꎬπ2)ꎬ使得sinx0=aꎬ而sinx在(0ꎬπ2)上单调递增ꎬ当0<x<x0时ꎬgᶄ(x)>0ꎬ当x0<x<π2时ꎬgᶄ(x)<0ꎬ因此ꎬg(x)在0ꎬx0()上单调递增ꎬ在(x0ꎬπ2)上单调递减.又g(0)=0ꎬgπ2æèçöø÷=aπ28-1ꎬ若g(π2)>0ꎬ即8π2<a<1时ꎬ无零点ꎻ若g(π2)ɤ0ꎬ即0<aɤ8π2时ꎬg(x)有一个零点.综上可知ꎬ当0<aɤ8π2时ꎬg(x)在(0ꎬπ2]有1个零点ꎬ所以实数a的取值范围0<aɤ8π2.[责任编辑:李㊀璟]。
2023届全国卷新高考数学模拟试题二(含答案)

2023届全国卷新高考数学模拟试题二(含答案)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{|}A x x k =≥,3{|1}1B x x =<+,若A B ⊆,则实数k 的取值范围为( ) A .(1,)+∞ B .(,1)-∞-C .(2,)+∞D .[2,)+∞2.若复数63ai i+-(其中a R ∈,i 为虚数单位)的实部与虚部相等,则a =( ) A .3 B .6 C .9 D .123.在等差数列{}n a 中,若21a =,8642a a a =+,则5a 的值是( )A .-5B .12-C .12D . 524.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为52y x =-,则它的离心率为( )A .32B .23C . 35D 55.已知ABC ∆的三个顶点坐标为()()()0,1,1,0,0,2,A B C O -为坐标原点,动点M 满足1CM =,则OA OB OM ++的最大值是A. 21B. 71C. 21 716.若不等式||1x t -<成立的必要条件是14x <≤,则实数t 的取值范围是( )A .[2,3]B .(2,3]C .[2,3)D .(2,3)7.在区间[1,1]-内随机取两个实数,x y ,则满足21y x ≥-的概率为( )A .29B .79C .16D .56 8.如图所示,一个几何体的三视图中四边形均为边长为4的正方形,则这个几何体的体积为( )A .32643π-B .6416π-C . 16643π-D .8643π-9.如图,(,)M M M x y ,(,)N N N x y 分别是函数()sin()(0,0)f x A x A ωϕω=+>>的一段图象与两条直线1:l y m =,2:(0)l y m A m =-≥≥的两个交点,记||N M S x x =-,则()S m 图象大致是( )A .B .C .D .10.过抛物线y 2=8x 的焦点作一条直线与抛物线相交于A,B 两点,它们到直线x=-3的距离之和等于10,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在11.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,,F F O 为坐标原点,点P 是双曲线在第一象限内的点,直线2,PO PF 分别交双曲线C 的左、右支于另一点M,N ,若122PF PF =,且2120MF N ∠=,则双曲线的离心率为 A. 22 B. 7 C. 3 212.设函数()f x 在R 上存在导数'()f x ,x R ∀∈,有2()()f x f x x -+=,在(0,)+∞上'()f x x <,若(4)()84f m f m m --≥-,则实数m 的取值范围为( )A .[2,)+∞B .[2,2]-C .[0,)+∞D .(,2][2,)-∞-+∞∪二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a 与b 的夹角为23π,||2a =,则a 在b 方向上的投影为 . 14.在正方体1111ABCD A B C D -中,点P 在线段'AD 上运动,则异面直线CP 与'BA 所成的角θ的取值范围是 .15.点A、B、C、D在同一个球的球面上,AB=BC=2,,若四面体ABCD体积的最大值为43,则该球的表面积为.16.已知实数,x y满足条件2420xx yx y m≥⎧⎪+≤⎨⎪-++≥⎩,若目标函数2z x y=+的最小值为3,则其最大值为.2023届全国卷新高考数学模拟试题二参考答案一、选择题1-5:CABAD 6-10:ADCCA 11、B 12:A二、填空题13.-14.03πθ<≤15.9π16.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课标全国卷数学高考模拟试题精编二【说明】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.题号一二三选做题总分131415161718192021得分第Ⅰ卷 (选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A={1,4,2x},B={1,x2},若B⊆A,则x=( )A.0 B.-2 C.0或-2 D.0或±22.命题“若x>1,则x>0”的否命题是( )A.若x>1,则x≤0 B.若x≤1,则x>0C.若x≤1,则x≤0 D.若x<1,则x<03.若复数z=2-i,则z+10z=( )A.2-i B.2+i C.4+2i D.6+3i4.(理)已知双曲线x2a2-y2b2=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A.5x2-45y2=1 B.x25-y24=1 C.y25-x24=1 D.5x2-54y2=1(文)已知双曲线y2a2-x2b2=1(a>0,b>0)的离心率为3,则双曲线的渐近线方程为( )A.y=±22x B.y=±2x C.y=±2x D.y=±12x5.设函数f(x)=sin x+cos x,把f(x)的图象按向量a=(m,0)(m>0)平移后的图象恰好为函数y=-f′(x)的图象,则m的最小值为( )A.π4B.π3C.π2D.2π36.(理)已知⎝ ⎛⎭⎪⎫x 2+1x n 的展开式的各项系数和为32,则展开式中x 4的系数为( )A .5B .40C .20D .10(文)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为( ) A .7 B .9 C .10 D .157.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是( )A .5B .6C .7D .88.点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( )A.125π6 B .8π C.25π4 D.25π169.(理)已知实数a ,b ,c ,d 成等比数列,且函数y =ln(x +2)-x 当x =b 时取到极大值c ,则ad 等于( )A .1B .0C .-1D .2(文)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-210.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A.34B.32C .1D .2 11.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π有零点的概率为( )A.78B.34C.12D.1412.(理)设函数f (x )=x -1x,对任意x ∈[1,+∞),f (2mx )+2mf (x )<0恒成立,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-12B.⎝ ⎛⎭⎪⎫-12,0C.⎝ ⎛⎭⎪⎫-12,12D.⎝⎛⎭⎪⎫0,12(文)已知函数f (x )=⎩⎨⎧a ·2x ,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞)第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填写在题中的横线上)13.一个几何体的三视图如图所示,则该几何体的体积为________.14.若x ,y 满足条件⎩⎨⎧3x -5y +6≥02x +3y -15≤0,y ≥0当且仅当x =y =3时,z =ax -y取得最小值,则实数a 的取值范围是________.15.已知函数f (x )满足:当x ≥4时,f (x )=⎝ ⎛⎭⎪⎫12x;当x <4时f (x )=f (x +1),则f (2+log 23)=________. 16.(理)已知a n =∫n 0(2x +1)d x ,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为S n ,数列{b n }的通项公式为b n =n -8,则b n S n 的最小值为________.(文)在△ABC 中,2sin 2A 2=3sin A ,sin (B -C)=2cos B sin C ,则ACAB =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程及演算步骤)17.(本小题满分12分)已知函数f(x)=x 2-2(n +1)x +n 2+5n -7.(Ⅰ)设函数y =f(x)的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列;(Ⅱ)设函数y =f(x)的图象的顶点到x 轴的距离构成数列{b n },求{b n }的前n 项和S n .18.(理)(本小题满分12分)某高校组织自主招生考试,共有 2 000名优秀同学参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成8组:第1组[195,205),第2组[205,215),…,第8组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.(1)估计所有参加笔试的2 000名同学中,参加面试的同学人数;(2)面试时,每位同学抽取三个问题,若三个问题全答错,则不能取得该校的自主招生资格;若三个问题均回答正确且笔试成绩在270分以上,则获A 类资格;其他情况下获B 类资格.现已知某中学有3人获得面试资格,且仅有1人笔试成绩在270分以上,在回答三个面试问题时,3人对每一个问题正确回答的概率均为12,用随机变量X 表示该中学获得B 类资格的人数,求X 的分布列及期望EX. (文)(本小题满分12分)PM 2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB 30952012,PM 2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标. 从某自然保护区某年全年每天的PM 2.5日均值监测数据中随机地抽取12天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)求空气质量为超标的数据的平均数与方差;(2)从空气质量为二级的数据中任取两个,求这两个数据的和小于100的概率; (3)以这12天的PM 2.5日均值来估计该年的空气质量情况,估计该年(366天)大约有多少天的空气质量达到一级或二级.19.(理)(本题满分12分)如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.(文)(本小题满分12分)如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.(1)求证:AB 1⊥平面A 1BD ;(2)设点O 为AB 1上的动点,当OD ∥平面ABC 时,求AOOB 1的值.20.(本小题满分12分)如图,已知椭圆C :x 24+y 23=1,直线l 的方程为x =4,过右焦点F 的直线l ′与椭圆交于异于左顶点A 的P ,Q 两点,直线AP 、AQ 交直线l 分别于点M 、N.(Ⅰ)当AP →·AQ →=92时,求此时直线l ′的方程;(Ⅱ)试问M 、N 两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.21.(理)(本小题满分12分)已知函数f(x)=ax sin x +cos x ,且f(x)在x =π4处的切线斜率为2π8. (1)求a 的值,并讨论f(x)在[-π,π]上的单调性; (2)设函数g(x)=ln (mx +1)+1-x1+x,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈[0,π2],使得g(x 1)≥f(x 2)成立,求m 的取值范围.(文)(本小题满分12分)已知函数f(x)=12x2-13ax3(a>0),函数g(x)=f(x)+e x(x-1),函数g(x)的导函数为g′(x).(1)求函数f(x)的极值;(2)若a=e,(ⅰ)求函数g(x)的单调区间;(ⅱ)求证:x>0时,不等式g′(x)≥1+ln x恒成立.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)如图,A ,B ,C ,D 四点共圆,BC 与AD 的延长线交于点E ,点F 在AB 的延长线上. (1)若EA =2ED ,EB =3EC ,求ABCD的值; (2)若EF ∥CD ,求证:线段FA ,FE ,FB 成等比数列.23.(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是⎩⎨⎧ x =2+2cos φy =2sin φ(φ为参数)和⎩⎨⎧ x =cos φy =1+sin φ(φ为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点为O 、P ,与圆C 2的交点为O 、Q ,求|OP|·|OQ|的最大值.24.(本小题满分10分)选修45:不等式选讲已知函数f(x)=|2x -1|+|x -2a|.(1)当a =1时,求f(x)≤3的解集;(2) 当x ∈[1,2]时,f(x)≤3恒成立,求实数a 的取值范围.。