几种运算放大器比较器及电路的简单分析

合集下载

运算放大器的电路模型和比例电路的分析及有运算放大器的电阻电路概述

运算放大器的电路模型和比例电路的分析及有运算放大器的电阻电路概述

(R、C等),使其工作在闭环状态。
Rf
1
+ ui_
R1 _
1
+
A +
2
RL
+
+
ui _
_uo
R1
Rf
Ri
Ro +
Aun1
2
+ RL uo
_
运放等效电路
2. 电路分析 用结点法分析:(电阻用电导表示)
(G1+Gi+Gf)un1-Gf un2=G1ui
Rf
-Gf un1+(Gf+Go+GL)un2 +
ud> 则 uo= Usat
③反向饱和区:
注意
ud<- 则 uo= -Usat
是一个数值很小的电压,例如
Usat=13V, A =105,则 = 0.13mV。
输入电阻
3. 电路模型
当: u+= 0, 则uo=-Au-
uRi
当: u-= 0, 则uo=Au+ u+
4. 理想运算放大器
输出电阻

x1
x2 x3
a1 a2
-y -1
y
a3
②非倒向比例器
Ri
iu+ i+
_
+
+
+ ui _
uR2 R1
结论
① uo与ui同相
根据“虚短”和“虚断”
u+= u-= ui i+= i-= 0
+ uo
(uo-u-)/R1= u-/R2
_ uo =[(R1 + R2)/R2 ] ui
=(1+ R1/R2) ui

十一种经典运放电路分析

十一种经典运放电路分析

十一种经典运放电路分析从虚断,虚短分析基本运放电路由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器:传输文件进行[薄膜开关] 打样图1图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过R1的电流:I1 = (Vi - V-)/R1 ………a流过R2的电流:I2 = (V- - Vout)/R2 ……bV- = V+ = 0 ………………cI1 = I2 ……………………d求解上面的初中代数方程得Vout = (-R2/R1)*Vi这就是传说中的反向放大器的输入输出关系式了。

集成运算放大器比较器电路分析

集成运算放大器比较器电路分析

集成运算放大器比较器电路分析1.LM358比较器通过图3.13测试,可以看到当输入电压u i小于1V时,输出电压uo 约为5V左右;当输入电压在1-3V时,输出电压uo约为-5V。

即当U i<U R时,u o输出高电平;当u i>U r时,u o输出低电平。

将u i和U R互相调换位置,重复上述过程,记录输出电压u o,可观察到结果刚好相反。

在实验中为何会出向上述现象?分析一下其中的原因。

在图3.13(a)电路中,同相输入端接基准电位(或称参考电位)U R。

被比较信号由反相输入端输入。

集成运放LM358处于开环状态。

当u i>U R时,由于LM358 的电压放大倍数足够大,所以,输入端只要有微小的电压差,电压即饱和输出,在第一种情况下,输出电压为负饱和值为-U om;同理当u i<U R时,输出电压为正饱和值为+Uom。

其传输特性如图6.8 所示。

可见,只要输入电压在基准电压U R处稍有正负变化,输出电压u o就在负最大值到正最大值处变化。

通过上述分析可知,图3.13所示电路的功能是将一个输入电压与另一个输入电压或基准电压进行比较,判断它们之间的相对大小,比较结果由输出状态反映出来,该电路称为单限电压比较器,其特性如图3.14所示。

图3.14 单限电压比较器传输特性2.电压比较器LM393/LM339LM393是低功耗低失调电压两比较器,LM339是低功耗低失调电压四比较器。

两种比较器,原理图一样,功能参数一样。

(1) LM393/LM339工作原理LM339集成块采用C-14型封装,图3.15为外型及管脚排列图。

图3.15 比较器LM339LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

运算放大器分类

运算放大器分类

运算放大器分类运算放大器是一种基本的模拟电路元件,广泛应用于各种电子设备中。

根据其不同的性质和功能,可以将运算放大器分为几类。

1.差分放大器差分放大器是一种基本的运算放大器,主要用于实现信号放大和滤波。

它的输入端有两个,可以将两个输入信号进行差分运算,输出差分信号的放大结果。

差分放大器具有高增益、高输入阻抗和低输出阻抗等特点,适用于放大微弱信号和抑制噪声干扰。

2.反馈放大器反馈放大器是一种将一部分输出信号反馈到输入端的运算放大器。

反馈放大器可以实现信号放大、滤波、稳压等功能,还可以提高放大器的线性度和稳定性。

根据反馈方式的不同,反馈放大器可以分为正反馈和负反馈两种。

其中,负反馈放大器最为常见,可以减小放大器的失调、漂移和噪声,提高放大器的性能和可靠性。

3.比较器比较器是一种将两个输入信号进行比较,输出高低电平的运算放大器。

比较器可以用于电压比较、信号检测、门电路等方面。

根据比较器的输出类型,可以将其分为开关型比较器和线性比较器两种。

其中,开关型比较器输出只有两种状态,常用于数字电路中的逻辑运算;线性比较器输出具有连续的电平变化,常用于模拟电路中的信号处理。

4.积分放大器积分放大器是一种将输入信号进行积分运算后输出的运算放大器。

积分放大器可以用于实现信号积分、微分和低通滤波等功能,还可以提高放大器的稳定性和线性度。

与差分放大器相比,积分放大器的输入阻抗较低,输出阻抗较高,适用于高精度的信号处理和控制系统中。

5.微分放大器微分放大器是一种将输入信号进行微分运算后输出的运算放大器。

微分放大器可以用于实现信号微分、高通滤波和波形恢复等功能,还可以提高放大器的线性度和稳定性。

与积分放大器相比,微分放大器的输入阻抗较高,输出阻抗较低,适用于高速信号处理和控制系统中。

运算放大器是一种非常重要的电子元件,在各种电子设备中都有广泛的应用。

根据其不同的性质和功能,可以将运算放大器分为差分放大器、反馈放大器、比较器、积分放大器和微分放大器等几类。

运算放大器电路原理

运算放大器电路原理

运算放大器电路原理运算放大器(Operational Amplifier,简称Op-Amp)是一种极为重要的电子元器件,广泛应用于各种电路中。

它具有高增益、差分输入、单端输出等特点,能够放大电压、电流和功率等信号,并提供微弱信号的放大和处理功能。

本文将介绍运算放大器的基本原理及其电路结构。

一、运算放大器的基本原理运算放大器是一个多元件集成电路(IC),通常由几个晶体管、电阻和电容器等元件组成。

它的核心部分是一个差分放大器,具有高增益特性。

运算放大器的输出电压与输入电压之间的关系可以通过下面的公式表示:Vout = Av (V+ - V-)其中,Vout为输出电压,Av为放大器的开环增益,V+和V-分别为非反相输入和反相输入。

二、运算放大器的电路结构运算放大器的电路图可以简化为以下几个主要部分:1.差动放大器:差动放大器是运算放大器的核心部分,它由两个输入电源、两个输入电容和两个晶体管等电路组成。

它的作用是将输入信号进行差分放大,增益高达几千倍。

2.电流镜:电流镜是一个由晶体管组成的电流源,用于提供稳定的电流输出。

它的作用是保持差动放大器的工作点稳定,使得差动放大器的输出可以线性放大。

3.级联放大器:级联放大器由多个差分放大器组成,用于提高整个运算放大器的放大倍数。

每个差分放大器都会放大之前的放大器的输出信号。

4.反馈网络:反馈网络是运算放大器的重要部分,通过它可以实现对输出信号进行控制和调整。

反馈网络可以分为正反馈和负反馈两种形式,具体的选择取决于应用的要求。

三、运算放大器的应用运算放大器在电子电路中具有广泛的应用,主要包括以下几个方面:1.信号放大:运算放大器可将输入信号放大到所需的幅度,用于增强微弱信号。

2.滤波:运算放大器可以配合电容器和电阻等元件,构成滤波电路,用于滤除不需要的频率成分,提取特定频率的信号。

3.比较器:运算放大器可以作为比较器使用,用于判断输入信号的大小关系,并输出相应的逻辑电平。

常用运放电路及其各类比较器电路解读

常用运放电路及其各类比较器电路解读

彭发喜,制作同相放大电路:运算放大器的同相输入端加输入信号,反向输入端加来自输出的负反馈信号,则为同相放大器。

图是同相放大器电路图。

因为e1=e2,所以输入电流极小,输入阻抗极高。

如果运算放大器的输入偏置电流,则e1=e2放大倍数:原理图:反相比例运算放大电路图:1号图:2号图:反相输入放大电路如图1所示,信号电压通过电阻R1加至运放的反相输入端,输出电压vo通过反馈电阻Rf反馈到运放的反相输入端,构成电压并联负反馈放大电路。

R ¢为平衡电阻应满足R ¢= R1//Rf。

利用虚短和虚断的概念进行分析,vI=0,vN=0,iI=0,则即∴该电路实现反相比例运算。

反相放大电路有如下特点1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。

2.vN= vP,而vP=0,反相端N没有真正接地,故称虚地点。

3.电路在深度负反馈条件下,电路的输入电阻为R1,输出电阻近似为零。

运算放大器减法电路原理:图为运放减法电路由e1输入的信号,放大倍数为R3/R1,并与输出端e0相位相反,所以由e2输入的信号,放大倍数为与输出端e0相位相,所以当R1=R2=R3=R4时e0=e2-e1加法运算放大器电路:加法运算放大器电路包含有反相加法电路和同相加法电路.同相加法电路:由LF155组成。

三个输入信号同时加到运放同相端,其输入输出电压关系式:反相加法电路:由运算放大器lm741组成。

(lm741中文资料)反相加法运算电路为若干个输入信号从集成运放的反相输入端引入,输出信号为它们反相按比例放大的代数和。

电压比较器:图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。

几种运算放大器比较器及电路的简单分析

几种运算放大器比较器及电路的简单分析

几种运算放大器比较器及电路的简单分析运算放大器和比较器是两种常见的电子元件,它们在电路中具有不同的功能。

本文将对这两种电子元件进行简单的分析和比较。

一、运算放大器运算放大器是一种用于放大电压信号的电子设备。

它具有高放大倍数和低失真的特点,常被用于放大微弱的输入信号。

运算放大器一般由多级放大电路组成,其中包括差动输入级、差动放大级、共射放大级和输出级。

运算放大器具有以下几个特点:1.高放大倍数:运算放大器通常具有很高的开环放大倍数,可以放大微小的输入信号。

2.低失真:运算放大器的差分输入电阻和输入容量很低,从而减小了输入信号的失真。

3.稳定性好:运算放大器具有很好的直流稳定性和交流稳定性,使其能够在不同的负载条件下稳定工作。

4.大信号驱动能力:运算放大器能够输出较大的电流和电压,可以驱动各种负载。

5.可调增益:运算放大器通常具有可调的增益,可以通过调节电阻、电容或反馈电阻等元件来改变放大倍数。

运算放大器常被应用于放大、滤波、积分、微分和开关等电路中,常见的应用有示波器、滤波器和反馈电路等。

二、比较器比较器是一种用于比较两个电压的电子元件。

它具有高增益和快速响应的特点,常被用于判断输入信号的大小关系。

比较器通常由不同类型的放大电路和判决电路组成,常见的比较器有有限增益比较器、开环比较器和比率比较器等。

比较器具有以下几个特点:1.高增益:比较器通常具有很高的增益,可以放大微小的输入差异。

2.快速响应:比较器的响应时间很短,可以快速判断输入信号的大小关系。

3.可调阈值:比较器可以通过调节电阻、电容或反馈电阻等元件,改变阈值的位置。

4.高输入阻抗:比较器的输入阻抗很高,可以减小输入电路对比较器的影响。

比较器常被应用于开关、报警、触发器和AD转换等电路中,常见的应用有电压比较器、窗口比较器等。

三、运算放大器与比较器的比较虽然运算放大器和比较器都是电路中常用的电子元件,但它们在功能和特性上有一些不同之处。

1.功能:运算放大器的主要功能是放大信号,而比较器的主要功能是比较电压。

运算放大器基础:比较器电路

运算放大器基础:比较器电路

于检测电压何时上升超过某个点。

在电子电路设计中经常使用比较两个电压并根据两个电压的比较提供数字输出的电路。

对于比较器电路,需要一个高增益放大器,这样即使输入端的微小变化也会导致输出电平牢固切换。

运算放大器用于许多电子电路设计,但特定的比较器芯片可提供更好的性能。

1.比较器应用比较器电路在电子电路设计中有很多用途。

通常需要能够检测到某个电压并根据检测到的电压切换电路。

一个例子可以用于温度检测电路。

这可能会产生取决于温度的可变电压。

当温度低于给定点时,可能需要打开加热,这可以通过使用比较器来检测与温度成比例的电压何时降至某个值以下来实现。

对于这些和许多其他用途,可以使用称为比较器的电路。

2.什么是比较器?顾名思义,比较器意味着这些电子元件和电路用于比较两个电压。

当一个高于另一个时,比较器电路输出处于一种状态,当输入条件相反时,比较器输出切换到另一种状态。

比较器基本部件包括一个具有差分输入的高增益放大器- 一个反相输入和一个同相输入。

在工作方面,比较器根据输入状态在高电平和低电平之间切换。

如果同相输入高于反相输入,则输出为高电平。

如果同相输入低于反相输入,则输出为高电平。

比较器工作摘要3.比较器和运算放大器虽然使用运算放大器作为比较器很容易,特别是当包含多个运算放大器的芯片有一个备用运算放大器时,可能很容易使用。

但是,采用这种方法并不总是可取的。

运算放大器可能无法始终正常工作,或者可能无法提供最佳性能。

也就是说,当应用要求不高时,使用这些电子元件总是很诱人,因为它们可能已经可用。

比较器芯片和运算放大器的性能在许多方面有很大不同:运算放大器闩锁:在某些情况下,特别是当运算放大器被强力驱动时,它可能会闩锁,即即使输入发生变化,输出也保持不变。

比较器设计为在此模式下工作,切勿闩锁。

这是使用比较器而不是运算放大器可能具有明显优势的一个关键领域。

开环操作:运算放大器设计为在闭环模式下使用,其电路针对此类场景进行了优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种运算放大器比较器及电路的简单分析集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。

遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

(原文件名:图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过R1的电流I1 = (Vi - V-)/R1 ……a 流过R2的电流I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代数方程得Vout = (-R2/R1)*Vi 这就是传说中的反向放大器的输入输出关系式了。

(原文件名:图二中Vi与V-虚短,则 Vi = V- ……a 因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等,设此电流为I,由欧姆定律得: I = Vout/(R1+R2) ……b Vi等于R2上的分压,即:Vi = I*R 2 ……c 由abc式得Vout=Vi*(R1+R2)/R2 这就是传说中的同向放大器的公式了。

(原文件名:图三中,由虚短知: V- = V+ = 0 ……a 由虚断及基尔霍夫定律知,通过R2与R1的电流之和等于通过R3的电流,故 (V1 – V-)/R1 + (V2 – V-)/R2 = (Vout – V-)/R3 ……b 代入a式,b式变为V1/R1 + V2/R2 = Vout/R3 如果取R1=R2=R3,则上式变为Vout=V1+V2,这就是传说中的加法器了。

(原文件名:请看图四。

因为虚断,运放同向端没有电流流过,则流过R1和R2的电流相等,同理流过R4和R3的电流也相等。

故 (V1 – V+)/R1 = (V+ - V2)/R2 ……a (Vout – V-)/R3 = V-/R4 ……b 由虚短知: V+ = V- ……c 如果R1=R2,R3=R4,则由以上式子可以推导出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2 也是一个加法器,呵呵!(原文件名:图五由虚断知,通过R1的电流等于通过R2的电流,同理通过R4的电流等于R3的电流,故有 (V2 – V+) /R1 = V+/R2 ……a (V1 – V-)/R4 = (V- - Vout)/R3 ……b 如果R1=R2,则V+ = V2/2 ……c 如果R 3=R4,则V- = (Vout + V1)/2 ……d 由虚短知 V+ = V- ……e 所以 Vout=V2-V1 这就是传说中的减法器了。

(原文件名:图六电路中,由虚短知,反向输入端的电压与同向端相等,由虚断知,通过R1的电流与通过C1的电流相等。

通过R1的电流 i=V1/R1 通过C1的电流i=C*dUc/dt=-C*dVout/dt 所以 Vout=((-1/(R1*C1))∫V1dt 输出电压与输入电压对时间的积分成正比,这就是传说中的积分电路了。

若V1为恒定电压U,则上式变换为Vout = -U*t/(R1*C1) t 是时间,则Vout输出电压是一条从0至负电源电压按时间变化的直线。

(原文件名:图七中由虚断知,通过电容C1和电阻R2的电流是相等的,由虚短知,运放同向端与反向端电压是相等的。

则: Vout = -i * R2 = -(R2*C1)dV1/dt 这是一个微分电路。

如果V1是一个突然加入的直流电压,则输出Vout对应一个方向与V1相反的脉冲。

(原文件名:图八.由虚短知Vx = V1 ……a Vy = V2 ……b 由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的,电流I=(Vx-Vy)/R2 ……c 则: Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d 由虚断知,流过R6与流过R7的电流相等,若R6=R7,则Vw = Vo2/2……e 同理若R4=R5,则Vout – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f 由虚短知,Vu = Vw ……g 由efg得 Vout = Vo2 –Vo1 ……h 由dh得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R 3)/R2是定值,此值确定了差值(Vy –Vx)的放大倍数。

这个电路就是传说中的差分放大电路了。

(原文件名:分析一个大家接触得较多的电路。

很多控制器接受来自各种检测仪表的0~20mA或4~20mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,图九就是这样一个典型电路。

如图4~20mA电流流过采样10 0Ω电阻R1,在R1上会产生~2V的电压差。

由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。

故: (V2-Vy)/R3 = Vy/R5 ……a (V1-Vx)/R2 = (Vx-Vout)/R4 ……b 由虚短知:Vx = Vy ……c 电流从0~20mA变化,则V1 = V2 + ~2) ……d 由cd式代入b式得(V2 + ~2)-Vy)/R2 = (Vy-Vout)/R4 ……e 如果R3=R2,R4=R5,则由e-a得Vout = -~2)R4/R2 ……f 图九中R 4/R2=22k/10k=,则f式Vout = -~V,即是说,将4~20mA电流转换成了 ~ 电压,此电压可以送ADC去处理。

(原文件名:电流可以转换成电压,电压也可以转换成电流。

图十就是这样一个电路。

上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。

只要是放大电路,虚短虚断的规律仍然是符合的!由虚断知,运放输入端没有电流流过,则 (Vi – V1)/R2 = (V1 –V4)/R6 ……a同理 (V3 –V2)/R5 = V2/R4 ……b由虚短知V1 = V2 ……c如果R2=R6,R4=R5,则由abc式得V3-V4=Vi上式说明R7两端的电压和输入电压Vi相等,则通过R7的电流I=Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基本相同。

(原文件名:来一个复杂的,呵呵!图十一是一个三线制PT100前置放大电路。

PT100传感器引出三根材质、线径、长度完全相同的线,接法如图所示。

有2V的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。

Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2、Z3可视为短路,D11、D12、D83及各电容可视为开路。

由电阻分压知,V3=2*R20/(R14+20)=200/1100=2/11 ……a 由虚短知,U8B第6、7脚电压和第5脚电压相等V4=V3 ……b 由虚断知,U8A第2脚没有电流流过,则流过R18和R19上的电流相等。

(V2-V4)/R19=(V5-V2)/R18 ……c 由虚断知,U8A第3脚没有电流流过,V1=V7 ……d 在桥电路中R15和Z1、PT100及线电阻串联,PT100与线电阻串联分得的电压通过电阻R17加至U8A的第3脚,V7=2*(Rx+2R0)/(R15+Rx+2R0) …..e 由虚短知,U8A第3脚和第2脚电压相等,V1=V2 ……f 由abcdef 得, (V5-V7)/100=(V7-V3)/ 化简得 V5=*V7-100V3)/ 即 V5=(Rx+2R0)/(1000+Rx+2R0) –200/11 ……g 上式输出电压V5是Rx的函数我们再看线电阻的影响。

Pt100最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至U8C的第10脚,由虚断知,V5=V8=V9=2*R0/(R15+Rx+2R0) ……a (V6-V10)/R25=V10/R26 ……b 由虚短知,V10=V5 ……c 由式abc得V6=V5=[(1000+Rx+2R0)] ……h 由式gh组成的方程组知,如果测出V5、V6的值,就可算出Rx及R0,知道Rx,查pt100分度表就知道温度的大小了。

相关文档
最新文档