图形---正方体与长方体的体积四种题型分类复习
五年级下学期数学 长方体和正方体的体积 考点总结+题型训练 带答案

(4)排水法求不规则物体体积:
被浸没物体的体积等于上升那部分水的体积,计算方法: ① 放入物体后的总体积-原来水的体积,即:V物体 = V现在 - V原 来; ② 容器的底面积×上升那部分水的高度,即:V物体 = S底×h升高 。
19、有一块棱长是80厘米的正方体的铁块,现在要把 它熔铸造成一个横截面积是20平方厘米的长方体,这个 长方体的长是多少米?
体积不变 原正方体的体积:80×80×80=512000(立方厘米) 高:512000÷20=25600(厘米)=256米
20、一个长方体的高减少5厘米,就变成了正方体,正方体 的表面积比原长方体的表面积减少了60平方厘米,原长方 体的体积是多少立方厘米?
22、一块长方形铁皮,长26厘米,宽16厘米,在它的 四个角上都剪去边长为3厘米的正方形,然后焊接成一 个无盖的铁盒,求这个铁盒的容积是多少毫升?
铁盒的长:26-3×2=20(厘米) 铁盒的宽:16-3×2=10(厘米) 铁盒的高:3厘米 体积:20×10×3=600(立方厘米)=600毫升
成一个无盖铁盒,这个铁 盒的容积是792立方厘米.原来这块铁皮的面积是多少 平方厘米?
0.84立方分米=840立方厘米 包装盒的高:840÷15÷7=8(厘米) 8<9 装不下
18、一块正方体的方钢,棱长是20厘米,把它锻造成 一个高80厘米的长方体磨具,这个长方体磨具的底面积 是多少平方厘米?
体积不变 原正方体的体积:20×20×20=8000(立方厘米) 底面积:8000÷80=100(平方厘米)
3、填空。 (1)、一个长方体水箱,相交于同一个顶点的三条棱分别是5dm、 4dm、3dm。这个长方体的体积是( 60 )dm³。
2021最新人教版数学五年级下册长方体和正方体的体积《整理与复习》优质课件

2×2×0.6÷4 = 0.6(dm³) 答:每个人分到的蛋糕有 0.6 dm³。
13
11. 家具厂订购 500根方木,每根方木横截面的面积 是 2.4 dm²,长是 3m。这些木料一共是多少方?
V = Sh
2.4dm²= 0.024m² 0.024×3×500 = 36(m³)= 36(方) 答:这些木料一共是 36方。
答:这个长方体的体积是 10.125 dm³,表面积是 31.5 dm²。
46
11. 图中是新疆鲁番的一种长方体土坯房,其中一
间的底面积是 18.6 m²,高是 2.1 m。它的容积是多 少呢?
葡萄干就是在这样 的房子中晾制的。
18.6×2.1 = 39.06(m³) 答:它的容积是 39.06m³。
9
7. 算一算。
4³= 64 4×3 = 12 4+4+4 = 12
8²= 64 8×2 = 16 8+8 = 16
10
8. 建筑工地要挖一个长 50m、宽 30m、深 50cm的 长方体土坑,一共要挖出多少方的土? 50cm = 0.5m 50×30×0.5 = 1500×0.5 = 750(m³)= 750方 答:一共要挖出 750方的土。
测量并计算。 (3)说一说上面两题你是如何估计的。怎样估计更准?
16
长方体的体积 = 底面积×高 V = Sh 高 = 长方体的体积÷底面积 h = V÷S 底面积 = 长方体的体积÷高 S = V÷h
17
课后作业 1.从课后习题中选取; 2.完成练习册本课时的习题。
18
3 长方体和正方体
3 长方体和正方体的体积
长方体和正方体的体积____知识点及练习题[整理]
![长方体和正方体的体积____知识点及练习题[整理]](https://img.taocdn.com/s3/m/b146f95268eae009581b6bd97f1922791688be31.png)
长方体和正方体的体积知识点1、体积和容积。
(1)体积:物体所占空间的大小(2)容积:容器所能容纳物体的体积像这个长方体木箱的体积除了里面能容纳物体的体积外,还有做成木箱的木板的体积。
一个物体的体积要比一个物体的容积大,因为体积还包括自身材料的体积。
2、体积(容积)单位。
(1)用列表的形式来表述体积单位的大小,以利于记忆。
体积与容积单位之间的关系:1立方厘米=1毫升 1立方分米=1升升和毫升之间的进率是1000,因为1升是1立方分米,1毫升是1立方厘米。
升和毫升相比,升是高级单位,毫升是低级单位,把高级单位的数量换算成低级单位的数量,都要乘相应的进率。
3、因为长方体的体积都是由它的长、宽、高决定的,它的体积=长×宽×高。
正方体是特殊的长方体,长=宽=高,因而它的体积是由棱长决定的,体积=棱长×棱长×棱长。
因为长方体和正方体的底面积是两条棱长决定的,即长方体底面积=长×宽;正方体的底面积=棱长×棱长;所以长方体和正方体的体积又可以说是由底面积和高决定的,它们的体积=底面积×高。
(1)长方体的体积=长×宽×高(2)正方体的体积=棱长×棱长×棱长(3)长方体的体积=底面积×高4、求这根长方体木料的体积要用“底面积×高”,从中间截成两段,表面积实质上增加了两个底面,如果是截成三段,就是截了两次,增加了四个面。
也就是说每截一次,增加两个面。
5、综合运用体积单位、长度单位的知识。
将一个大的形体分成一个小的形体。
将小正方体紧紧地排成一排,能排多少米,实际上就是将这些小正方体的棱长加起来,看有多长。
长方体和正方体的体积基础巩固一、填空题。
1、把一个容积是500ml的量杯里先注入200ml的水,然后放入一个土豆,这时测量杯里的容量为350ml,这个土豆的体积是()cm22、一个底面周长是1。
(完整版)长方体正方体体积

(完整版)长方体正方体体积长方体与正方体体积知识点:1、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh长=体积÷宽÷高a=V÷b÷h宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h= V÷a÷b2.正方体的体积=棱长×棱长×棱长V=a×a×a= a3读作“a的立方”表示3个a相乘,(即a·a·a)长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
3、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米1毫升=1立方厘米1升=1000毫升(1 L = 1 dm3 1 ml = 1 cm3)注意:1、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
2、*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:V物体 =V现在-V原来也可以 V物体=S×(h现在- h原来)V物体= S×h升高3、【体积单位换算】大单位小单位小单位大单位进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米注意:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
六年级下册数学总复习试题-长方体和正方体的体积专项练 全国版(含答案)

长方体和正方体的体积一、单选题1.长方体的6个面()。
A. 一定都是长方形B. 一定都是正方形C. 可能有长方形也可能有正方形2.一个长方体水箱占地15平方米,箱深1.6米,5个这样的水箱可装水( )。
A. 24立方米B. 96立方米C. 120立方米D. 80立方米3.一个长方体的长、宽、高分别为a米、b米、h米,如果高增加3米,新的长方体的体积比原来增加()A. abhB. abh+3C. 3abD. 3h4.正方体棱长扩大2倍,体积扩大()倍。
A. 2倍B. 4倍C. 6倍D. 8倍5.将一根底面是正方形,长为2米的长方体木料削成一根圆柱形木料,削掉部分的木料占长方体木料的()A. B. C. D. 1﹣6.“长方体的体积越大,它的底面积就越大”这一说法是( )A. 正确B. 错误7.一块长方体橡皮泥捏成正方体后,体积()了.A. 大B. 小C. 不变8.一个长方体游泳池长25米,宽14米,高2米,它的占地面积是()。
A. 350平方米B. 50平方米C. 28平方米9.运动员领奖台所占空间的大小,就是这个领奖台的()A. 体积B. 容积C. 表面积10.甲正方体的表面积是乙正方体表面积的4倍,甲正方体的体积是乙正方体体积的( )。
A. 2倍B. 4倍C. 8倍D. 16倍二、判断题11.长方体中,底面积越大,体积也越大。
12.一块铁,第一次把它做成长方体,第二次熔化后把它做成正方体,它们的体积相等13.两个同样大的正方体拼成一个长方体后,体积、表面积都不变。
14.圆柱体、长方体、正方体的体积都可以用“底面积×高”来计算。
15.棱长是6厘米的正方体的表面积和体积相等.(判断对错)16.冰箱的体积就是冰箱的容积。
17.长方体中,底面积越大,体积也越大.18.当正方体的棱长是6厘米时,它的表面积和体积就相同。
19.一个正方体的棱长是3厘米,它的体积是18立方厘米20.如果一个圆柱体与一个长方体的底面积和高都相等,那么它们的体积也一定相等.________.(判断对错)三、填空题21.用2个棱长3厘米的小正方体粘合成一个长方体,这个长方体的长是________厘米,宽是________厘米,高是________厘米.它的表面积是________平方厘米,体积是________立方厘米.22.一个长方体铁皮油箱的容积是112升,底面是边长4分米的正方形,如果不计铁皮的厚度,这个油箱至少用了________平方分米的铁皮做成.23.一个长方体的长16厘米,宽5厘米,高是7厘米,它的表面积是________平方厘米,体积是________立方厘米。
五年级下册数学试题-长方体与正方体的体积总结与练习 北师大版

体积与容积【要点梳理】知识点一、体积与容积1、体积:物体所占空间的大小。
2、容积:容器所能容纳物体的体积。
注:体积是从物体外部量得的,容积是从容器内部量得的。
知识点二、体积、容积单位体积单位与容积单位:m³,dm³,cm³,L,mL。
知识点三、体积单位的换算1、体积单位与容积单位之间的进率:1 m³=1000dm³ 1 dm³=1000cm³1 dm³=1 L 1cm³=1mL 1 L=1000mL2、换算方法:有高级单位化成低级单位乘进率;有低级单位化成高级单位除以进率。
【典型例题】类型一、体积与容积例1、判断:冰箱的容积就是冰箱的体积。
()举一反三:1、判断:同一个物体的体积和容积是一样的。
()类型二、体积、容积单位例2、在括号里填上适当的单位名称。
旗杆高15()教室面积80()油箱容积16()一瓶墨水60()举一反三:2、在括号里填上适当的单位名称。
(1)教学楼高12(),占地面积为800(),教学楼的体积约是10000()。
(2)汽车油箱深60(),可装汽油90(),合90000()。
类型三、体积、容积单位换算例3、3.5立方米=()立方分米 470立方厘米=()立方分米0.8立方米=()立方厘米 60立方分米=()立方米4300毫升=()升 35立方分米=()升1200平方厘米=()平方分米=()平方米8.25立方米=()立方分米=()立方厘米4.8升=()立方分米=()立方厘米举一反三:3、(1) 2.5立方分米=()立方厘米(2) 7090立方厘米=()立方分米(3) 6000立方厘米=()升(4) 300立方厘米=()毫升(5) 420毫升=()立方厘米=()立方分米(6) 7立方米9立方分米=()立方分米【巩固练习】一、填空。
1、物体所占空间的(),叫做物体的体积。
2、容器所能容纳的体积,叫做容器的()。
六年级上册数学课件-67. 长方体和正方体整理与复习苏教版 (共15张PPT)
底侧水棱体容面上长积积积升和的体积
棱是用角钢做的 四周用玻璃做成
底面用铁板做成
22. 给你具体数据你会计算吗?(玻璃、钢板等厚度忽略不计)
(((52134))))这做做做这个这这这个鱼个个个鱼缸鱼鱼鱼缸装缸缸缸占了 要 要要多多用用用少少多多多空升少少少间水平分平??方米方分的分米角米的钢的铁?玻皮璃??
水上升的体积:6×3×0.3=
条件: 鱼缸长:6 dm 宽:3 dm 高:4 dm 水深:3dm
棱是用角钢做的 四周用玻璃做成 底面用铁板做成
这节课我们复习了哪些内容? 你有哪些收获?还有什么问题吗?
敬请指导
正方体
6个面都是正 方形
相对的 两个面 的面积 相等
6个面 面积都 相等
棱长
相对的 棱的长 度相等
12条棱 都相等
联系
正方 体是 一种 特殊 的长 方体
对
141
132
面 不
相
连
33
222
图形王国 长方体和正方体
特征
相同点 不同点
点,线,面 线,面
正 联系 方
体 是
正方体的展开图
141,132,222,33
特
殊
长方体棱长和=4(a+b+c)
的
棱长和
正方体棱长和=12a
长 方
体
表面积
长方体表面积=2(ab+bc+ac) 正方体表面积=6a2
体积单 位 容积单位
m3,dm3,cm3(相邻单位间的进率是1000)
L,mL(1L=1dm3,1mL=1cm3)
体积 容积
长方体体(容)积=abc=S底h 正方体体(容)积=a3=S底h
义务教育教科书 数学
长方体正方体体积经典题型分类
长方体正方体体积经典题型分类
1. 满满都是陷阱型!比如给你一个看似简单的长方体,告诉你一些乱七八糟的条件,然后问你体积到底是多少呀,哎呀,那可得好好动动脑筋,稍不注意就掉坑里啦!
2. 复杂关系纠结型!就像有两个正方体和一个长方体搅和在一起,它们之间还有各种关联,这得捋清楚它们的关系才能算出体积啊,是不是很刺激呀!
3. 藏头露尾神秘型!只给你一部分关于长方体或正方体的信息,其他的要靠你自己去挖掘推理,就好像侦探破案一样,你能找出隐藏的体积秘密吗?
4. 超级变变变型!一开始是个正方体,变着变着就成了个长方体,或者反过来,然后让你算变化后的体积,这可太好玩啦!
5. 实际应用烦恼型!比如要你算一个盒子能装多少东西之类的实际问题,哎呀,这可得联系实际来思考,能解决这种题超有成就感的呢!
6. 创意无限想象型!会让你想象一些奇奇怪怪的长方体或正方体组合,然后计算体积,让你的思维尽情飞翔吧!
我的观点结论是:这些不同类型的长方体正方体体积经典题型,真的是各有各的趣味和挑战,能让我们在解题的过程中不断提升自己的思考能力和对空间的理解呀!。
长方体和正方体知识点及类型题总结
一,概念和定义:1,长方体:由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
1,棱长:两个面相交的边叫做棱。
2,顶点:三条棱相交的点叫做顶点。
3,长宽高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
2,长方体的特征: 1,有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
2,一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
3,正方体:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
4,正方体特点: 1,有6个面,8个顶点,12条棱,12条棱长度都相等,6个面的面积都相等。
2,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5,长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
6,表面积 1,意义:长方体或正方体6个面的总面积,叫做它的表面积。
2,长方体表面积:长方体的表面积=(长×宽+宽×高+长×高)×2 字母表示S=2(ab+ah+bh)3,正方体表面积:正方体的表面积=棱长×棱长×6(任意一个面积×6),字母表示 S=a×a×64,无底(或无盖)长方体表面积= (长×宽+长×高+宽×高)×2 - 长×宽5,无底又无盖长方体表面积=(长×宽+长×高+宽×高)×2 - (长×宽)×26,没盖的正方体表面积=棱长×棱长×57,体积 1,意义:物体所占空间的大小叫做物体的体积。
2,体积单位:立方米,立方分米,立方厘米;用字母表示为:3,体积单位之间的进率:每两个相邻的体积单位之间的进率是1000.4,长方体的体积=长×宽×高=底面积×高字母表示V=abh 或 V=S h5,正方体的体积=棱长×棱长×棱长=底面积×高字母表示 V=a×a×a = a3读作“a的立方”表示3个a相乘,(即a·a·a)6,特殊体积:在一个有水的容器里放入一个物体(如:石头等),水面会上升,水面上升那部分水的体积,就是物体的体积。
长方体和正方体单元整理复习
建立模型
对于复杂的问题,可以尝试建 立数学模型,以便更直观地理
解问题并找到解决方案。
多做练习
通过大量的练习,可以加深对 知识点的理解,提高解题的准
确性和效率。
06 复习策略与建议
系统回顾本单元知识点
长方体和正方体的定义与性质
理解长方体和正方体的基本概念,掌握它们的面、棱、 顶点等要素的数量关系和位置关系。
01 03
性质
02
正方体的所有面都是全等的 正方形。
长方体与正方体关系
正方体是长方体的特例,当长 方体的三组对边分别相等时, 即为正方体。
长方体和正方体都有6个面、 12条棱和8个顶点。
长方体和正方体的表面积和体 积计算公式不同,需要根据具 体形状进行区分和应用。
02 长方体和正方体表面积计 算
03 长方体和正方体体积计算
长方体体积公式推导
长方体体积公式为
$V = l times w times h$,其中 $l$ 是长度,$w$ 是宽度,$h$ 是高度。
公式推导
长方体可以看作是由 $l$ 个长度为 $w$, 高度为 $h$ 的小长方体组成,因此总 体积就是 $l times w times h$。
05 易错点与注意事项
常见易错点总结
概念混淆
学生容易混淆长方体和正方体的 概念,特别是在面对复杂图形时。
计算错误
在计算表面积或体积时,学生可能 会因为疏忽或计算不准确而导致错 误。
单位问题
在解决实际问题时,学生可能会忽 略单位换算,从而导致答案错误。
避免错误方法指导
01
02
03
明确概念
在解题前,首先要明确题 目中涉及的是长方体还是 正方体,以及它们的基本 性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方体与长方体的体积
一、复习旧知
1、长方体有()个面,都是()形,也可能两个相对的面是()形,相对面的面积()。
2、正方体有()个面,都是()形,面积(),长,宽,高都相等的长方体叫做正方体也叫()。
3、长方体的表面积=()。
4、长方体的前、后、左、右四个面的面积=()。
5、长方体的前、后、左、右、上(或下)五个面的面积=()。
6、长方体的前、后、上、下四个面的面积=()。
7、长方体的上、下、左、右四个面的面积=()。
8、正方体的表面积=()
9、长方体的棱长之和=()。
10、正方体的棱长之和=()。
二、教学容:共四种类型
题型一:已知体积,求:
挖一个菜窑,长6米,宽3.5米,要使这个菜窑的容积为42立方米,应挖多深?
练习:
1、一个长方体的体积是30立方厘米,长6厘米,宽5厘米,高( )厘米.
2、一个长方体的体积是96立方分米,底面积是16立方分米,它的高是( )分米.
3、挖一个长和宽都是5米的长方体菜窖,要使菜窖的容积是50立方米,应该挖( )深.
4、把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板有多厚?(损耗不计)
5、把一块棱长8分米的正方体钢锭,熔铸成横截面积是0.1平方米的长方体钢材,熔铸后的钢材有多长?
题型二:甲容器倒入乙容器
在甲箱中装入水,深度为15厘米,若将这些水
倒入乙箱,水深为几厘米?
练习:
1、把60升水倒入一个长6分米,宽2.5分米的长方体水箱,正好倒满,这个水箱深多少分米?
2、长30厘米,宽20厘米,深10厘米的水箱容积为几升?在这里装入3升水,水深为几厘米?
3、一个正方体水箱的容积是125立方分米,把这一满水箱水全部注入到一长方体水箱。
已知长方体水箱长10分米,宽5分米,这个水箱的水深多少分米?
4、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱,量得水深3 分米,这个长方体水箱得底面积是多少?
5、一个长方体鱼缸,从里面量长50厘米,宽30厘米,高40厘米,水面离缸口边5厘米.鱼缸共有水多少升?
6、一个棱长是5分米的正方体水池,蓄水的水面低于池口2分米,水的容量是( )升.
题型三:放入石头或金鱼
在一个棱长是3分米的正方体水箱中装有半箱水,现把一块石头完全浸没在水中,水面上升6厘米。
这块石头的体积是多少?
练习:
1、有一个长方体玻璃缸,长3分米,宽2分米。
放入一块不规则的石头后水深1.5分米,捞出这块石头后,水面下降了0.5分米。
这块石头的体积是多少?
2、一个棱长为8cm的正方体容器水平放在桌面上,里面装有6cm的水。
现在把一块珊瑚石放入水中并被淹没,水上升到7cm。
求珊瑚石的体积是多少。
3、在一个长120厘米、宽60厘米的长方体水箱里,放入一块长方体的铁块后,水面就比原来上升2厘米。
已知铁块的长和宽都是20厘米,求铁块的高。
4、把一个体积为460立方厘米的石块放入一个长方体容器中,完全浸入水中后,水面由148厘米上升到150厘米。
这个容器的底面积是多少?
5、一个长方体玻璃容器,从里面量长、宽均为2dm,向容器中倒入5.5L水,再把一个苹果放入水中。
这时量得容器的水深是15cm。
这个苹果的体积是多少?
例4:一个长1米、宽8厘米、高5厘米的长方体木料,锯成长度都是50厘米的两段,表面积比原来增加多少平方厘米?
题型四:切开表面积增加
1、一个长方体高26厘米,沿着水平方向横切成两个小长方体,表面积增加了80平方厘米,求原来长方体的体积。
2、一个7分米高的长方体,横截成两个长方体,表面积增加11平方分米,原来这个长方体的体积是多少?
3、一根长6米的长方体木料,把它从中间截成两段,表面积增加12平方分米,这根长方体木料的体积是多少立方米?
4、东山乡要挖一条长是1.2千米,上口宽3米,下底宽1.2米,深1.5米的灌溉渠,计划15天挖完,平均每天挖多少方?
5、一个长方形水池口周长为140米,长比宽多30米。
用每分钟进水20立方米的水管进水2小时,这时池水深多少米?
四、课后作业
1、每瓶酒精50毫升,装200瓶,需要酒精( )升;如果有3.5立方分米酒精,一共可以装( )瓶。
2、一种冷藏车的车厢是长方体,从里面量长3米,宽2米,高1.8米。
如果里面的食物只放到车厢一半的高度,食物的体积是多少?
3、一列运煤火车有大小相同的车厢18节,每节车厢从里面量长13米,宽2.5米,装煤高度为1.2米。
如果每方煤重1.34吨,这列火车共运煤多少吨?(得数保留一位小数)
4、有一根8分米长的长方体木料,沿与底面平行的方向锯成两段,这两根木料总的表面积比原来多1平方分米。
求原来这根长方体木料的体积.
5、把一块棱长是20厘米的正方体钢坯,锻造成底面积是16平方厘米的长方体钢材,长方体钢材长多少厘米?。