面波的频散特征和地层分层

合集下载

地震瑞雷面波测深指导

地震瑞雷面波测深指导

一、面波测深原理要点[返瑞雷面波是一种沿介质自由表面传播的弹性波,由英国科学家瑞雷 (Rayleigh 1887)发现和数学论证。

随着面波探测在天然地震和工程 勘察领域中的应用,面波理论在原理、测量技术和数据处理方法上,都 得到很大的发展。

了解面波的原理是有效应用面波测深的基础。

面波、波长和波及深度、面波速度和剪切波速点状震源产生的球面波,将弹性能量向周边介质传递,在地表自由 面上,受界面弹性条件的制约,产生沿地表传播的压缩波和 SV 型剪切 波,叠合形成瑞雷面波。

它的传播规律,反映了传播途径中所涉及介质 的弹性参数。

在均匀介质中,面波的振幅随深度增大而减小,其弹性能量的传播 深度和它的波长有关,波长越长的面波,它的能量波及地表以下的深度 也越大。

面波沿地表传播的速度和波及深度内介质的弹性参数有关,包 括介质的密度、压缩和剪切波速度,而主要的影响参数是介质的剪切波 速度。

相速度、弹性分层和频散均一地层表面激发的面波,其不同波长组分涉及的深度内介质弹性 参数相同,从而具有相同的传播速度。

弹性分层的地层内不同深度的介 质弹性参数有差别,从而面波不同波长组分的传播速度也不同。

单一波 长(或单一频率)组分的面波传播速度称该波长(或频率)的相速度, 不同频率的相速度有差异称为频散(Dispersion)。

研究水平地层面波 的频散特征,可以求得地层内部不同深度的弹性参数,这也就是面波测 深方法依据的基本原理。

水平分层、面波模态对于水平分层地层,面波沿地表的传播,由于途经介质的多层结构, 包含了符合各个界面条件的多个模态(Mode)。

震源激发的弹性波,在 各个分层中多次反射、透射、谐振,再在地表干涉、叠加的过程,导至 地表传播的各个模态的弹性能量和波长,都随距离逐步演变。

分层地层 的弹性结构,决定了面波的模态组成。

了解分析不同地层分层结构的面 波模态特征,才能有效地应用面波测深方法。

分层类型和模态组成、基阶和高阶由面波模态的角度看,最简单,也是常见的地层分层结构,是地层 刚度随深度逐层增加,此时地表面波的大部分能量都集中在基阶模态中, 形成的频散特征也比较简单,容易据以求出地层的弹性参数。

面波的频散特征和地层分层

面波的频散特征和地层分层

四、面波频散特征和地层结构面波沿地表传播波速的频散现象,反映了与其波长相应的深度范围内的地层弹性分布。

地层的弹性参数分布越不均匀,面波频散的表现也越复杂。

对于横向均匀的分层地层,面波表现出可以区分和识别的频散特征,从而划分出不同的地层弹性分层类型。

面波频散数据的图示方式面波的频散规律可以表示为频率(F)和相速度(Vc)二维座标图形中的一系列数据点,也可以由频率和相速度换算出该频率的波长(L=Vc/F),将频散数据表示在以半波长(L/2)和相速度(Vc)为座标轴的二维图形中。

下面用同一地层模型正演的频散数据,显示在两种数据座标图形中供比较。

左图是此组面波频散数据在频率(F)/相速度(Vc)座标中的图形。

横座标是频率轴,纵座标是相速度轴。

各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。

这是频散数据最基本的图示方式,可以表现出相速度随频率变化的趋势。

左图是同一组面波频散数据在半波长(L/2)/相速度(Vc)座标中的图形。

横座标是相速度轴,纵座标是半波长轴。

基阶频散数据表示为其中的兰色点,各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。

如果需要显示此组频散数据代表的地层参数,就可以把横座标作为剪切波速 (Vs)轴,纵坐标当作深度(Z)轴,用同样的比例尺作出地层剪切波速断面作对比。

由于面波由地表向下的波动影响深度和它的半波长关系密切,利用这种对比显示,往往可以找出地层断面在频散数据中反映出的特征。

当然如此对比绝不是意味着半波长就是深度,或者相速度就等于剪切波速。

这种频散数据显示方式,可以由频散数据预先估计地层波速断面的轮廓,并且在反演后和地层参数直观的对比。

此外,如果将频散数据换算成相应的频率和波数(K = F/Vc),还可以在频率波数谱图中,标出各个模态频散数据在能量谱中的座标位置,比较各模态在不同频段的相对能量。

按面波频散特征划分地层结构类型面波的频散现象反映了地层沿深度弹性波速的差异。

地震勘探中的常见地震干扰波及压制方法

地震勘探中的常见地震干扰波及压制方法

地震勘探中的常见地震干扰波及压制方法论文提要在地震勘探中激发地震波时,由于激发、接收条件,自然环境和地表条件的影响,我们所采集到的地震数据中,既有有效波也有干扰波。

根据干扰波的物理特征、形成机理和形态,常把地震数据上的噪声分为规则噪声和随机噪声两大类。

规则噪声具有明显的运动学特征 ,如:面波、线性干扰、平行折射、声波、多次波干扰等,可以根据其运动学特征选择针对性的衰减方法;随机噪声是一种无规律的噪音,如:自然界风吹草动所产生的猝发脉冲、野值等。

为了提高地震勘探的精度,完成在各种复杂地区的勘探任务,使地震资料能更真实地反映地下的地质情况,如何突出有效波,压制干扰波就成为一个极其重要的问题。

通过暑假的实践,本论文中针对地震勘探中的常见地震干扰波进行总结、分类、衰减,并在国产软件GRISYS平台上,针对不同的干扰波进行分析,总结针对不同噪音的衰减方法。

正文一、规则干扰波规则干扰波是指有一定的主频和一定视速度的干扰波。

例如面波、声波、线性干扰波、多次波等。

下面就规则干扰波中的面波、声波、多次波和50Hz交流电干扰进行介绍。

(一)面波图1 面波的形成机理及实际地震记录上的面波从震源发出的波动分为两种: 一种是质点振动方向与传播方向一致的波,称为纵波。

另一种是质点振动方向与传播方向垂直的波,称为横波。

纵波的传播速度较快,在远离震源的地方这两种波动就分开,纵波先到,横波次之。

因此纵波又称P波,横波又称S波。

在没有边界的均匀无限介质中,只能有P波和S波存在,它们可以在三维空间中向任何方向传播,所以叫做体波。

但地球是有限的,有边界的,在界面附近,体波衍生出另一种形式的波,它们只能沿着界面传播,只要离开界面即很快衰减,这种波称为面波。

面波实际上是体波在地表衍生而成的次生波, 面波是一种很强并广泛存在的规则干扰波 ,在炮集上呈线性分布 ,其特征为低频、低速且振动延续时间长 ,严重影响中深层有效反射 ,大大降低地震资料的信噪比,如图1所示。

面波的频散特征和地层分层

面波的频散特征和地层分层

四、面波频散特征和地层结构面波沿地表传播波速的频散现象,反映了与其波长相应的深度范围内的地层弹性分布。

地层的弹性参数分布越不均匀,面波频散的表现也越复杂。

对于横向均匀的分层地层,面波表现出可以区分和识别的频散特征,从而划分出不同的地层弹性分层类型。

面波频散数据的图示方式面波的频散规律可以表示为频率(F)和相速度(Vc)二维座标图形中的一系列数据点,也可以由频率和相速度换算出该频率的波长(L=Vc/F),将频散数据表示在以半波长(L/2)和相速度(Vc)为座标轴的二维图形中。

下面用同一地层模型正演的频散数据,显示在两种数据座标图形中供比较。

左图是此组面波频散数据在频率(F)/相速度(Vc)座标中的图形。

横座标是频率轴,纵座标是相速度轴。

各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。

这是频散数据最基本的图示方式,可以表现出相速度随频率变化的趋势。

左图是同一组面波频散数据在半波长(L/2)/相速度(Vc)座标中的图形。

横座标是相速度轴,纵座标是半波长轴。

基阶频散数据表示为其中的兰色点,各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。

如果需要显示此组频散数据代表的地层参数,就可以把横座标作为剪切波速 (Vs)轴,纵坐标当作深度(Z)轴,用同样的比例尺作出地层剪切波速断面作对比。

由于面波由地表向下的波动影响深度和它的半波长关系密切,利用这种对比显示,往往可以找出地层断面在频散数据中反映出的特征。

当然如此对比绝不是意味着半波长就是深度,或者相速度就等于剪切波速。

这种频散数据显示方式,可以由频散数据预先估计地层波速断面的轮廓,并且在反演后和地层参数直观的对比。

此外,如果将频散数据换算成相应的频率和波数(K = F/Vc),还可以在频率波数谱图中,标出各个模态频散数据在能量谱中的座标位置,比较各模态在不同频段的相对能量。

按面波频散特征划分地层结构类型面波的频散现象反映了地层沿深度弹性波速的差异。

4实验四地震勘探实验(面波法)

4实验四地震勘探实验(面波法)

实验四地震勘探实验(面波法)一、实验原理瑞雷面波法用于勘探,与以往的弹性波法(反射波法和折射波法)差别在于:它应用的不是纵波和横波,而是以前反射波法和折射波法视为干扰的面波。

其原理是:面波具有频散的特性,其传播的相速度随频率的改变而改变。

这种频散特性可以反映地下介质的特性。

瑞雷面波的特点:瑞雷面波速度低、瑞雷面波在介质中泊松比在0.4~0.5范围内,面波速度与横波速度关系基本接近、瑞雷面波对地层的分辨能力,决定于频率,频率高则分辨能力强。

上图为72道的面波采集记录:震源在左上角,同一震源下的直达波、折射波、反射波和面波遵循各自的传播规律,分布在不同的区域。

其中面波传播的特征:近震源处发育、震幅大、传播速度低。

上图为实际勘探过程中采集得到的面波记录:以近震源、小道距、长采样、宽频率激发、低频率接收。

工程检测方面的应用实例:上图采集地点为:云南某高速公路的路基检测,检测深度为4米。

由图中的“频散曲线”分层可以看出:每层的厚度约在0.3米-0.5米。

填筑路基施工是分层进行,松散料经过压实,达到压实度后再进行下一层的填料。

图中频散曲线的拐点清晰,分析的层厚度在0.35米-0.5米之间。

二、实验目的1.了解面波法的原理;2.了解面波法工作布置及观测方法;3.掌握面波法数据采集、处理和解释,熟练操作相关软件。

三、实验仪器SWS型多波列数字图像工程勘察与工程检测仪。

该系统由主机、多芯电缆、检波器、触发器、震源(大锤或炸药)、铁板、直流电源、直流电源线以及数据采集、处理和解释软件等组成。

四、实验步骤1.在工区布设测线在工区布设测线,原则:由南向北、由西向东测线号与测点号依次增大。

使用皮尺标注检波器位置与激发点位置。

2.连接仪器的各个部分将主机、电源、多芯电缆、检波器、大锤、触发器按正确的方式一一连接起来。

注意:各接口均使用“防呆”设计,电缆插头与对应的插槽才能连接,电缆插头与非对应的插槽不能连接。

禁止暴力插拔各插头、插槽,以防仪器损坏。

面波勘探技术在强夯地基处理效果检测中的应用

面波勘探技术在强夯地基处理效果检测中的应用

面波勘探技术在强夯地基处理效果检测中的应用•摘要:面波勘探是近几年发展起来的一种新的浅层地球物理勘探方法,具有简便、快速、经济、分辨率高、成果直观、适用场地小等优点。

文章介绍了面波勘探技术的探测原理、主要特点以及野外测试方法,并通过在强夯地基检测中的应用实例说明其在工程中的应用效果。

关键词:瑞利面波;瞬态法;强夯地基检测;对比试验一、面波勘探技术概述面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。

面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。

人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。

它们的测试原理是相同的,只是产生面波的震源不同罢了。

目前常使用瞬态面波法进行勘探。

二、勘探原理面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S波)不同,它是一种地滚波。

弹性波理论分析表明,在层状介质中,拉夫波是由SH波与P波干涉而形成,而瑞利波是由SV波与P波干涉而形成,且R波的能量主要集中在介质自由表面附近,其能量的衰减与r-1/2成正比,因此比体波(P、S波∝r-1)的衰减要慢得多。

在传播过程中,介质的质点运动轨迹呈现一椭圆极化,长轴垂直于地面,旋转方向为逆时针方向,传播时以波前面约为一个高度为λR(R波长)的圆柱体向外扩散。

在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)计算出来,即 P波占7%、S波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。

三、野外工作方法应用瞬态面波法进行现场测试时一般采用多道检波器接收,以利于面波的对比和分析。

当锤子或落重在地表产生一瞬态激振力时,就可以产生一个宽频带的R波,这些不同频率的R波相互迭加,以脉冲信号的形式向外传播。

多层层状介质的瑞利面波频散特性

多层层状介质的瑞利面波频散特性

多层层状介质的瑞利面波频散特性杨天春;肖巧玲【摘要】采用传递矩阵法对多层各向同性的层状弹性固体介质瑞利波相速度频散特性及自由表面的垂直位移强度特征进行研究,便于今后对实测频散曲线有更清楚的认识和更合理的反演解释.设计多组含4层或5层介质的层状介质模型,利用传递矩阵法计算它们的相速度频散曲线、各阶模式的地表垂直位移曲线和其合并化的频散曲线,从而了解含有绝对或相对软弱夹层的地基模型、正常地层顺序地基模型的频散特性.根据模拟计算结果可知,当地层中存在绝对软弱夹层或相对软弱夹层时,其合并化频散曲线一般会出现"之"字形现象,但二者位移曲线的特征是不同的;含绝对软弱夹层时,位移曲线是各模式分段占优,而含相对软弱夹层时,位移主要还是以基阶模式为主;对于多层介质的正常地基模型而言,其位移曲线也主要是以基阶模式为主,但其合并化频散曲线有时也会出现"之"字形现象,这主要与各介质层的层速度等参数有关.【期刊名称】《物探与化探》【年(卷),期】2009(033)003【总页数】5页(P299-303)【关键词】瑞利波;"之"字形频散;层状介质;传递矩阵法【作者】杨天春;肖巧玲【作者单位】湖南科技大学,土木工程学院,湖南,湘潭,411201;湖南科技大学,机电工程学院,湖南,长沙,410082【正文语种】中文【中图分类】P631.4近年来,由于瞬态瑞利面波法操作简单,分层精度较高,而得到广泛的应用和深入的研究[1-3]。

瑞利面波频散曲线一般具有多阶性,即同一频率对应多个模式波,当地层中存在软弱夹层时频散曲线会更加复杂,从而给实测频散曲线的解释带来了困难。

过去,对于软弱夹层瑞利波频散特性的研究,主要是讨论绝对软弱夹层的情况,即某一层介质的横波速度比其余各层介质的横波速度都要小,或者是讨论简单3层介质的情况[4-8],而对于4层以上介质和存在相对软弱夹层(即某层的横波速度小于相邻介质层的横波速度,而并非是最小值)的情况研究甚少。

(完整版)面波频散特征和地层结构

(完整版)面波频散特征和地层结构

(完整版)面波频散特征和地层结构面波频散特征是指当面波在地表上传播时,不同频率的波长在传播中受到不同程度的衰减和速度变化的现象。

这种频率衰减和速度变化的差异称为频散。

频散特征可以通过频率-波数谱分析来研究。

在研究面波频散特征时,常用的方法是面波分析法。

通过在地表上布设多个地震仪,可以得到不同位置上的地震记录。

然后,使用频率-波数谱分析方法对地震记录进行处理,得到面波每个频率下的相位速度和衰减系数。

由于地震波的频率、波长和地层结构之间存在密切的关系,因此通过分析面波的频散特征,可以反演地层结构的信息。

面波的频散特征对地质勘探和地震工程具有很大的应用价值。

首先,通过分析面波的频散特征,可以反演地下结构的速度和衰减参数。

这对于地质勘探来说是非常重要的,可以帮助研究者了解地下地质构造和地层分布。

其次,面波频散特征可以用于反演地震波的散射衰减和速度模型,从而为地震工程提供重要的参数和依据。

要分析面波频散特征对地层结构的影响,需要考虑地下的速度变化和衰减分布。

地层结构越复杂,地下的速度和衰减变化也越大,面波频散特征也会呈现出较强的变化。

因此,通过采集地震数据和进行频率-波数谱分析,可以较为准确地反演地下的速度和衰减分布,进而确定地层结构。

总之,面波频散特征与地层结构之间存在紧密的关系。

通过分析面波的频散特征,可以反演地下的速度和衰减参数,从而了解地下地质结构和地层分布。

面波频散特征在地质勘探和地震工程中有着重要的应用价值,可以提供地质和工程参数,为地球科学研究和工程设计提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、面波频散特征和地层结构面波沿地表传播波速的频散现象,反映了与其波长相应的深度范围内的地层弹性分布。

地层的弹性参数分布越不均匀,面波频散的表现也越复杂。

对于横向均匀的分层地层,面波表现出可以区分和识别的频散特征,从而划分出不同的地层弹性分层类型。

面波频散数据的图示方式面波的频散规律可以表示为频率(F)和相速度(Vc)二维座标图形中的一系列数据点,也可以由频率和相速度换算出该频率的波长(L=Vc/F),将频散数据表示在以半波长(L/2)和相速度(Vc)为座标轴的二维图形中。

下面用同一地层模型正演的频散数据,显示在两种数据座标图形中供比较。

左图是此组面波频散数据在频率(F)/相速度(Vc)座标中的图形。

横座标是频率轴,纵座标是相速度轴。

各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。

这是频散数据最基本的图示方式,可以表现出相速度随频率变化的趋势。

左图是同一组面波频散数据在半波长(L/2)/相速度(Vc)座标中的图形。

横座标是相速度轴,纵座标是半波长轴。

基阶频散数据表示为其中的兰色点,各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。

如果需要显示此组频散数据代表的地层参数,就可以把横座标作为剪切波速 (Vs)轴,纵坐标当作深度(Z)轴,用同样的比例尺作出地层剪切波速断面作对比。

由于面波由地表向下的波动影响深度和它的半波长关系密切,利用这种对比显示,往往可以找出地层断面在频散数据中反映出的特征。

当然如此对比绝不是意味着半波长就是深度,或者相速度就等于剪切波速。

这种频散数据显示方式,可以由频散数据预先估计地层波速断面的轮廓,并且在反演后和地层参数直观的对比。

此外,如果将频散数据换算成相应的频率和波数(K = F/Vc),还可以在频率波数谱图中,标出各个模态频散数据在能量谱中的座标位置,比较各模态在不同频段的相对能量。

按面波频散特征划分地层结构类型面波的频散现象反映了地层沿深度弹性波速的差异。

在横向稳定的弹性分层地层上,面波的频散包含可以区分的多个模态,表现出各自的特征,反映在以下三个方面:1.各模态面波的相速度随频率的变化规律。

2.各模态面波所传播弹性能量的相对比重。

3.各模态面波的振幅沿地表传播的变化规律。

这些特征的具体表现完全取决于当地地层分层的弹性参数。

按照频散模态特征的不同,可以划分出三种地层分层结构类型:A.波速由表层向底层逐层增高。

B.底层波速最高,中部含低速层。

C.高波速表层复盖下部低速地层。

在这些类型的地层上激发的面波,具有不同的模态特征,分别用实例说明如下。

A.波速由表层向底层逐层增高将这种地层上取得的面波地震记录,在频率波数域提取基阶频散数据,经过反演得到地层断面,再由此地层参数正演出多阶频散数据。

此外,还采用相邻道作互相关求振幅相位谱的方法,经相位校正,得出主频率区段各相邻道间(相当于不同传播距离)的相速度数据。

显示在下面的各个图中:左图为此面波地震记录的处理反演结果。

图中的红色折线为用基阶频散数据(蓝色点)反演得到的地层断面,具有逐层增高的剪切波速(Vs)。

绿色的多条曲线为按此地层波速断面正演得到的各个模态的面波频散数据,由基阶向高阶绿色调逐阶增亮。

左图为此面波地震记录的频率波数谱图。

其上还以白色的粗线显示正演的基阶频散曲线,灰色的粗线显出三组正演的高阶频散曲线。

可以看出,基阶频散曲线通过谱图中最强而连续的能量峰脊,而高阶频散曲线经过的谱区显示的谱能量均很弱。

面波传播的能量基本包含在基阶模态中是这种地层的特点。

左图为此面波地震记录的时间距离域波形图。

其上显著的几条不同视速度波形同相轴逐渐展开,看不出明显的互相干涉消长现象。

左图为此面波地震记录用邻道互相关相位法求得的一组频散数据曲线图。

不同色调显示距震源不同距离的各相邻道间的频散数据曲线。

为减少曲线间的重合,将相速度(Vc)刻度轴的零点逐个右移,以相应的色调显示在图框的上边,曲线代表的面波传播距离(X)区间数值显示在其右。

这些曲线总体上都反映了基阶频散曲线的基本形态。

距震源远的曲线趋向于反映更大波长(对应更大深度)的数据。

这些曲线都包含了比基阶频散曲线更多的曲折,说明两道间互相关相位法敏感地反映了高阶面波的微弱能量。

B.底层波速最高,中部含低速层将这种地层上取得的面波地震记录,也作了如同上述A型地层记录同样的处理。

同时,还将频率波数谱上圈出的基阶能量峰,单另作二维反变换成时间距离域的数据,组成另一个只含基阶面波的地震记录。

对它也用相邻道互相关相位谱法,得出主频率区段各相邻道间的相速度数据,以供和全模态的面波数据对比。

左图为此面波地震记录的处理反演结果。

图中的红色折线为用基阶频散数据(蓝色点)反演得到的地层断面,具有高波速的底层和低波速的中间层。

绿色的多条曲线为按此地层波速断面正演得到的各个模态的面波频散数据,由基阶向高阶绿色调逐阶增亮。

左图为此面波地震记录的频率波数谱图。

其上还以白色的粗线显示正演的基阶频散曲线,灰色的粗线显出三组正演的高阶频散曲线。

可以看出,基阶频散曲线通过谱图中强弱起伏但基本连续的能量峰脊,而高阶频散曲线经过的谱区显示的谱能量并不都很弱,局部甚至有很强的能量峰。

面波传播的能量在某个频率段,明显的出现在高阶模态中是这种地层的特点。

低速夹层中在一定频率段形成高速波导,是产生强高阶模态面波的原因。

左图为原始面波地震记录的时间距离域波形图。

其上显著分布着两组不同视速度的同相轴。

上部视速度较高也较强的一组应该是高阶的面波,其下部低速也较弱的波形应属于基阶面波的表现,两者之间出现明显的干涉消长现象。

左图为原始面波地震记录经过频率波数变换,圈出的基阶能量峰作反变换,得到仅含基阶面波的新记录的波形图。

和原始记录的波形图比较,此图上仅剩下方的一组较低视速度的同相轴。

左图为原始面波地震记录用邻道互相关相位法求得的一组频散数据曲线图。

不同色调显示距震源不同距离的各相邻道间的频散数据曲线。

为减少曲线间的重合,将相速度(Vc)刻度轴的零点逐个右移,以相应的色调显示在图框的上边,曲线代表的面波传播距离(X)区间数值显示在其右。

图中几乎每个距离的频散曲线的相速度,都出现剧烈的起伏跳跃。

从这些曲线中,看不出频散数据随传播距离变化的趋势,也很难找出它们和地层波速断面之间的关联。

估计是由于每道地震记录数据都叠加有多个模态面波的振动,两道互相关相位法在相位校正中容易出现多解的困惑,即使综合处理不同距离的多个两道数据,估计也难于取得稳定的结果。

左图为仅含基阶面波的新记录用邻道互相关相位法求得的一组频散数据曲线图。

和原始记录作同样处理得到的前图相比,可以明显的看出频散数据随传播距离变化的趋势。

和A型地层的实例结果一样,随传播距离的增加,频散曲线也有反映更大的波长(对应于更大的深度)的趋势,但是不象A型地层实例那样简单线性。

C.高波速表层复盖下部低速地层采用的实例为厚层混凝土覆盖地基上作的小道距(0.5m)高采样率(0.03125ms) 地震记录。

在频率波数谱中不仅拾取了基阶面波的频散数据,而且沿其平缓的峰脊向高频段的延伸,不分模态地拾取了相速度数据。

同时也用相邻道互相关相位谱方法,求出沿面波传播距离增大的一组相速度数据,显示在下面的图中:左图为此实例的地震记录波形图。

可以看到长周期面波的波形同相轴,在近激发点的道数据上,还显出叠加上的高频振动,向远道很快衰减。

左图为频率波数谱的上端部分。

其最上端应是基阶面波的能量峰,向下陆续出现几个可分辨的高阶面波能量峰,再向下就是一条平缓的连续能量峰,一直延伸出显示的图框,直至高频段(约2000Hz)。

白色的点线显示拾取的相速度数据反映在频率波数谱中的位置,也表示出拾取时选择的路径。

左图为用上述跨模态拾取方法得到的频散数据曲线。

其下方长波长的数据点,应属基阶模态面波的相速度,基本反映了高速覆盖层下土层的波速特征。

其上向短波长方向急剧增大的相速度点,则统属于各个高阶面波的来源,应该是高速覆盖层的弹性波动响应。

可以看出,对于高速覆盖型的地层,应该利用多模态的面波频散数据来研究地层断面。

按上面图示拾取的跨面波模态频散数据,只是轮廓地反映了地层波速断面,而定量的分层波速参数,还需要采用多模态频散数据的反演方法才能得到。

左图为此实例的地震记录用邻道互相关相位法求得的一组频散数据曲线图。

不同色调显示距震源不同距离的各相邻道间的频散数据曲线。

为减少曲线间的重合,将相速度(Vc)刻度轴的零点逐个右移,以相应的色调显示在图框的上边,曲线代表的面波传播距离(X)区间数值显示在其右。

图中的这组曲线明确的反映出,随离激发点距离的增大频散数据反映各个模态情况的变化。

只有在小距离的频散曲线上,才能反映地层顶部存在高速的覆盖层。

不同地层结构的面波频散特征和测深方法由以上三个代表不同地层弹性分层结构的面波数据实例,可以归结出它们频散特征的差别。

目前所用的多道面波测深方法(在频率波数域拾取基阶频散数据,再用传输矩阵法作分层反演)对不同地层类型的适用性也是有差别的。

A.波速由表层向底层逐层增高。

▪在时间距离域各道面波波形随距离增大而平缓衰减,不见明显的高阶模态面波(高视速度)干涉现象。

▪频率波数谱的主要能量都集中在基阶面波的峰形中。

▪随离震源的距离增大,面波能量中长波长(反映更大深度)的比重也增大。

目前的多道面波测深方法完全可以适应这种地层分层结构类型,时距窗口的设置和基阶模态数据的提取都比较容易得到稳定的结果。

B.底层波速最高,中部含低速层。

▪在时间距离域各道面波波形随距离增大出现明显的高阶模态面波(高视速度) 干涉现象。

▪频率波数谱的主要能量并不都集中在基阶面波的峰形中,在一些频率波数区域会出现很强的高阶模态面波能量峰。

▪随离震源的距离增大,长波长(反映更大深度)面波的能量比重增大,但同时高阶面波的干涉影响也增强。

目前的多道面波测深方法可以适应这种地层分层结构类型,但必须更多地考虑到减少高阶面波能量对提取基阶频散数据的影响,包括:4.在时间距离域采用更适应于突出基阶模态面波的时距窗口。

5.在采集时使用更多的记录道,提高频率波数谱的分辨能力。

对于此种地层结构,如果采集的通道太少,频率波数谱的分辨率太低,或者企图用时距窗口切除高阶面波的影响,往往在提取基阶频散数据时不容易得到稳定的结果。

C.高波速表层复盖下部低速地层。

▪在时间距离域各道面波低视速度长周期的波形上叠加着随距离增大而衰减的短周期波形。

▪频率波数谱的基阶面波峰形仅出现在小波数(大波长)的区域,往大波数(短波长)范围出现密集到连续不可分的高阶模态能量峰。

▪随离震源的距离增大,反映高波速盖层的高阶频散面波急剧衰减。

目前的多道面波测深方法不完全能适应这种地层分层结构类型,也就是:3.基阶模态面波的频散数据只能反映覆盖层以下的地层波速。

相关文档
最新文档