鸡兔同笼问题与假设法讲义及练习题
假设法巧解鸡兔同笼问题及相关例题

假设法巧解鸡兔同笼问题及相关例题下面是我整理的公务员考试行测,希望可以对大家的公务员考试行测备考有所帮助。
假设法巧解鸡兔同笼问题:“假设法”解题的思路是:假设全为鸡,按照头数计算出脚的只数,然后与实际的脚数对比,缺少的脚数就是将兔子假设成鸡而减少的总脚数,再除以每只兔子减少的脚数,则为兔子的数量。
公式:兔数=总脚数-2×总头数÷2“得失”问题公式:损失数=每件应得×总件事-实得数÷每件应得+每件损失【例1】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。
问甲教室当月共举办了多少次这项培训?A.8B.10C.12D.15【答案】D【解析】解法1:根据题意,设甲教室当月举办了x次培训,乙教室当月举办了27-x次培训,则x+y=27、5×10x+9×5y=1290当然,这道题目可以进行解方程求解,但是数字比较大,运算量较大。
解法2:用奇偶特性就非常简单,直接秒杀。
由,50x+45y=1290,1290是偶数,50x是偶数,则45y一定是偶数,即y是偶数。
又,因为x+y=27,27是奇数,则x一定是奇数,选D项。
解法3:若全在甲教室培训,总共可以培训50×27=1350人次,但实际只有1290人次,而甲教室比乙教室多培训5人,所以乙教室培训的次数为1350-12905=12次,则可以得出甲的为15次。
【例2】有大小两个瓶,大瓶可以装水5千克,小瓶可装水1千克,现在有100千克水共装了52瓶。
问大瓶和小瓶相差多少个?A. 26个B. 28个C. 30个D. 32个【答案】B【解析】:将大瓶装水量视为兔脚,小瓶装水量为鸡脚,则大瓶数为100-1×52÷5-1=12个,小瓶数为5×52-100÷5-1=40个。
《鸡兔同笼》讲义与作业

第8讲:鸡兔同笼知识梳理:《孙子算经》是中国古代重要的数学著作,成书大约在四、五世纪,也就是大约1500年前,书中有一道这样的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。
求笼中各有几只鸡和兔? 你会解答这个问题吗?解决这个问题可以用假设法,先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。
典型例题:例1:解决《孙子算经》中的鸡兔同笼问题。
练习1:1、有鸡兔共20只,脚44只,鸡兔各几只?2、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?例2:有5元和10元的人民币共14张,共100元。
问5元币和10元币各多少张?练习2:1、营业员把一张5元人币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来这两种人民币各多少张?2、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。
问大船和小船各几只?例3:鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?练习3:1、龟、鹤共有100个头,鹤腿比龟腿多20只。
问:龟、鹤各几只?2、鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有多少只,鸡有多少只?例4:投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。
小明投10次,共得68分。
小明投中多少次?练习4:1、振兴小学六年级举行数学竞赛,共有20道试题。
做对一题得5分,没做或做错一题都要扣3分。
小建得了60分,那么他做对了几道题?2、乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费2元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿10元,结果搬运站共得运费880元。
问:搬运过程中共打破了几只花瓶?例5:用大、小两种汽车运货。
专题21 假设法解题(鸡兔同笼问题)(解析)

2022-2023学年小学四年级思维拓展举一反三精编讲义专题21 假设法解题(鸡兔同笼问题)知识精讲专题简析:假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
典例分析【典例分析01】今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?分析与解答:鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。
减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
【典例分析02】面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?分析与解答:这道题类似于“鸡兔同笼”问题。
假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。
【典例分析03】一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?分析与解答:求出大车每辆各装多少吨,是解题关键。
如果用36辆小车来运,则剩4×36=144吨,需45-36=9辆小车来运,这样可以求出每辆小车的装载量是144÷9=16吨,所以,这批水泥共有16×45=720吨。
鸡兔同笼问题练习及讲解

鸡兔同笼问题练习及讲解鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。
它不仅能锻炼我们的逻辑思维能力,还能帮助我们更好地理解数学中的方程和算术方法。
下面我们就来一起深入探讨一下鸡兔同笼问题,并通过一些练习题来巩固我们的知识。
一、鸡兔同笼问题的基本概念鸡兔同笼问题通常是这样描述的:在一个笼子里,有若干只鸡和兔,从上面数有若干个头,从下面数有若干只脚,求鸡和兔各有多少只。
为了方便解决这类问题,我们先假设笼子里都是鸡,那么脚的总数就会比实际的少,少的部分就是因为把兔当成鸡来算,每只兔少算了 2 只脚;反之,如果先假设笼子里都是兔,那么脚的总数就会比实际的多,多的部分就是因为把鸡当成兔来算,每只鸡多算了 2 只脚。
二、解决鸡兔同笼问题的方法1、假设法假设全是鸡,那么兔的只数=(总脚数鸡脚数×总只数)÷(兔脚数鸡脚数);鸡的只数=总只数兔的只数。
假设全是兔,那么鸡的只数=(兔脚数×总只数总脚数)÷(兔脚数鸡脚数);兔的只数=总只数鸡的只数。
2、方程法设鸡的数量为 x,兔的数量为 y。
根据头的总数和脚的总数可以列出两个方程,然后联立求解。
三、练习题例 1:一个笼子里有鸡和兔共 35 只,它们的脚一共有 94 只,请问鸡和兔各有多少只?解法一(假设法):假设全是鸡,那么脚的总数为:35×2 = 70(只)比实际的脚少:94 70 = 24(只)每只兔比每只鸡多的脚数:4 2 = 2(只)兔的只数:24÷2 = 12(只)鸡的只数:35 12 = 23(只)解法二(方程法):设鸡有 x 只,兔有 y 只。
x + y = 35 (头的总数)2x + 4y = 94 (脚的总数)由第一个方程得:x = 35 y将其代入第二个方程:2×(35 y) + 4y = 942y = 24y = 12x = 35 12 = 23例 2:笼子里鸡兔共有 100 个头,248 只脚,鸡兔各有多少只?假设法:假设都是鸡,脚的总数:100×2 = 200(只)脚少的数量:248 200 = 48(只)兔的数量:48÷(4 2) = 24(只)鸡的数量:100 24 = 76(只)方程法:设鸡有 x 只,兔有 y 只。
(完整版)假设法解鸡兔同笼问题优质讲义

鸡兔同 笼变形 题
列表 法
假设 法
导学一 列表法解鸡兔同笼
例题1 1. 笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和
兔各有几只?
答:鸡有3只,兔有5只。
当题中数字比较小时,可以用列表法解决鸡兔同笼问题
例题2
2. 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大 瓶比小瓶共多装20千克。问:大、小瓶各有多少个?
我爱展示 2、鹤龟同池,鹤比龟多12只,鹤龟足共72只脚,求鹤龟各有多少只?
答:龟8只,鹤20只
导学二:假设法解鸡兔同笼
例题1
笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和 兔各有多少只?
解:方法一:假设全部是兔 鸡的只数:(35×4-94)÷(4-2)=23(只) 兔的只数:35-23=12(只) 方法二:假设全部是鸡
解:假设全部都装大瓶。 小瓶:(4×50-20)÷(4+2)=30(个) 大瓶:50பைடு நூலகம்30=20(个)
答:有大瓶20个,小瓶30个。
我爱展示
1、笼子里有若干只鸡和兔。从上面数,有6个头,从下面数,有20只脚。鸡
和兔各有几只?
鸡鸡
6
5
4
3
2
兔兔
0
1
2
3
4
脚脚
12
14
16
18
20
答:鸡有2只,兔有4只。
(1)使用假设法的前提:已知鸡与兔头的和,腿的和,求鸡和兔的只数。 (2)解题步骤 (3)公式
解法1:假设全部都是兔: 设兔得鸡 (兔的脚数×总只数-总脚数)÷鸡与兔的腿差= 鸡的只数
总只数-鸡的只数= 兔的只数 解法2:假设全部都是鸡:设鸡得兔
“鸡兔同笼”问题最常用的四种解题方法 练习题(含答案和解析)

“鸡兔同笼”问题最常用的四种解题方法练习题(含答案和解析)鸡兔同笼问题早在1500年前,《孙子算经》中就记载了,小学奥数及小升初考试中经常出现,甚至公务员考试中也会出现。
现面我们就鸡兔同笼相关解法作一简单介绍。
题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头15个,腿40条,球鸡和兔子各有多少只?(请用尽量多的方法解答)1、金鸡独立法分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即20只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从20里减去头数15,剩下来的就是兔的头数20-15=5只,鸡有20-5=15只。
2、吹哨法分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有40-15=15只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有25-15=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有15-5=10只。
3、假设法(1)分析:假设全部是鸡,则有15×2=30条腿,比实际少40-30=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为15-5=10只。
(2)分析:假设全部是兔子,则有15×4=60条腿,比实际多60-40=20只,一只兔子变成一只鸡腿减少2条,20÷2=10只,所以需要10只兔子变成鸡,即鸡为10只,兔子为15-10=5只。
4、方程法(1)分析:设鸡的数量为x只,则兔子有(15-x)只,有2x+4(15-x)=40,解出x=10,所以有鸡10只,兔子15-10=5只。
(2)分析:设兔子的数量为x只,则鸡有(15-x)只,有4x+2(15-x)=40.解得x=5,所以兔子有5只,鸡有15-5=10只。
试题答案:第1题:正确答案:B 答案解析:第2题:正确答案:C 答案解析:第3题:正确答案:D 答案解析:第4题:正确答案:D 答案解析:第5题:正确答案:A 答案解析:第6题:正确答案:C 答案解析:。
假设法解鸡兔同笼 小学数学 课后练习

一、选择题1. 笼子里有鸡兔若干只,从上面数10个头,从下面数36只脚.有()只鸡.A.1 B.2 C.32. 鸡兔同笼,有20个头,54条腿,那么有()A.鸡13只,兔7只B.鸡7只,兔13只C.鸡10只,兔10只3. 在池塘边,有几只青蛙正和鸭子们一起玩耍。
数一数,共有15个头,48只脚,那么一共有()只青蛙。
A.8 B.9 C.104. 小明一共有34元钱,买了笔和本子,笔1元钱一支,本子3元钱一本,本子和笔总数为20,最后正好花完钱,问本子多少本?()A.10 B.9 C.8 D.75. 一只鸡2只脚,一只兔子4只脚。
5只鸡和1只兔子一共有()只脚。
A.18 B.14 C.22二、填空题6. 20张乒乓球桌上一共有50个同学比赛,单打的乒乓球桌有( )张,双打的乒乓球桌有( )张。
7. 活动课上有30个同学在12张乒乓球桌上同时进行乒乓球单打和双打比赛,其中正在进行单打比赛的乒乓球桌有( )张,进行双打的乒乓球桌有( )张。
8. 今有鸡兔同笼,共有头28个,腿92条.鸡有_____只,兔有_____只.9. 鸡兔同笼,从上面数8个头,有22只脚,鸡有( )只.10. 60人参加脑筋急转弯答题游戏,共有10道题,每道题每人都答1次,共答对452次,已知每人都至少答对了6道题,且只答对6道题的有21人,只答对8道题的有12人,只答对7道题和只答对9道题的人数一样多,那么10道题全答对的有________人.三、解答题11. 学校买回4个篮球和5个排球,一共用了185元,一个篮球比一个排球贵8元,篮球、排球的单价各多少元?12. 有鸡兔共20只,脚44只,鸡兔各几只?13. 有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?14. 小梅数她家的鸡与兔,数头有16个,数脚有44只.问:小梅家的鸡与兔各有多少只?。
鸡兔同笼(含答案)

鸡兔同笼(含答案)一、知识点1、由来大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?2、方法回顾画图法列表法砍足法3、假设法鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到。
如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍二、学习目标1、熟悉鸡兔同笼的“砍足法”和“假设法”。
2、利用鸡兔同笼的方法解决一些实际问题。
三、典型例题例题1鸡兔同笼,头共46只,足共128只,鸡兔各几只?练习1修远家养了一些鸡和兔子,同时养在一个笼子里,修远数了数,它们共有35个头,94只脚。
问:修远家养的鸡和兔各有多少只?例题2动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?练习2一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?例题3在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?练习3体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?例题4一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?练习4100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?选讲题工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元。
运完这批花瓶后,工人共得4400元,则损坏了多少个?练习乐宝百货商店委托搬运站运送100只花瓶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题与假设法
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
【例题讲解及思维拓展训练题】
例1:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),
有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),
有兔16—10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
思维拓展训练一:
1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?
2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?
例2: 鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。
这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200—20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100—30=70(只)。
解:有兔[2×100—20]÷(2+4)=30(只),
有鸡100—30=70(只)。
答:有鸡70只,兔30只。
思维拓展训练二:
1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。
问:大、小瓶各有多少个?
2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。
已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
例3:乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费2元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿5元,结果搬运站共得运费790元。
问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费2×500=1000(元)。
实际上只得到790元,少得1000-790=210(元)。
搬运站每打破一只花瓶要损失2+5=7(元)。
因此共打破花瓶210÷7=30(只)。
解:(2×500-790)÷(2+5)=30(只)。
答:共打破30只花瓶
思维拓展训练三:
1、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。
已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
鸡兔同笼练习题
1、鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2、学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。
问:象棋与跳棋各有多少副?
3、班级购买活页簿与日记本合计32本,花了76元。
活页簿每本2元,日记本每本3元。
问:买活页簿、日记本各几本?
4、龟、鹤共有100个头,鹤腿比龟腿多20只。
问:龟、鹤各几只?
5、小蕾花36元钱买了14张贺年卡与明信片。
贺年卡每张3元,明信片每张2元。
问:贺年卡、明信片各买了几张?
6、一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。
问:这几天中共有几个雨天?
7、振兴小学六年级举行数学竞赛,共有20道试题。
做对一题得5分,没做或做错一题都要扣3分。
小建得了60分,那么他做对了几道题?
8、有一批水果,用大筐80只可装运完,用小筐120只也可装运完。
已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有三种小虫共18只,有118条腿和20对翅膀。
问:每种小虫各有几只?
10、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
问:鸡、兔各几只?。