最新合理安排时间、排队论练习题
排队论练习题

第9章排队论判断下列说法是否正确:(1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布;(4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流;(5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统;(9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长;(10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
M/M/1、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求:(1)理发店空闲时间的概率;(2)店内有3个顾客的概率;(3)店内至少有1个顾客的概率;(4)在店内顾客平均数;(5)在店内平均逗留时间;(6)等待服务的顾客平均数;(7)平均等待服务时间;(8)必须在店内消耗15分钟以上的概率。
、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4人,修理时间服从负指数分布,平均需6分钟。
求:(1)修理店空闲时间的概率;(2)店内有3个顾客的概率;(3)店内顾客平均数;(4)店内等待顾客平均数;(5)顾客在店内平均逗留时间;(6)平均等待修理时间。
排队论习题及答案

排队论习题及答案排队论习题及答案排队论是概率论和数学统计中的一个重要分支,研究的是随机事件的排队问题。
在现实生活中,我们经常会遇到排队的情况,如等候乘坐公交车、购物结账等。
排队论的研究可以帮助我们更好地理解和优化排队过程,提高效率和服务质量。
下面,我们将介绍几个排队论的习题及其解答。
习题一:某银行有两个窗口,顾客到达银行的时间服从平均到达率为λ的泊松分布,每个顾客在窗口办理业务的时间服从平均服务率为μ的指数分布。
求平均等待时间和平均排队长度。
解答:首先,我们可以根据泊松分布和指数分布的性质,得到顾客到达时间和服务时间之间的关系。
假设顾客到达时间服从泊松分布,到达率为λ,那么两个顾客到达时间之间的时间间隔服从参数为λ的指数分布。
同样,假设顾客的服务时间服从指数分布,服务率为μ,那么两个顾客的服务时间之间的时间间隔服从参数为μ的指数分布。
根据排队论的基本原理,平均等待时间等于平均排队长度除以到达率。
平均排队长度可以通过利用排队论的公式计算得到。
在本题中,根据M/M/2模型,可以得到平均排队长度的公式为:Lq = λ^2 / (2μ(μ - λ))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率。
接下来,我们可以计算平均等待时间。
根据排队论的公式,平均等待时间等于平均排队长度除以到达率。
所以,平均等待时间的公式为:Wq = Lq / λ综上所述,我们可以通过计算得到平均等待时间和平均排队长度。
习题二:某餐厅有4个服务台,每个服务台的服务时间服从平均服务率为μ的指数分布,顾客到达时间服从平均到达率为λ的泊松分布。
求平均等待时间和平均排队长度。
解答:在这个问题中,我们可以使用M/M/4模型来求解。
根据M/M/4模型,平均排队长度的公式为:Lq = (λ/μ)^4 * (1/(4! * (1 - ρ)))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率,ρ表示系统繁忙度。
平均等待时间的公式为:Wq = Lq / λ通过计算可以得到平均等待时间和平均排队长度。
排队论习题及答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
进行良好的时间管理排序题

进行良好的时间管理排序题时间这东西,就像个调皮的孩子,要是不好好管管它,它能把你的生活搅得一团糟。
那怎么才能把这“小调皮”管得服服帖帖,让咱的日子过得井井有条呢?这就得学会良好的时间管理啦!咱先来说说为啥时间管理这么重要。
你想想,要是一天到晚瞎忙,东一榔头西一棒槌的,到了晚上一躺床上,是不是觉得啥正经事儿都没干?就好比你去菜市场买菜,没有个清单,这儿瞅瞅那儿逛逛,最后可能买回来一堆没用的,真正需要的却没买着。
时间不也一样嘛,如果不规划好,那宝贵的时间就白白浪费掉啦。
那怎么进行良好的时间管理呢?首先,得清楚自己一天都要干啥。
把要做的事儿都列出来,就像给你的时间画个地图。
比如说,工作任务、学习计划、家庭琐事等等,统统写下来。
这就好比你准备出门旅行,得先知道有哪些景点想去,对吧?列好清单后,就得给这些事儿排个队。
重要又紧急的事儿,那肯定得排在前面,就像着火了得先灭火一样。
比如说,明天要交的工作报告,那今天就得赶紧完成。
而那些重要但不紧急的事儿,也不能忽略,得给它们安排个合适的时间。
比如学习一门新技能,这可能不是马上要用,但对未来很有帮助,就得找个固定的时间来做。
排好序之后,可别以为就万事大吉了。
还得给每个任务预估一下时间,别小看这一步,要不然很容易就超时啦。
就像做饭,不估计好时间,菜都糊了饭还没熟,那可就糟糕了。
然后呢,得严格按照这个排序来执行。
这中间可别被各种诱惑给带跑了。
比如说,正写着工作报告呢,突然朋友叫你打游戏,你能去吗?当然不能!得忍住诱惑,先把重要的事儿做完。
还有啊,别忘了给自己留一点休息和放松的时间。
别把自己当成永不停歇的机器,机器还得加油保养呢,何况咱人呢?适当的休息能让你更有精力去完成后面的任务,就像运动员中场休息后能跑得更快一样。
总之,良好的时间管理能让你的生活变得有条不紊,让你有更多的时间去做自己喜欢的事儿,去陪伴家人朋友。
难道你不想拥有这样的生活吗?那就赶紧行动起来,好好管理你的时间吧!。
最新人教版四年级上册数学《合理安排时间、排队论》练习题

16、有棋子51颗,小红和小刚轮流取棋,规定每人至少拿1枚,最多拿3枚,谁取得最后
一个棋子谁胜,要想让小红赢,小红先拿还是后拿?之后怎样拿?17、有24块糖,小明和小强两人轮流取,每人每次至少取1块,最多取3块,谁拿
到最后一块糖谁胜,小强说他一定要赢,小强应先拿还是后拿?之后怎样拿?
后序
亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
希望我的文档能够帮助到你,促进我们共同进步。
孔子曰,三人行必有我师焉,术业有专攻,尺有所长,寸有所短,希望你能提出你的宝贵意见,促进我们共同成长,共同进步。
每一个都花费了我大量心血,其目的是在于给您提供一份参考,哪怕只对您有一点点的帮助,也是我最大的欣慰。
如果您觉得有改进之处,请您留言,后期一定会优化。
常言道:人生就是一场修行,生活只是一个状态,学习只是一个习惯,只要你我保持积极向上、乐观好学、求实奋进的状态,相信你我不久的将来一定会取得更大的进步。
最后祝:您生活愉快,事业节节高。
人教版四年级数学上册合理安排时间、排队论练习题(含知识点)

人教版数学2020-2021 四年级上册试2021-2022学年度 秋季 四年级上学期 人教版数学《数学广角》练习题1、丽丽长大了,想和妈妈学做菜,星期天要学做一个炒鸡蛋,妈妈告诉她这道菜有以下几项工序:敲蛋(1分钟) 搅蛋(1分钟) 切葱(1分钟) 洗锅(2分钟)烧热锅(2分钟) 烧热油(1分钟) 炒蛋(4分钟)请你帮丽丽 想一想怎样合理安排呢?最少需要多长时间?2、一只平底锅上只能煎两条鱼,用它煎一条鱼需要4分钟。
(正反面各2分钟),那么,煎三条鱼至少需要几分钟?3、小刚、小明、小强3人各拿一只水桶去接水,水龙头给3只桶注满水所需的时间分别是4分钟、3分钟、1分钟,现在只有1个水龙头可以接水,怎样安排能使他们总的等候时间最短?这个最短的时间是多少?4、妈妈怎样安排所用的时间最少?杀鱼、洗鱼5分钟 烧鱼10分钟 淘米2分钟 做米饭15分钟5、小明帮妈妈做家务,需要做:用洗衣机洗衣服(20分钟)、扫地(10分钟)、整理书桌(10分钟)、晾衣服(5分钟)。
帮小明想一想怎样合理安排呢?最少需要多长时间?6、小明需要完成的作业:上网查资料(10分钟)、打印资料(5分钟)、读英语故事(4分钟)、练口算(3分钟),他应该如何合理安排完成各项作业呢?最少需要多长时间?7、妈妈中午做饭的工序是:淘米1分钟,煮饭8分钟,洗菜、切菜2分钟,洗碗4分钟,擦桌子3分钟。
请你为妈妈设计一下,怎样做更省时,最少要几分钟?最少需要多长时间?人教版数学2020-2021 四年级上册试8、妈妈用一只平底锅煎鱼,每次只能放两条鱼,煎一条需要2分钟(正、反两面各需1分钟),煎9条鱼至少需要几分钟?9、甲、乙、丙、丁四位同学拿着暖瓶去打开水,热水龙头只有一个,甲接满水要5分钟,乙接满水要2分钟,丙接满水要1分钟,丁接满水要4分钟,怎么安排他们打水的顺序,才使他们打完水所花的总时间(含排队、打水的时间)最少?10、小明每天早晨起床后要做如下事情︰洗漱用5分钟,收拾床褥用4分钟,听广播15分钟,吃早飯8分钟。
排队论测试题

首页 | 课程介绍 | 教学大纲| 授课教案| 测试习题| 教学视频| 实践教学| 考研指导| 参考资料| 前沿追踪| 教学队伍| 交流空测试习题课后习题第一章线性规划第三章图与网络分析第五章存储论第七章对策论综合测试运筹学(96学时)运筹学(48学时)在线测试以上分别服从泊松分布和负指数分布。
为减轻打字员负担,有两个方案;一是增加一名打字员,每天费为 40 元,其工作效率同原打字员;二为购一台自动打字机,以提高打字效率,已知有三种类型打字机其费用及提高打字的效率如表 6-1 所示。
表 6-1型号每天费用 / 元打字员效率提高程度 /%1 37 502 39 753 43 150据公司估测,每个文件若晚发出 1h 将平均损失 0.80 元。
设打字员每天工作 8h ,试确定该公司应采用的方案。
6.8 某商店收款台有 3 名收款员,顾客到达率为每小时 504 人,每名收款员服务率为每小时 240 人,设顾客到达为泊松流,收款服务时间服从负指数分布,分别求 P 0 、 L q 、 L s 、 W q 及 W s 。
6.9 某设备维修中心有 k 名工人,每天到达的需检修的设备服从λ=10 的负指数分布,每名工人维修设备的平均时间服从μ=3 的负指数分布。
现已知设置一名工人的服务成本为每天 4 元,而设备等待损失为每天 25 元,试决定此设备维修中心工人的最佳数字 k 。
6.10 考虑某个只有一个服务员的排队系统,输入为参数λ的普阿松流。
假定服务时间的概率分布未知,但期望值已知为 1/ μ。
(a) 比较每个顾客在队伍中的期望等待时间,如服务时间的分布为:①负指数分布;②定长分布;③爱郎分布,` 值为负指数分布的 1/2 ;(b) 如与值均增大为原来的 2 倍,值也相应变化,求上述三种情况下顾客在队伍中期望等待间的改变情况。
6.11 汽车按泊松分布到达一个汽车服务部门,平均 5 辆 /h 。
洗车部门只拥有一套洗车设备,试分别计算在下列服务时间分布的情况下系统的 L s , L q , W s 与 W q 的值:(a) 洗车时间为常数,每辆需 10min ;(b) 负指数分布, 1/u=10min;(c) t 为 5~15min 的均匀分布;(d) 正态分布,μ=9min,Var(t)=42 ;(e) 离散的概率分布 P ( t=5 ) =1/4 , P(t=10)=1/2, P(t=15)=1/4 。
排队论习题答案

排队论习题答案排队论习题答案排队论是运筹学中的一个重要分支,研究的是排队系统中的等待时间、服务时间以及系统的稳定性等问题。
在实际生活中,我们经常会遇到排队的情况,比如超市、银行、医院等地方。
那么,如何有效地解决排队问题,减少等待时间呢?下面我将通过几个习题来探讨排队论的解题方法。
习题一:某银行有两个窗口,分别为A窗口和B窗口,顾客到达的时间间隔服从指数分布,平均每10分钟到达一人。
A窗口的服务时间服从均值为5分钟的指数分布,B窗口的服务时间服从均值为7分钟的指数分布。
求顾客平均等待时间和平均逗留时间。
解答一:首先,我们需要计算平均到达率λ和平均服务率μ。
根据题目给出的信息,平均到达率λ=1/10=0.1人/分钟,平均服务率μA=1/5=0.2人/分钟,平均服务率μB=1/7≈0.1429人/分钟。
根据排队论的基本原理,当λ<μ时,系统稳定,顾客平均等待时间为0。
当λ>μ时,系统不稳定,顾客平均等待时间为ρ/(μ-λ),其中ρ为系统繁忙率。
由于该题目中有两个窗口,所以我们需要计算两个窗口的繁忙率ρA和ρB。
ρA=λ/μA=0.1/0.2=0.5,ρB=λ/μB=0.1/0.1429≈0.7。
由于两个窗口的繁忙率不相等,我们需要使用排队网络的方法来求解。
根据排队网络的基本原理,顾客平均逗留时间等于顾客在每个窗口的平均逗留时间之和。
根据排队网络的公式,顾客在A窗口的平均逗留时间为1/(μA-λ)≈5分钟,顾客在B窗口的平均逗留时间为1/(μB-λ)≈7.5分钟。
所以,顾客平均逗留时间为5+7.5=12.5分钟。
习题二:某医院门诊部有一个窗口,顾客到达的时间间隔服从泊松分布,平均每10分钟到达一人。
窗口的服务时间服从均值为8分钟的指数分布。
求顾客平均等待时间和平均逗留时间。
解答二:同样地,我们需要计算平均到达率λ和平均服务率μ。
根据题目给出的信息,平均到达率λ=1/10=0.1人/分钟,平均服务率μ=1/8=0.125人/分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学广角》练习题2
1、丽丽长大了,想和妈妈学做菜,星期天要学做一个炒鸡蛋,妈妈告诉她这道菜有以下几项工序:敲蛋(1分钟)搅蛋(1分钟)切葱(1分钟)洗锅(2分钟)烧
热锅(2分钟)烧热油(1分钟)炒蛋(4分钟)请你帮丽丽想一想怎样合理安排呢?最少需要多长时间?
2、一只平底锅上只能煎两条鱼,用它煎一条鱼需要4分钟。
(正反面各2分钟),那么,煎三条鱼至少需要几分钟?
3、小刚、小明、小强3人各拿一只水桶去接水,水龙头给3只桶注满水所需的时间分别是4分钟、3分钟、1分钟,现在只有1个水龙头可以接水,怎样安排能使他们总的等候时间最短?这个最短的时间是多少?
4、妈妈怎样安排所用的时间最少?
杀鱼、洗鱼5分钟烧鱼10分钟淘米2分钟做米饭15分钟5、小明帮妈妈做家务,需要做:用洗衣机洗衣服(20分钟)、扫地(10分钟)、整理书桌(10分钟)、晾衣服(5分钟)。
帮小明想一想怎样合理安排呢?最少需要多长时间?
6、小明需要完成的作业:上网查资料(10分钟)、打印资料(5分钟)、读英语故事(4分钟)、练口算(3分钟),他应该如何合理安排完成各项作业呢?最少需要多长时间?
7、妈妈中午做饭的工序是:淘米1分钟,煮饭8分钟,洗菜、切菜2分钟,洗碗4分钟,擦桌子3分钟。
请你为妈妈设计一下,怎样做更省时,最少要几分钟?最少需要多长时间?
精品文档
8、妈妈用一只平底锅煎鱼,每次只能放两条鱼,煎一条需要2分钟(正、反两面各需1分钟),煎9条鱼至少需要几分钟?
9、甲、乙、丙、丁四位同学拿着暖瓶去打开水,热水龙头只有一个,甲接满水要5分钟,乙接满水要2分钟,丙接满水要1分钟,丁接满水要4分钟,怎么安排他们打水的顺序,才使他们打完水所花的总时间(含排队、打水的时间)最少?
10、小明每天早晨起床后要做如下事情︰洗漱用5分钟,收拾床褥用4分钟,听广播15分钟,吃早飯8分钟。
要完成這些事情,小明至少要花费多长时间?
11、在火炉上烤烧饼,烤好一个烧饼需要4分钟,每烤完一面需要2分钟,炉上只能同时烤2个饼,現在要烤201个烧饼,至少需要多长时间?12、小美招待客人,要烧水沏茶。
洗水壶要3分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯要用5分钟,拿茶叶要用1分钟。
小美估算了一下,完成这些工作最多要用21分钟。
为了使客人早点喝上茶,应该怎样安排?要用多少分钟?
13、理发室有1个理发师,同时来了5位顾客,根据顾客所要的发型,分别需要10分钟、12分钟、15分钟、20分钟和24分钟。
怎样安排他们理发的顺序,才能使这5个人理发及等候所用时间的和最少,最少需要多少分钟?
14、班级大扫除,甲、乙、丙、丁四位同学各提一只水桶同时到一个水龙头接水,他们接满一桶水所需时间分别是4分钟、6分钟、7分钟、5分钟。
怎样安排才能使四人等候时间的总时间最少?
15、桌子上散放着30枚棋子,现在由甲、乙两个人轮流拿,但每次只能拿1~3枚,
精品文档
谁拿到最后一枚谁就获胜,要想让甲赢,甲先拿还是后拿?之后怎样拿?
16、有棋子51颗,小红和小刚轮流取棋,规定每人至少拿1枚,最多拿3枚,谁取得最后一个棋子谁胜,要想让小红赢,小红先拿还是后拿?之后怎样拿?
17、有24块糖,小明和小强两人轮流取,每人每次至少取1块,最多取3块,谁拿到最后一块糖谁胜,小强说他一定要赢,小强应先拿还是后拿?之后怎样拿?
精品文档。