大质量恒星的演化共92页文档
大质量恒星的演化

天文学基础-恒星
3
星云
很稀薄
空气: 1019 原子 / 立方厘 米 真空: 107 原子 / 立方厘米 星云: 1000 原子 / 立方厘米 星际空间:1 原子 / 立方厘米
由气体和尘埃组成,主要成分是氢
星云本身不发光
天文学基础-恒星
4
UOpprieornSsctoariufosrmasastoiosniarteiognion
• 若星体质量更大,核聚变 以 CNO 循 环 的方式进行。 CNO 循环的反应比较快, 可以产生更多能量,这些 恒星会有一个对流核心和 辐射外壳。
天文学基础-恒星
31
恒星质量越大,主序寿命越短。
天文学基础-恒星
32
小质量星的演化
(1) 初始阶段
• 当核心氢气燃烧殆尽之后,剩下的氦核心便会开始塌缩并 产生热,紧邻核心的氢外壳会被加热而开始有热核反应,
37
小质量恒星的主序后演化总结 M < 2 M ⊙
天文学基础-恒星
38
小质量星的演化
HR图上轨迹
天文学基础-恒星
39
大质量恒星的演化
M >2 M⊙
与小质量恒星演化的主要差别:
● 恒星内部的 H 核燃烧通过 CNO 循环进行,内部温度更高, 辐射压对恒星的力学平衡起更重要的作用,主序寿命更短
● 核反应的能量主要以对流的方式向外传递 ● 可以点燃 C,N,O 等更重的元素核燃烧 ● 最后的演化结局不同
分 子 云 中 小 质 量 恒 星 的 形 成
100K,1012/cm3
106 K,3000K 101学基础1-02恒2/星cm3
7×106K, 4500K 1025/cm3
恒星的演化过程

恒星的演化过程恒星是宇宙中最重要的天体之一,它的演化过程影响着其周围的行星和星际物质。
在它们的漫长寿命中,恒星会经历从云状物到恒星形成,从主序阶段到红巨星阶段的不同演化阶段。
下面是恒星的演化过程的详细介绍。
1. 恒星形成恒星形成是整个演化过程中最关键和复杂的环节。
它的过程可以分为分子云崩塌、原恒星盘和原恒星诞生三个阶段。
首先,在一团巨大的分子云内部,由于引力和压力的作用,分子云逐渐收缩,形成一个小密度的核心。
在这个过程中,核心的温度和密度会不断上升,最终会达到能够在核心内部引发核聚变的条件。
当核心密度达到一定程度时,尘埃和气体就会向中心集中形成一个原恒星盘。
在这个原恒星盘中,恒星原料会聚集在中心,并逐渐形成一个中心高温高压的核心,促进核聚变反应的发生。
最终,这个小小的原恒星核将演化为一个新的恒星。
2. 主序阶段主序阶段是恒星演化过程中最长久的阶段,可以持续几十亿年到上百亿年之久。
在这个阶段中,恒星主要通过核聚变反应产生能量,并向外辐射。
在主序阶段中,恒星的质量、半径、亮度和表面温度等特征会随着时间的推移而发生变化。
较小的恒星会持续发生氢-氦核聚变反应,燃料逐渐消耗,而更大的星体则会迅速用尽燃料,向更高级别的演化阶段过渡。
3. 红巨星阶段当恒星的氢燃料用尽后,核反应就会停止。
在某些情况下,它会向氦闪阶段过渡,然后再转到更高级别的演化阶段。
然而,对于大多数恒星来说,它们会开始释放氦核反应的能量,并向外膨胀。
在这个阶段中,恒星的半径会动态地扩大,使它看起来更亮、更红。
这就是著名的红巨星现象。
在红巨星阶段的末期,恒星的核心会因为冷却而停止氦核反应。
如果恒星的质量足够大,核心会在水平分支演化到达第三次重心,开始释放所有的核反应能量,这期间会在星内产生内爆 Supernova 或黑洞、中子星等极端对象。
如果不够大,则会进入梦幻巨星阶段。
4. 末期演化在恒星演化的末期,其演化路径会受其质量、金属丰度、旋转速度和其他参数等因素的影响。
恒星的演化阶段

大质量恒星的演化

铁核开始坍缩
▪ 大质量恒星中心的Fe核开始坍缩
▪ Fe核的密度、温度和引力飞速上升 中心Fe 核电子简并为地球大小
▪ 当电子简并压也不能支持引力 Fe核继续坍 缩到 T >= 1010 K,密度 > 10吨/cm3
• 10 倍电子简并支持的白矮星的密度
铁核加速坍缩
▪ 热伽马射线光子 光致离解 Fe 原子核 消 耗中心核的巨额热能 加速Fe核坍缩
▪ He核不再简并,C和更重的元素可以平稳燃烧。 核心区核反应所产能量主要以对流方式向外传 输
主序阶段H燃烧:CNO循环
▪ 净反应: 12C + 41H + 2e- 12C + 4He + 2v + 7γ ▪ 大质量恒星主序阶段,在H聚变为He的反应中,
• C仅作为一种催化剂 • N和O只是中间反应产物
▪ 当氖枯竭 氧燃烧 + Ne、C、He、H壳层燃 烧+…
▪ 当氧枯竭 …
演化的大质量恒 星内部结构类似 洋葱
脉动变星 Pulsating variable stars
▪ 主序恒星是稳定的
▪ 但主序后恒星并非如此,周期性交替变大变小 ,视为脉动变星
▪ 造父变星(Cepheid variables):最高质量最 亮的脉动变星
• 原型:Delta Cepheid • 周光关系:测量邻近星系的距离
▪ 天琴座RR星变星 (RR Lyrae variables):不 稳定的HB星(小质量恒星)
大质量恒星有高速星风
▪ Eta Carinae (船底座7)
▪ M = 100Msun ▪ L = 3x106Lsun ▪ HST:抛射的尘埃云在膨
▪ He核质量连续增长,但不形成简并He核 在 H-R图上,没有加速攀升的 RGB 和 AGB 阶段
恒星的演化过程示意图

恒星的演化过程示意图
恒星的寿命取 决于它的质量
星云的气体和尘埃一 旦紧缩成一颗原恒星 时.一颗恒星就诞生了
恒星的燃料消耗殆尽 时,它就会膨胀变成
巨星或超巨星
巨星或超巨星
原恒星
质量最大的ห้องสมุดไป่ตู้星遗留物 会形成黑洞,即使光也 无法从黑洞中逃逸出来
巨星或超巨星可能爆 炸成为超新星
超新星
小型和中等恒 星会变成红巨 星,而后又会
变成白矮星
白矮星
耗尽能量后就 变成黑矮星
黑洞
遗留物会变 成中子星
黑矮星
中子星
恒星的演化

恒星的演化§主序星的演化1、恒星演化的基本原理:恒星在一生的演化中总是试图处于稳定状态(流体静力学平衡和热平衡)。
当恒星无法产生足够多的能量时,它们就无法维持热平衡和流体静力学平衡,于是开始演化。
引力在其中起了关键的作用。
恒星从星云中诞生,这个结果是引力造成的,因为引力使得星云中的物质聚集成了恒星。
但是另一方面,引力会使得它在体积上不断收缩,为了使得引力作用在某种程度上达到平衡,恒星需要在内部产生能量,产生能量的目的是为了抗衡引力,否则它会持续收缩。
在达到平衡的过程里,恒星要付出代价,恒星要不断消耗自身物质,产生新的元素,元素在转化的过程中能量释放出来,内部结构也会发生变化,最终有一天恒星没有任何能源可以供给,它的生命就结束了。
所以说恒星的一生是一部与引力斗争的历史。
2、Russel-Vogt原理如果恒星处于流体静力学平衡和热平衡,而且它的能量来自内部的核反应,它们的结构和演化就会完全唯一地由初始质量和化学丰度决定。
这个原理在实际上可能不是非常符合,因为恒星的质量会不可避免地发生变化,但是初始质量和化学丰度仍然是决定恒星结构和演化的重要因素。
这里我们主要谈质量的影响。
3、恒星演化时标核时标(Nuclear Timescale):恒星内部通过核心区(约占恒星质量的十分之一)核反应的产能时间。
比如太阳,它并不是把所有的质量都烧光了,它其实只有0.1倍太阳质量作为可用的燃料。
我们有下面的结果:t n=EL=ηΔMc2L≈0.7%0.1Mc2L≈(1010yr)(MM⊙)LL⊙E是它总的能量,L是光度,也就是它能量消耗的速率,E可以写成ΔMc2,,其中ΔM是恒星核心区的质量,并不是恒星的总质量,η是能量转换的效率。
上式是以太阳质量和太阳光度作为单位的。
一旦恒星的核燃料烧光了,它会快速地变化,进入新的平衡状态,新的平衡状态转变的时标比核反应时标要快得多。
热时标(Thermal Timescale):恒星辐射自身热能的时间,或光子从恒星内部到达表面的时间,是指恒星把自身能量或热量全部辐射光了。
恒星的形成和演化过程

恒星的形成和演化过程恒星是宇宙中最基本的天体之一,它们以其独特的形成和演化过程而引人入胜。
在这篇文章中,我将详细介绍恒星的形成和演化过程。
一、恒星的形成恒星的形成始于分子云中的凝聚过程。
首先,分子云中的原始物质由于引力的作用而逐渐聚集在一起,形成了一个密集的气团。
随着气团的聚集,其内部的温度和压力开始上升,使得气体发生了核聚变反应。
核聚变是恒星形成的关键过程,它发生在高温和高密度的环境中。
在氢气的核心中,质子发生聚变,产生了一个叫做氦的新元素,并释放出大量的能量。
这个能量产生了一种维持恒星稳定的力量,使得恒星能够保持自身的形态。
二、恒星的演化过程1. 主序星阶段恒星的演化通常从主序星阶段开始。
在主序星阶段,恒星处于平衡状态,同时进行着核聚变反应。
恒星以核聚变释放的能量抵消了引力的作用,维持着稳定的形态。
主序星的演化速度取决于其初始质量。
质量较小的主序星会持续稳定地发光和产生能量,直到耗尽核心的氢燃料。
而质量较大的主序星则会更快地耗尽氢燃料,并迅速进入下一个演化阶段。
2. 红巨星和超巨星阶段当主序星耗尽了核心的氢燃料时,核聚变反应会停止。
恒星的核心会收缩,而外层的气体会膨胀。
这个过程使得恒星变得巨大而明亮,形成了红巨星或超巨星。
红巨星或超巨星的外层大气层含有一些重元素,这些元素在恒星的演化过程中产生并流向恒星的表面。
这使得红巨星或超巨星的表面温度降低,呈现出红色的光谱。
3. 恒星的末期演化红巨星或超巨星的演化最终会导致两种可能的结果:超新星爆发或白矮星形成。
当质量较大的恒星耗尽了核心的所有燃料时,它会发生一次剧烈的超新星爆发。
超新星爆发释放出巨大的能量,并产生了新的重元素。
爆发结束后,残余物质会形成中子星或黑洞,而恒星则永远地消失了。
另一方面,质量较小的恒星会进入白矮星阶段。
在这个阶段,恒星的外层气体会逐渐脱落,形成一个高密度的核心。
白矮星将永远保持这个状态,不再进行核聚变反应。
结论恒星的形成和演化过程是一个复杂而壮观的过程。
恒星的演化

恒星的质量(与太阳相比)
ⅹ10
5
2、恒星的演化
诞生期——存在期——死亡期
红色巨星或超巨星
在星云的 气体和尘 埃紧缩
燃料消耗 殆尽时, 膨胀
原恒星 超新星
质量最大的恒星遗留物
爆炸
小型和中 等恒星
星云 黑洞
白矮星
能量耗尽
遗留物
中子星
黑矮星
黑洞
黑洞吞噬中子星
恒 星 的 寿 10 命 (
例三:地球自转能量与其自转周期的关 A 系为 E T 2 ,其中A=1.65ⅹ1039J•S2,T 为地球自转一周的时间,现取 8.64ⅹ104s。最近一百万年来,由于潮 汐作用,地球自转周期长了16s,试估算 潮汐的平均功率为多少?(一百万年取 3.16ⅹ1013s)
5
15
亿 年 )
0
例一:根据教材图1223恒星的质量和寿命 的关系图,估算一颗 质量为太阳质量的1.2 倍的恒星能存在多久? 一个质量为太阳质量 1 2 3 的0.5倍的恒星又能存 在多久? 恒星的质量(与太阳相比)
ⅹ10
例二:有一颗恒星的周年视差为 0.5’’,1月份和7月份地球移动的直 线距离为3ⅹ1011m。试估算该恒星 离我们多远?(结果用l•y来表示, 取二位有效数字)
——高二物理
一、恒星的分类
1、根据物理特征:体积、温度、和亮度来分。
体积:超巨星
体积大
中型星
巨星
中型星 白矮星
中子星
体积小
中子星 白矮星
巨星
超巨星
超巨星
温度:
温度低
巨星
中型星 白矮星
白色 蓝色
中子星
温度高