长郡中学高一招生数学试题(含答案)
湖南省长郡中学2020-2021学年高一入学分班考试数学试题 答案和解析

湖南省长郡中学2020-2021学年高一入学分班考试数学试题答案和解析湖南省长郡中学高一入学分班考试数学试题一、单选题1.已知方程组$\begin{cases} x+y=-7-a \\ x-y=1+3a\end{cases}$的解x为非正数,y为非负数,则a的取值范围是()。
A。
$-2<a\leq3$ B。
$-2\leq a<3$ C。
$-2<a<3$ D。
$a\leq-2$2.已知$a^2+b^2=6ab$,且$a>b>0$,则$\dfrac{a+b}{a-b}$的值为()。
A。
2 B。
$\pm2$ C。
$2\sqrt{2}$ D。
$\pm2\sqrt{2}$3.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()。
A。
$\dfrac{1}{3}$ B。
$\dfrac{2}{3}$ C。
$\dfrac{1}{9}$ D。
$\dfrac{1}{6}$4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便,原理是:如对于多项式$x-y$,因式分解的结果是$(x-y)(x+y)(x^2+y^2)$,若取$x=9$,$y=9$时,则各个因式的值是:$x-y=0$,$xy=81$,$x^2+y^2=162$,于是就可以把“”作为一个六位数的密码,对于多项式$x-xy$,取$x=20$,$y=10$时,用上述方法产生的密码不可能是()。
A。
B。
C。
D。
5.如果四个互不相同的正整数$m,n,p,q$,满足$(5-m)(5-n)(5-p)(5-q)=4$,那么$m+n+p+q=$()。
A。
24 B。
21 C。
20 D。
226.若$x_1,x_2$($x_1<x_2$)是方程$(x-a)(x-b)=1$($a<b$)的两个根,则实数$x_1,x_2,a,b$的大小关系为()。
湖南省长沙市长郡中学2018-2019学年高一下学期入学考试数学试题(带答案解析)

13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积= ,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为 ,半径等于4米的弧田.下列说法不正确的是( )
A.“弦” 米,“矢” 米
(2)当 时,函数 的最大值与最小值的和为 ,求实数 的值.
24.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设g(x)=log4 ,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
25.设函数 是定义域为 的奇函数.
(1)若 ,求使不等式 对一切 恒成立的实数 的取值范围;
B.按照经验公式计算所得弧田面积( )平方米
C.按照弓形的面积计算实际面积为( )平方米
D.按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据 )
14.已知函数 设 表示 中的较大值, 表示 中的较小值,记 得最小值为种新运算: ,已知函数 ,若函数
恰有两个零点,则 的取值范围为()
A. B. C. D.
第II卷(非选择题)
评卷人
得分
二、填空题
16.已知函数 的图象如图所示,则 _____.
17.若 的图象过点 ,则 ______.
18. _____.
19.已知函数 的定义域是 ,且满足 , ,如果对于 ,都有 ,则不等式 的解集为_____.
12.B
【解析】
【分析】
由分段函数的解析式作出 的图象,由题意得出 为奇函数,根据函数关于原点对称作出 的图象,由数形结合得出答案.
长郡中学2024年高一上学期期中考试数学试卷+答案

长郡中学2024年下学期高一期中考试数学命题人:陈家烦、谭泽阳 审题人:毛水 审核人:陈家烦时量:120分钟 满分:150分得分__________一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1.已知a ∈R ,若集合{}{}1,,1,0,1M a N ==−,则“0a =”是“M N ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.下列命题是全称量词命题且为真命题的是( ) A.22,,0a b a b ∀∈+<R B.菱形的两条对角线相等C.00x x ∃∈=RD.一次函数的图象是直线3.设全集U =R ,集合{}1,2,3,4,5,{38,}AB x x x ==<<∈N ∣,则下图中的阴影部分表示的集合是( )A.{}1,2,3,4,5B.{}3,4C.{}1,2,3D.{}4,5,6,74.若函数()248f x x kx =−−在[]5,8上是单调函数,则实数k 的取值范围是( )A.(),40∞−B.][(),4064,∞∞−∪+ C.[]40,64 D.[)64,∞+ 5.已知关于x 的不等式20ax bx c ++>的解集为1132x x<< ,则不等式20cx bx a ++>的解集为( ) A.1123x x−<<−B.{3x x >∣或2}x <C.{23}xx <<∣ D.{32}x x −<<−∣ 6.已知关于x 的不等式227x x a+− 在区间(),a ∞+上恒成立,则实数a 的最小值为( )A.1B.32C.2D.527.17世纪初,约翰•纳皮尔为了简化计算而发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡尔的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N 可以表示成10(110,)n N a a n =×<∈Z 的形式,这便是科学记数法,若两边取常用对数,则有lg lg N n a =+.现给出部分常用对数值(如下表),则可以估计20232的最高位的数值为( ) 真数x2345678910lg x (近似值)0.30103 0.47712 0.60206 0.69897 0.77815 0.84510 0.90309 0.95424 1.000A.6B.7C.8D.98.已知函数()g x 是R 上的奇函数,且当0x <时,()22g x x x =−+,函数()(),0,,0,x x f x g x x = > 若()()22f x f x −>,则实数x 的取值范围是( )A.()2,1−B.()(),21,∞∞−−∪+C.()1,2D.()(),12,∞∞−∪+二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.)9.已知1,0aba =>,且1a ≠,函数()log a y x =−与x yb =的图象可能是( ) A. B.C. D.10.已知函数()()()ln 2ln 8f x x x =−+−,则( ) A.()f x 的定义域为()2,8B.()f x 在定义域内单调递减C.()f x 的最大值为2ln2D.()y f x =的图象关于直线5x =对称11.已知函数()(),f x g x 是定义在R 上的函数,其中()f x 是奇函数,()g x 是偶函数,且()()2f x g x ax x +=−,若对于任意121x x >>,都有()()12122g x g x x x −>−,则实数a 可以为( )A.1B.1−C.2D.3三、填空题(本题共3小题,每小题5分,共15分.)12.若幂函数()f x x α=满足()18162f f⋅=,则()4f 的值为__________. 13.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过最初含量0P 的1%.已知在过滤过程中废气中的污染物含量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ektP P −=(0,k P 均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是__________小时.14.已知函数()y f x =的定义域为(),2f x +R 为偶函数,对任意的12,x x ,当122x x < 时,()()12120f x f x x x −>−,则关于t 的不等式()()4224t t f f +<−的解集为__________.(用区间表示)四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)(1)计算130641lg (π2)lg25274++−−;(2)若1122x x −+,求22x x −+的值.16.(本小题满分15分)已知集合{}{}28120,2A xx x Bxa x a =−+>=+∣∣ . (1)若1a =,求()A B ∪R ; (2)若A B ∩=∅,求a 的取值范围. 17.(本小题满分15分)已知函数()249b a xf x ax −−=+是定义在()3,3−上的奇函数,且()215f =−. (1)求,a b 的值;(2)判断函数()f x 在()3,3−上的单调性并加以证明; (3)解不等式()2105f x +− . 18.(本小题满分17分)已知函数()()21log ,2xf x xg x =+=. (1)若()()()()()F x f g x g f x =⋅,求函数()F x 在区间[]2,5上的值域;(2)若()H x =()()11H x H x +−=,并求12320232024202420242024H H H H++++的值;(3)令()()1h x f x =−,则()()()()24G x h x k f x =+−,已知函数()G x 在区间[]1,4上有零点,求实数k 的取值范围. 19.(本小题满分17分)我们把按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.如果一个数列的项是有限个,那么称这样的数列为有穷数列.已知有穷数列()12:,,,2n A a a a n .若数列A 中各项都是集合{11}xx −<<∣的元素,则称该数列为Γ数列.对于Γ数列A ,定义如下操作过程T :从A 中任取两项,i j a a ,将1i j i ja a a a ++的值添在A 的最后,然后删除,i j a a ,这样得到一个1n −项的新数列1A (约定:一个数也视作数列).若1A 还是Γ数列,可继续实施操作过程T ,得到的新数列记作2,A ,如此经过k 次操作后得到的新数列记作k A . (1)设Γ数列11:0,,34A ,请写出1A 的所有可能的结果; (2)求证:对于一个n 项的Γ数列A 实施操作过程T ,总共可以实施1n −次; (3)设Γ数列7111711111:,,,,,,,,,137651234567A −−−−,求9A 的可能结果,并说明理由.长郡中学2024年下学期高一期中考试数学参考答案一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)题号 1 2 3 4 5 6 7 8 答案ADCBCBDA7.D 【解析】设2023210n a =×,因为2023lg22023lg220230.30103608.983696080.98369=≈×==+,所以lg a ≈0.98369.由表格可知,910a <<,所以20232的最高位的数值为9.故选D.8.A 【解析】 函数()g x 是R 上的奇函数,且当0x <时,()22g x x x =−+, ∴当0x >时0x −<,则()()22()22g x g x x x x x =−−=−−−−=+, 又()00g =,即()222,0,0,0,2,0,x x x g x x x x x −+<==+>又()()()2,0,,0,,0,2,0,x x x x f x f x g x x x x x =∴= >+>∴当0x 时,()f x x =,则()f x 在(],0∞−上单调递增,当0x >时,()22f x x x =+,则()f x 在()0,∞+上单调递增,()f x 的图象如图所示,∴函数()f x 在区间(),∞∞−+上单调递增,()()222,2f x f x x x −>∴−> ,即()()220,210x x x x +−<∴+−<,()21,2,1x x ∴−<<∴∈−.故选A.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.)题号 9 10 11 答案BCADACD10.AD 【解析】()()()()()ln 2ln 8ln 28f x x x x x =−+−=−− ,定义域为()2,8.令()()28t x x =−−,则ln y t =.因为二次函数()()28t x x =−−的图象的对称轴为直线5x =,又()f x 的定义域为()2,8, 所以()y f x =的图象关于直线5x =对称,且在()2,5上单调递增,在()5,8上单调递减. 当5x =时,t 有最大值,所以()()max ()ln 52ln 852ln3f x =−+−=.故选AD.11.ACD 【解析】根据题意,(()2f xg x ax x +=−,则()()2f xg x ax x −+−=+, 两式相加可得()()()()22f x f x g x g x ax +−++−=, 又因为()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,所以()2g x ax =,若对于任意121x x >>,都有()()12122g x g x x x −>−,则变形可得()()121222g x g x x x −>−,即()()112222g x x g x x −>−,令()()222h x g x x ax x =−=−,则()h x 在区间()1,∞+上单调递增,若0a =,则()2h x x =−在()1,∞+上单调递减,不满足题意;若0a ≠,则()22h x ax x =−是对称轴为1x a=的二次函数,若()h x 在区间()1,∞+上单调递增,则只需0,11,a a>解得1a ,所以a 的取值范围为[)1,∞+,则a 可以取1,2,3.故选ACD.三、填空题(本题共3小题,每小题5分,共15分.)12.1613.5 【解析】依题意,过滤5小时,污染物数量010%P P =,于是得50010%ekP P −=,解得1ln0.15k =−,排放污染物时,01%P P ,即001e 1%e 1%ln0.1ln0.015klklP P t −− ⇔⇔,解得10,55t t − ,所以排放前至少还需要过滤的时间是5小时.故答案为5.14.(),1∞− 【解析】()2y f x =+为偶函数,其图象关于y 轴对称,()y f x ∴=关于2x =对称, 又当122x x < 时,()()()12120,f x f x f x x x −>∴−在()2,∞+上为增函数,故不等式()()4224ttf f +<−可等价为422242tt+−<−−,即426tt<−, 当26t 时,不等式为426t t <−,即()22260tt −+<,无解, 当26t <时,不等式为462t t <−,即()22260tt +−<,即()()23220tt+−<,解得1t <.故答案为(),1∞−.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.【解析】(1)原式1334lg41lg253−+−4lg10013=−+ 412133=−+=. (2)由题意得21112228x x x x −− +=++=,得16x x −+=,同理()2122236x x x x −−+=++=,故2234x x −+=.16.【解析】(1){}28120{2A xx x x x =−+>=<∣∣或6}x >,当1a =时,{}13,{3Bx x A B x x =∪=∣∣ 或6}x >,(){36}A B x x ∪=<R ∣ .(2)当B =∅时,满足条件A B ∩=∅, 此时有2a a >+,无解,故B ≠∅;由A B ∩=∅得2,2,26,a a a a ++解得24a . 所以a 的取值范围是[]2,4.17.【解析】(1)由题意可知(0)0,0,9242(1),595b a f b a f a − == ∴−−= =− +.得1a b ==,经检验成立. (2)由(1)可知()249xf x x =−+,设1233x x −<<<, 则()()()()()()()()()()2212212112121222222212121249494944999999x x x x x x x x x x f x f x x x x x x x −+++−−−−=−+==++++++, 22122121233,0,90,90,90x x x x x x x x −<<<∴−>−<+>+> , ()()120f x f x ∴−>,即()()12f x f x >, ()f x ∴在()3,3−上单调递减.(3)由题易知()215f −=,又()()()21,115f x f x f +∴+− , 由(2)可知()f x 在()3,3−上单调递减,313,11,x x −<+< ∴ +−解得42x −<− ,∴不等式()2105f x +− 的解集为{42}x x −<−∣ .18.【解析】(1)()()()()()()()()221log log 21log 2212221xx xF x f g x g f x x x x +=⋅=+⋅=+⋅×=+221122222x x x=+=+−,易知当[]2,5x ∈时,函数()F x 为增函数,则函数()F x 的最大值为()560F =,函数()F x 的最小值为()212,F =∴函数()F x 的值域为[]12,60.(2)若()H x =()H x =,()()11H x H x ∴+−=, 设12320232024202420242024H H H H S ++++=, 则20232022202112024202420242024H H H H S++++=, 两式相加得202312023220242024H H S+=,即22023S =,则20232S =, 故1232023202320242024202420242H H H H ++++=. (3)()()()222log 4log 4G x x k x k =+−+−,设2log t x =,当[]1,4x ∈时,[]0,2t ∈,则函数()G x 等价于()()244y p t t k t k ==+−+−,若函数()G x 在区间[]1,4上有零点,则等价于()()244y p t t k t k ==+−+−在[]0,2t ∈上有零点,即()()2440p t t k t k =+−+−=在区间[]0,2上有解,()24410t t k t ∴++−+=在区间[]0,2上有解,1()22(1)21144112111t t t t k t t t t ++++++∴===++++++,设1m t =+,则[]11,3,2m k m m∈∴=++, 又12k m m=++在区间[]1,3上单调递增,∴当1m =时,1124k =++=,当3m =时,1163233k =++=,116423m m ∴++ ,即1643k . ∴实数k 的取值范围是164,3.19.【解析】(1)1A 有如下的三种可能结果:11111117:,;:,;:0,433413A A A . (2)因为,{11}a b x x ∀∈−<<∣,有()()111011a b a babab−−−+−=<++且()()()111011a b a babab+++−−=>++,所以{11}1a b xx ab+∈−<<+∣,即每次操作后新数列仍是Γ数列.又因为每次操作中都是增加一项,删除两项,所以对Γ数列A 每操作一次,项数就减少一项,所以对n 项的Γ数列A 总共可进行1n −次操作(最后只剩下一项). (3)由(2)可知9A 中仅有一项.对于满足,{11}a b xx ∈−<<∣的实数,a b 定义运算:1a ba b ab+∼=+,下面证明这种运算满足交换律和结合律:因为1a b a b ab +∼=+,且1b ab ba+=+,所以b a a b ∼=∼,即该运算满足交换律; 又因为()11111b ca b c a b c abc bc a b c a b c bc ab bc caa bc+++++++∼∼=∼==++++++⋅+, 且()11111a bca b a b c abc ab a b c c a b ab ab bc ca c ab+++++++∼∼=∼==++++++⋅+,所以()()a b c a b c ∼∼=∼∼,即该运算满足结合律. 所以9A 中的项与实施的具体操作过程无关. 选择如下操作过程求9A : 由(1)可知1173413∼=;易知771111110;0;0;0;1313556677−∼=−∼=−∼=−∼= 所以5A 的其中一种结果为7,0,0,0,012; 易知5A 经过4次操作后剩下一项为712. 综上可知:97:12A .。
湖南省长沙市长郡中学2023-2024学年高一上学期入学考试数学试题

湖南省长沙市长郡中学2023-2024学年高一上学期入学考试数学试题学校:___________姓名:___________班级:___________考号:___________A.15B..如图,在平面直角坐标系中,一次函数的坐标为和C,已知点A(1)求证:EF是⊙O的切线;(2)若6AE=,23CE=,求»AC14.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).(1)当AP经过CD的中点N时,求点P的坐标;(2)在(1)的条件下,已知二次函数2y x=-+AH右侧的抛物线沿AH对折,交y轴于点M,(1)求出此函数图象的顶点坐标(用含(2)当4a=时,此函数图象交x轴于点为x轴下方图象上一点,过点P作(3)点(21,3)---,(0,3) M a aN a--再根据两点之间,线段最短可得蚂蚁沿台阶面爬行到点的最短路程是此长方形的对角线B长,然后运用勾股定理可完成解答.【详解】如图所示:三级台阶平面展开图为长方形,长为20,宽为(23)315+´=,则蚂蚁沿台阶面爬行到点的最短路程是此长方形的对角线长.B点的最短路程为x,可设蚂蚁沿台阶面爬行到B,由勾股定理得:2222x=+=201525解得:25x=,即蚂蚁沿台阶面爬行到B点的最短路程为25.故选:C7.C【分析】过点C作CH y^轴于点H,过点A作AG y^轴于点G,易证()@V V,AGO OHC AAS根据全等三角形的性质,求出点C坐标,利用待定系数法求解即可.【详解】过点C作CH y^轴于点G,如图所示:^轴于点H,过点A作AG y则有90CHO OGA Ð=Ð=°,90HCO HOC \Ð+Ð=°,ABCO Q 是正方形,OA OC \=,90COA Ð=°,90COH AOG \Ð+Ð=°,AOG HCO \Ð=Ð,()AGO OHC AAS \@V V ,HC OG \=,HO GA =,(1,2)A -Q ,1GA \=,2OG =,(2,1)C \,将A ,C 点坐标代入y kx b =+,得221k b k b +=-ìí+=î,解得3k =,在矩形AOCD中,AO则APH ATPÐ=Ð=Ð∴90Ð+Ð=APT HPJV V∽,四ATP PJH==,AT OJ AO TJAM AM=¢,由6,3AO AD==可得点代入二次函数2y x bx =-+236y x x=-++.由(1)可知45MAM¢Ð=答案第161页,共22页。
湖南省长沙市长郡中学2023-2024学年高一上学期期中数学试题

27 8
ö÷ø
2 3
+ (1.5)-2 ;
试卷第41 页,共33 页
1
(2)若 x2
+
x
-
1 2
=
3 ,求
x3 + x-3 x + x-1 + 7
的值.
六、问答题
18.已知全集为 R
,集合
A
=
{x
2m
-1 £
x
£
m +1} , B
=
ì í
x
î
2
3 -
x
³
2üý . þ
(1)若
m
=
1 2
,求
A
I
(ðR B )
=
-2x x2 -1
=
-
f
(x)
,故函数为奇
函数,故排除 BD,
由
f
(2)
=
4 3
>
0
,
f
æ çè
1 2
ö ÷ø
=
1
-
3 4
=
-
4 3
,故
C
错误,
故选:A. 4.B 【分析】根据题意建立函数关系即可. 【详解】如图,
答案第11 页,共22 页
圆的直径 AC = 2OC = 50cm ,矩形的边 AB = x cm. ∵ ÐABC = 90° , ∴由勾股定理,得 BC = 2500 - x2cm , ∴矩形 ABCD 的面积 y = AB × BC = x × 2500 - x2 cm2 , 又∵ 0 < AB < AC = 50 , ∴ 0 < x < 50 . 故选:B. 5.C 【分析】根据函数的定义域和值域的定义,结合函数图象进行求解即可.
长郡高一数学考试题及答案

长郡高一数学考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^2 + 1D. f(x) = x + 1答案:B2. 已知集合A={1, 2, 3},集合B={2, 3, 4},下列哪个选项是A∩B?A. {1, 2}B. {2, 3}C. {3, 4}D. {1, 3}答案:B3. 函数f(x) = 2x + 3的值域是?A. (-∞, +∞)B. [3, +∞)C. (-∞, 3)D. [2, +∞)答案:A4. 已知直线l的方程为y = 2x + 1,下列哪个点不在直线l上?A. (0, 1)B. (1, 3)C. (-1, -1)D. (2, 5)答案:C5. 函数f(x) = x^2 - 4x + 4的最小值是多少?B. 4C. 8D. 16答案:A6. 已知等差数列{an}的首项a1=1,公差d=2,那么a5的值是多少?A. 9B. 10C. 11D. 12答案:A7. 已知向量a=(3, -2),向量b=(1, 2),那么向量a·b的值是多少?A. -1B. 1D. -3答案:A8. 已知抛物线y^2 = 4x的焦点坐标是?A. (0, 0)B. (1, 0)C. (2, 0)D. (0, 2)答案:B9. 已知函数f(x) = sin(x) + cos(x),那么f(π/4)的值是多少?A. √2B. 1C. 2D. 010. 已知函数f(x) = x^3 - 3x^2 + 2,那么f'(x)的值是多少?A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 2D. x^3 - 9x^2 + 6答案:A二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1=2,公比q=3,那么b3的值是___________。
答案:1812. 已知函数f(x) = x^2 - 6x + 8,那么f(1)的值是___________。
2009年湖南省长沙市长郡中学高一自主招生数学试卷

2009年湖南省长沙市长郡中学高一自主招生数学试卷参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()A.B.C.D.考点:几何体的展开图.分析:利用正方体及其表面展开图的特点解题.解答:解:选项C中红色面和绿色面都是相邻的,故不可能是一个正方体两个相对面上的颜色都一样,故选C.点评:注意正方体的空间图形,从相对面入手,分析及解答问题.2.(5分)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%考点:一元二次方程的应用.专题:增长率问题.分析:设第一季度产值为1,第二季度比第一季度增长了x%,则第二季度的产值为1×(1+x%),那么第三季度的产值是由第二季度产值增长了x%来确定,则其产值为1×(1+x%)×(1+x%),化简即可.解答:解:第三季度的产值比第一季度的增长了(1+x%)×(1+x%)﹣1=(2+x%)x%.故选D.点评:本题考查一元二次方程的应用,关键在于理清第一季度和第二季度的产值增长关系.3.(5分)甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是()A.a>b B.a<bC.a=b D.与a和b的大小无关考点:一元一次不等式的应用.分析:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.解答:解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b故选A点评:解决本题的关键是读懂题意,找到符合题意的不等关系式.4.(5分)若D是△ABC的边AB上的一点,∠ADC=∠BCA,AC=6,DB=5,△ABC的面积是S,则△BCD的面积是()A.B.C.D.考点:相似三角形的判定与性质.分析:先根据相似三角形的判定定理求出△ACD∽△ABC,再根据相似三角形的面积比等于相似比的平方解答.解答:解:∵∠ADC=∠BCA,∠A是公共角,∴∠ABC=∠ACD,∴△ACD∽△ABC,∴AC:AD=AB:AC,∵AB=AD+BD=AD+5,∴AD(AD+5)=36,解得AD=4或﹣9,负值舍去,∴AD=4,△ABC的面积是S,△ACD的面积就是S,△BCD=S.故选C.点评:本题的关键是求得△ACD∽△ABC,根据相似比和已知的条件求得AD的值,然后利用面积比等于相似比的平方求值.5.(5分)(2007•玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68考点:全等三角形的判定与性质.分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解答:解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.点评:本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.6.(5分)如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a,右图轮子上方的箭头指的数字为b,数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同个数为m,则等于()A.B.C.D.考点:列表法与树状图法.分析:先用树状图展示所有可能的结果,共有12种等可能结果数,然后找出和为偶数的个数,这样即可得到的值.解答:解:列树状图:∴数对(a,b)所有可能的个数为n=12,其中a+b恰为偶数的不同个数为m=5,∴=,故选C.点评:本题考查了利用树状图展示所有等可能的结果的方法.7.(5分)如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边()A.A B上B.B C上C.C D上D.D A上考点:正方形的性质.专题:动点型;规律型.分析:因为乙的速度是甲的速度的4倍,所以第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环,从而不难求得它们第2000次相遇位置.解答:解:根据题意分析可得:乙的速度是甲的速度的4倍,故第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.故它们第2000次相遇位置与第五次相同,在边AB上.故选A.点评:本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.(5分)已知实数a满足,那么a﹣20062的值是()A.2005 B.2006 C.2007 D.2008考点:非负数的性质:算术平方根;非负数的性质:绝对值.专题:计算题.分析:根据负数没有平方根,得到a﹣2007大于等于0,然后根据a的范围化简绝对值,移项后两边平方即可求出所求式子的值.解答:解:由题意可知:a﹣2007≥0,解得:a≥2007,则|2006﹣a|+=a,化为:a﹣2006+=a,即=2006,两边平方得:a﹣2007=20062,解得:a﹣20062=2007.故选C点评:本题考查平方根的定义,化简绝对值的方法,是一道基础题.学生做题时注意负数没有平方根.二、填空题(共8小题,每小题5分,满分40分)9.(5分)小明同学买了一包弹球,其中是绿色的,是黄色的,余下的是蓝色的.如果有12个蓝色的弹球,那么,他总共买了96个弹球.考点:一元一次方程的应用.专题:应用题.分析:设买了x个弹球,根据题意列出有关x的一元一次方程解之即可.解答:解:设总共买了x个弹球,根据题意得:(x﹣x﹣x)=12解得:x=96故答案为:96点评:本题考查了一元一次方程的应用,解题的关键是从题目中找到能概括题目含义的相等关系,并正确的设出未知数列出方程.10.(5分)已知点A(1,1)在平面直角坐标系中,在x轴上确定点P使△AOP为等腰三角形.则符合条件的点P共有4个.考点:等腰三角形的判定;坐标与图形性质.专题:推理填空题;分类讨论.分析:本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,共有4个解答:解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有1个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故答案为:4.点评:本题考查了坐标与图形的性质及等腰三角形的判定.对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.11.(5分)不论m取任何实数,抛物线y=x2+2mx+m2+m﹣1的顶点都在一条直线上,则这条直线的函数解析式是y=﹣x﹣1.考点:待定系数法求一次函数解析式;二次函数的性质.专题:计算题.分析:将抛物线的方程变形为:y=(x+m)2+m﹣1,由此可得出定顶点的坐标,消去m后即可得出函数解析式.解答:解:将二次函数变形为y=(x+m)2+m﹣1,∴抛物线的顶点坐标为.消去m,得x+y=﹣1.故答案为:y=﹣x﹣1.点评:本题考查待定系数法求函数解析式,突破口在于根据抛物线方程得出顶点坐标.12.(5分)将红、白、黄三种小球,装入红、白、黄三个盒子中,每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多;(2)红盒中的小球与白球不一样多;(3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是黄,红,白.考点:容斥原理.专题:证明题.分析:由(2)可以判断出,红盒不装白球,由(3)判断出,白盒不装白球,从而推得黄盒装白球;假设白盒装黄球,由(3)知白球比黄球少,而(1)中,白球比黄球多,矛盾,从而得出白盒装红球,红盒装黄球.解答:解:由条件(2)知红盒不装白球,由条件(3)知白盒不装白球,故黄盒装白球.假设白盒装黄球,由条件(3)知白球比黄球少,这与条件(1)矛盾,故白盒装红球,红盒装黄球.故答案为:黄、红、白.点评:本题考查了容斥原理,根据(2)(3)推出其中一个结论,又利用反证法进行证明.13.(5分)在梯形ABCD中,AB∥CD,AC、BD相交于点O,若AC=5,BD=12,中位线长为,△AOB的面积为S1,△COD的面积为S2,则=.考点:梯形;勾股定理的逆定理;梯形中位线定理.专题:计算题.分析:作BE∥AC,从而得到平行四边形ACEB,根据平行四边形的性质及中位线定理可求得DE 的长,根据勾股定理的逆定理可得到△DBE为直角三角形,根据面积公式可求得梯形的高,因为△AOB和△COD的面积之和等于梯形的面积从而不难求解.解答:解:作BE∥AC,∵AB∥CE,∴CE=AB,∵梯形中位线为6.5,∴AB+CD=13,∴DE=CE+CD=AB+CD=13,∵BE=AC=5,BD=12,由勾股定理的逆定理,得△BDE为直角三角形,即∠EBD=∠COD=90°,设S△EBD=S则S2:S=DO2:DB2S1:S=OB2:BD2∴=∵S=12×5×=30∴=.故本题答案为:.点评:此题主要考查梯形的性质及中位线定理的综合运用.难度一般,熟练掌握一些基本图形的性质是解答此类题目的关键.14.(5分)已知矩形A的边长分别为a和b,如果总有另一矩形B,使得矩形B与矩形A的周长之比与面积之比都等于k,则k的最小值为.考点:矩形的性质.专题:计算题.分析:先根据矩形的性质,列出一元二次方程,再利用根的判别式求根即可.解答:解:设矩形B的边长分别为x和y根据题意:xy=kab,x+y=k(a+b),将y=k(a+b)﹣x代入xy=kab中,x2﹣k(a+b)x+kab=0,利用一元二次方程求根公式:x=,△=k2(a+b)2﹣4kab≥0条件下,x才有解,由上面这个不等式推出:k≥,∴k的最小值为.点评:本题的关键是利用面积周长比列出方程组成一个一元二次方程,用根的判别式求根的情况.15.(5分)已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,则x4+x3y+x2y2+xy3+y4=12499.考点:因式分解的应用.专题:计算题.分析:本题须先根据题意求出x2+y2和x2y2的值,再求出x4+y4的值,最后代入原式即可求出结果.解答:解:x2y+xy2=xy(x+y)=66,设xy=m,x+y=n,由xy+x+y=17,得到m+n=17,由xy(x+y)=66,得到mn=66,∴m=6,n=11或m=11,n=6(舍去),∴xy=m=6,x+y=n=11,x2+y2=112﹣2×6=109,x2y2=36x4+y4=1092﹣36×2=11809x4+x3y+x2y2+xy3+y4=11809+6×109+36=12499.故答案为:12499点评:本题主要考查了因式分解的应用,在解题时要注意因式分解的灵活应用.16.(5分)(2007•天水)如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在⊙O 及半径OM、OP上,并且∠POM=45°,则AB的长为.考点:正多边形和圆.分析:首先得出△CDO为等腰直角三角形,可知CO=CD,在直角三角形OAB中依据勾股定理即可解决.解答:解:∵∠POM=45°,∠DCO=90°,∴∠DOC=∠CDO=45°,∴△CDO为等腰直角三角形,那么CO=CD.连接OA,可得到直角三角形OAB,∴AB=BC=CD=CO,BO=BC+CO=BC+CD=2AB,那么AB2+OB2=52,∴AB2+(2AB)2=52,∴AB的长为.点评:解决本题的关键是构造直角三角形,注意先得到OB=2AB.三、解答题(共2小题,满分20分)17.(10分)甲、乙两班同时从学校A出发去距离学校75km的军营B军训,甲班学生步行速度为4km/h,乙班学生步行速度为5km/h,学校有一辆汽车,该车空车速度为40km/h,载人时的速度为20km/h,且这辆汽车一次恰好只能载一个班的学生,现在要求两个班的学生同时到达军营,问他们至少需要多少时间才能到达?考点:二元一次方程组的应用.专题:应用题.分析:根据题意可让甲班学生从学校A乘汽车akm出发至某处下车步行,汽车空车返回至某处,乙班同学此处上车,此处距离学校bkm,根据汽车接到乙班同学的时间=乙班同学及步行的时间,甲班步行时间=汽车接乙班返回时间+乙班坐车时间列出两个方程,求方程组的解即可.然后根据时间=即可得他们至少需要多少时间才能到达.解答:解:设甲班学生从学校A乘汽车出发至E处下车步行,乘车akm,空车返回至C处,乙班同学于C处上车,此时已步行了bkm.则,解得a=60,b=20.则至少需要(h)=6.75(小时).答:他们至少需要6.75小时才能到达.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题根据题意可画出草图,可以较快地列出所需等量关系.18.(10分)如图,已知矩形ABCD,AD=2,DC=4,BN=2AM=2MN,P在CD上移动,AP与DM 交于点E,PN交CM于点F,设四边形MEPF的面积为S,求S的最大值.考点:面积及等积变换.专题:探究型.分析:连接PM,设DP=x,则PC=4﹣x,根据平行线分线段成比例定理可得=,进而可得到=,利用三角形的面积公式可得到△MEP及△MPF的表达式,根据S=+即可得出结论.解答:解:连接PM,设DP=x,则PC=4﹣x,∵AM∥OP,∴=,∴=,即=,∵=且S△APM=AM•AD=1,∴S△MPE=,同理可得,S△MPF=,∴S=+=2﹣﹣=2﹣=2+≤2﹣=,当x=2时,上式等号成立,∴S的最大值为:.故答案为:.点评:本题考查的是面积及等积变换,能根据题意作出辅助线,把四边形的面积转化为两个三角形的面积是解答此题的关键.。
长郡中学高一入学分班考试测试卷 (25)

测试卷25一、选择题1.如图25-1所示,在矩形ABCD 中,E 在AD 上,EF ⊥BE,交CD 于F ,连接BF ,则图中与△ABE 一定相似的三角形是( )A. △EFBB. △DEFC. △CFBD. △EFB 和△DEF 2.如图25-2所示,直角梯形ABCD 中,AD//BC,AB ⊥BC,AD=2,BC=3,将腰CD 以D 为中心逆时针旋转90°至ED ,连接AE 、CE ,则△ADE 的面积是( )A.1B.2C.3D.不能确定 3.若A),35(),1(),413(321y C y B y 、、--为二次函数542+--=x x y 的图像上的三点,则321,,y y y 的大小关系是( )A.321y y y <<B.123y y y <<C.213y y y <<D.312y y y <<4.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个记数符号,这些记数符号与十进制的数之间的对应关系如下表:例如:十进制中的26=16+10,可用十六进制表示为1A ;在十六进制中,E+D=1B 等。
由上可知,在十六进制中,2×F=( )A.30B.1EC.E1D.2F5.如图25-3所示,在ABC Rt ∆中,AC=5,BC=12, ⊙O 分别与边AB 、AC 相切,切点分别为E 、C ,则⊙O 的半径是( ) A.310 B.316 C.320 D.323 6.将n 个边长都为1cm 的正方形按图25-4所示摆放,点n A A A ,,,21 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A.241cm B.24cm n C.241cm n - D.241cm n⎪⎭⎫⎝⎛ 7.方程113162=---x x 的解是( ) A.1=x B.4-=x C.4,121-==x x D.以上答案都不对 8.已知关于x 的方程)(22x m mx -=+的解满足,0121=--x 则m 的值是( )A.5210--或 B.5210-或 C..5210或- D.10或52 二、填空题9.点P 是△ABC 中AB 边上的一点,过点P 作直线(不与直线AB 重合)截△ABC ,使截得的三角形与△ABC 相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长郡中学高一招生数学试题
(时间60分钟 满分100分)
一、选择题:(本题有8小题,每小题5分,共40分。
每小题只有一个符合题意的答案) 1. 下列四个图形中,每个小正方形都标上了颜色。
若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是( )
2.某工厂第二季度的产值比第一季度的产值增长了x %,第三季度的产值又比第二季度的产值增长了x %,则第三季度的产值比第一季度的产值增长了 ( ) A 、2x % B 、1+2x % C 、(1+x %)x % D 、(2+x %)x %
3.甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另—个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条
2
b a 元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )
A 、a >b
B 、a <b
C 、a =b
D 、与a 和b 的大小无关 4.若D 是△ABC 的边AB 上的一点,∠ADC=∠BCA ,AC=6,DB=5,△ABC 的面积是S ,则△BCD 的面积是 ( ) A 、
S 5
3 B 、
S 7
4 C 、
S 9
5 D 、
S 11
6
5.如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所
标注的数据,计算图中实线所围成的图形的面积S 是( ) A 、50 B 、62 C 、65 D 、68
6.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的
箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a ,右图轮子上方的箭头指着的数字为b ,数对(a ,b )
所有可能的个数为n ,其中a +b 恰为偶数的不同数对的参数为m ,则m/n 等于 ( ) A 、
2
1 B 、
6
1 C 、
12
5 D 、
4
3
7.如图,甲、乙两动点分别从正方形ABCD 的顶点,A 、C 同时沿正方形的边开始移动,
甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4
倍,则它
黄 红 黄 红
绿
绿
黄
红 绿
红
绿 黄 绿
红 红
绿 黄
黄 绿
红
黄 红 黄 绿
A .
B .
C .
D .
们第2000次相遇在边 ( )
A 、A
B 上 B 、B
C 上 C 、C
D 上 D 、DA 上
8.已知实数a 满足|2006|2007a a a -+-=,那么22006a -的值是( )
A 、2005
B 、2006
C 、2007
D 、2008
二、填空题:(本题有8小题,每小题5分,共40分。
) 9.小明同学买了一包弹球,其中
14
是绿色的,18
是黄色的,余下的15
是蓝色的。
如果有12
个蓝色的弹球,那么,他总共买了( )个弹球
10.已知点A (1,1)在平面直角坐标系中,在坐标轴上确定点P 使△AOP 为等腰三角形.则符合条件的点P 共有( )个.
11.不论m 取任何实数,抛物线 y=x 2+2mx+m 2+m-1的顶点都在一条直线上,则这条直线
的函数解析式是( ). 12.将红、白、黄三种小球,装入红、白、黄三个盒子中,•每个盒子中装有相同颜色的小球.已知:
(1)黄盒中的小球比黄球多; (2)红盒中的小球与白球不一样多; (3)白球比白盒中的球少.
则红、白、黄三个盒子中装有小球的颜色依次是( ).
13.在梯形ABCD 中,AB ∥CD ,AC .BD 相交于点O ,若AC=5,BD=12,中位线长为2
13,
△AOB 的面积为S 1,△COD 的面积为S 2,则21S S +
=( )
14.已知矩形A 的边长分别为a 和b ,如果总有另一矩形B ,使得矩形B 与矩形A 的周长之比与面积之比都等于k ,则k 的最小值为( )
15.已知x 、y 均为实数,且满足x y+x +y=17,x 2
y+x y 2
=66, 则x 4+x 3y+x 2y 2+x y 3+y 4=( )
16.如图5,已知在圆O 中,直径MN=10,正方形ABCD 的四个
顶点分 别在半径OM ,OP 以及圆O 上,并且∠POM=45°,则AB 的长为( )
三、解答题:(本题有2小题,每小题10分,满分20分。
)
17.甲、乙两班同时从学校A 出发去距离学校75km 的军营B 军训,甲班学生步行速度为4km/h ,乙班学生步行速度为5km/h ,学校有一辆汽车,该车空车速度为40km/h ,载人时的速度为20km/h ,且这辆汽车一次恰好只能载一个班的学生,现在要求两个班的学生同时到达军营,问他们至少需要多少时间才能到达?
18.如图,已知矩形ABCD ,AD=2,DC=4,BN=2AM=2MN ,P 在CD 上移动,AP 与DM
交于点E ,PN 交CM 于点F ,设四边形MEPF 的面积为S ,求S 的是大值.
F N
M
P
D
E C
A
B
长郡中学高一招生数学试题
参考答案
一、1、C 2、D 3、A 4、C 5、A 6、C 7、A 8、C
二、9、 96 10、 8 11、 x+y=-1 12、黄、红、白.13、30 14、
2
)
(4b a ab +
15、 12499 16、 5
三、17.解:
设甲班学生从学校A 乘汽车出发至E 处下车步行,乘车akm ,空车返回至C 处,乙班同学于C 处上车,此时已步行了bkm. 则⎪⎪⎩⎪⎪⎨⎧-=-+-=-+475207540
5
4020a b b a b b a a 解得a=60 b=20 ∴至少需要
4
36
41520
60=+(h )
18、 解:连结PM ,设DP=x ,则PC=4-x ,∵AM//OP
1
12
11
+=
∴=⋅==
+=
+=
∴=∴∆∆∆∆x x S AD AM S PA
PE S S x x PA
PE AM
PD PD PA
PE AM PD EA
PE MPE APM APM
MEP 且又即F
N M
P
D
E C
A B
同理可求x
x S MPF --=∆54……………………(8分)
因此5
462511125412
++--
=--
+-=--+
+=
x x x
x
x
x x
x S
3
43
229
)2(622
=
-
≤--+
=x ………………(13分)
当x =2时,上式等号成立.………………………(15分)。