第9章气体与蒸汽的流动
工程热力学体系)气体及蒸汽的流动

第七章气体及蒸汽的流动思考、判断、证明、简答题(1) 流动过程中摩擦是不可避免的,研究定熵流动有何实际意义和理论价值。
解:实际流动过程都是不可逆的,势差、摩擦等不可逆因素都是不可避免的,而且不可逆因素的种类及程度是多种多样的。
因此,不可能直接从不可逆的实际流动过程的研究中,建立具有普遍意义的基本关系式。
流动问题的热力学分析方法,是暂且不考虑摩擦等不可逆因素,在完全可逆的理想条件下,建立具有普遍意义的基本关系式,然后,再根据实际工况加以修正。
“可逆”是纯理想化的假定条件。
采用可逆的假定,虽然是近似的,但也是合理的。
这不仅使应用数学工具来分析流动过程成为可能,而且,其分析结论为比较实际流动过程的完善程度,建立了客观的标准,具有重要的理论意义和实用价值。
(2) 喷管及扩压管的基本特征是什么?解:不能单从变截面管道的外形,即不能单从截面变化规律,来判断是喷管还是扩压管。
一个变截面管道,究竟是喷管还是扩压管,是根据气流在管道中的流速及状态参数的变化规律来定义的。
使流体压力下降、流速提高的管道称为喷管;反之,使流体压力升高、流速降低的管道称为扩压管。
对于喷管必定满足下列条件:d c>0;d p<0;d v>0;d h<0对于扩压管则必定满足:d c<0;d p>0;d v<0;d h>0(3) 在变截面管道中的定熵流动,判断d v/v与d c/c究竟是哪个大的决定因素是什么?解:连续方程的微分关系式为d A/A=d v/v -d c/c上式表明通道截面的相对变化率必须等于比容相对变化率与流速相对变化率之差值,否则就会破坏流动的连续性。
例如,当d v/v>d c/c时,气体的膨胀速率大于气流速度的增长率,这时截面积必须增大,应当有d A/A>0,否则就会发生气流堵塞的现象。
同理,当d v/v<d c/c时,必须有d A/A<0,否则就会出现断流的现象。
显然,如果破坏了流动的连续性,也就破坏了流动的稳定性。
所以,稳定流动必须满足连续方程。
第9章制冷循环

§ 9-3 制冷剂 Refrigerants
制冷剂的选择原则:
(1)具有较高的临界温度,从而使大部分的放热 过程在两相区内定温的进行 (2)操作压力要合适。即冷凝压力(高压)不要 过高,蒸发压力(低压)不要过低。 (3)潜热要大。 (4)化学稳定性、不易燃、不分解、无腐蚀性。 (5)价格低。 (6)冷冻剂对环境应该无公害。
蒸气压缩制冷循环装置
q1
3
4
冷凝器
2
T
2
w
膨胀机
压缩机
wc
4
3
6
6
q2 蒸发器(冷库)
1
1
s
工程中常用节流阀代替膨胀机
4
节 流 阀 q1
3 2
w
T
2 4
压缩机
冷凝器
3
6
1 5
5
q2
蒸发器(冷库)
1
s 4-5:绝热节流 5-1:定压吸热蒸发
1-2:定熵压缩 2-3-4:定压放热冷凝
用节流阀代替膨胀机优缺点
吸附式制冷 半导体制冷 热声制冷
基本知识点
• 1. 熟练空气和蒸汽压缩制冷循环的组
成、图示、制冷系数的计算及提高制 冷系数的方法和途径。
• 2. 了解吸收制冷、蒸汽喷射制冷。
§9-1 空气压缩制冷循环
理想化处理: ①理气; ②定比热; ③ 可逆; 逆勃雷登循环 p
3 2
T
2 3
T0 = T3 T1 = Tc
换热器 冷却水
吸 收 器
泵
蒸发器 QL
吸收式制冷循环流程动画演示
吸收式制冷循环特点
优点:
直接利用低品位的热能 环境性能好
缺点:
设备体积大,启动时间长
工程热力学蒸汽的流动

c2 ' c2
h2
h2
/
2
2'
x=1
0
s
21
6-4 绝热节流及其应用
一、绝热节流的概念
流体流经阀门、孔板等装置时,由于局部阻力较 大,使流体压力明显下降,称为节流现象。如果节 流过程是绝热的,则为绝热节流,简称节流。
二、节流过程的特点
1 3 2
1、过程的基本特性: (1)节流过程是典型 的不可逆过程; (2)绝热节流前后焓 值相等。
第一篇
工程热力学
第六章 蒸汽的流动
新课引入
前面讨论的热力系中所实施的热力过程,一般都没有考 虑工质流动状况(如流速)的改变。但在有些热力设备中, 能量转换是在工质的流速和热力状态同时变化的热力过程 中实现的。如蒸汽在汽轮机中喷管内的流动过程;气体在 叶轮式压气机中扩压管内的流动过程等,其能量转换的规 律需专门研究,为以后汽轮机专业课的学习奠定一定的理 论基础知识。
h
节流前汽轮机按1-2进行:
p1
/
p1
t1
/
wt=h1-h2 wt′=h1′-h2′ 由于h1=h1′及h2′>h2, 则有 wt′<wt
h1Hale Waihona Puke h11t1/
1'
节流后汽轮机按1′-2′进行:
p2
h2
/
h2
2' 2
x=1
0
s
虽然蒸汽绝热节流后,焓不变,1kg蒸汽的总能量的数量 没变,但其作功能力降低了。
14
工程中常用的喷管型式为:渐缩喷管和缩放喷管
15
Ma<1
Ma<1
Ma>1
渐缩喷管
传热学(第9章--对流换热)

— —
横向节距 纵向节距
23
9-3 流体有相变时的对流换热
一、凝结换热
1.特点:
——蒸汽和低于饱和温度的冷壁面相接触时会发 生凝结换热,放出凝结潜热。(如电厂中:凝汽 器和回热加热器内,管外蒸汽与管外壁的换热)
➢两种凝结方式:根据凝结液体依附在壁面上的形
态不同分.
tw ts
1)膜状凝结:凝结液体能润湿壁面,
腾换热设备安全经济的工作区为泡态沸腾区。
34
炉内高热负荷区水冷壁沸腾换热的强化
35
各种对流换热比较
液体对流换热比气体强;
对同一种流体,强制对流换热比自然对流换热强;
紊流换热比层流换热强;横向冲刷比纵向冲刷强;
有相变的对流换热比无相变换热强。
表9-5 各种对流换热平均换热系数的大致范围
换热系数 α[w/(m2.K)]
二是在蒸汽中混入油类或脂类物质。对紫铜管进行表面改 性处理,能在实验室条件下实现连续的珠状凝结,但在工 业换热器上应用,尚待时日。
26
2.影响蒸汽膜状凝结换热的因素:
(1)蒸汽中含有不凝结气体的影响 ➢ 蒸汽中含有不凝结气体(如空气)时,即使含量极微,
也会对凝结换热产生十分有害的影响。不凝结气体将会在 液膜外侧聚集而形成一层气膜,使热阻大大增加,从而恶 化传热。
21
(1)管束排列方式的影响
s1
s1
s2
顺排
s2
叉排
叉排:换热系数大,但流动阻力大. 顺排:换热系数小,但流动阻力小.
22
s1
s1
s2
s2
顺排
叉排
(2)流动方向上管排数的影响
后排管受前排管尾流的扰动作用对平均换热系 数的影响直到20排以上的管子才能消失。
工程热力学名词解释

工程热力学名词解释专题注:参考哈工大的工程热力学和西交大的工程热力学第一章——基本概念1、闭口系统:热力系与外界无物质交换的系统。
2、开口系统:热力系与外界有物质交换的系统。
3、绝热系统:热力系与外界无热量交换的系统。
4、孤立系统:热力系与外界有热量交换的系统。
5、热力平衡状态:热力系在没有外界作用的情况下其宏观性质不随时间变化的状态。
6、准静态过程:如果造成系统状态改变的不平衡势差无限小,以致该系统在任意时刻均无限接近于某个平衡态,这样的过程称为准静态过程7、热力循环:热力系从某一状态开始,经历一系列中间状态后,又回复到原来状态。
8、系统储存能:是指热力学能、宏观动能、和重力位能的总和。
9、热力系统:根据所研究问题的需要,把用某种表面包围的特定物质和空间作为具体指定的热力学的研究对象,称之为热力系统。
第二章——热力学第一定律1、热力学第一定律:当热能与其他形式的能量相互转换时,能的总量保持不变。
或者,第一类永动机是不可能制成的。
2、焓:可以理解为由于工质流动而携带的、并取决于热力状态参数的能量,即热力学能与推动功的总和。
3、技术功:技术上可资利用的功,是稳定流动系统中系统动能、位能的增量与轴功三项之和4、稳态稳流:稳定流动时指流道中任何位置上的流体的流速及其他状态参数都不随时间而变化流动。
第三章——热力学第二定律1、可逆过程:系统经过一个过程后,如果使热力系沿原过程的路线反向进行并恢复到原状态,将不会给外界留下任何影响。
2、热力学第二定律:克劳修斯表述:不可能把热从低温物体转移到高温物体而不引起其他变化。
开尔文普朗克表述:不可能从单一热源吸热而使之全部转变为功。
3、可用能与不可用能:可以转变为机械功的那部分热能称为可用能,不能转变为机械功的那部分热能称为不可用能。
4、熵流:热力系和外界交换热量而导致的熵的流动量5、熵产:由热力系内部的热产引起的熵的产生。
6、卡诺定理:工作再两个恒温热源(1T 和2T )之间的循环,不管采用什么工质,如果是可逆的,其热效率均为121T T ,如果不是可逆的,其热效率恒小于121T T 。
工程热力学总复习.

4
4.稳定状态与平衡状态的区分:稳定状态时状态参数虽 然不随时间改变,但是靠外界影响来的。平衡状态是系统 不受外界影响时,参数不随时间变化的状态。二者既有所 区别,又有联系。平衡必稳定,稳定未必平衡。
5.状态参数的特性及状态参数与过程参数的区别。
5
注意:
1. 孤立系统:系统与外界既无能量传递也无物质交换 孤立系统=系统+相关外界=各相互作用的子系统之和 =一切热力系统连同相互作用的外界 2.状态参数:描述工质状态特性的各种状态的宏观物理量。
适用于一切工质
比定压热容:
cp
19
对于理想气体:
cv
du dT
cp
dh dT
迈耶公式:
c p cv Rg
k cp cv
C p,m Cv,m R
1 cv Rg k 1
k cp Rg k 1
理想气体的热力学能、焓、熵
du cvdT
ds c p
dh c pdT
c
δq dT
C' —容积比热容,J/(m3· K)
c—质量比热容,J/(kg· K) Cm—摩尔比热容,J/(mol· K)
注意:比热不仅取决于物体的性质,还与所经历的热力过程及 所处的状态有关。 比定容热容:
cv δqv u dT T v
δq p h dT T p
15
理想气体
定义:气体分子是一些弹性的,忽略分子相互作用力,不占有体 积的质点。 注意:当实际气体p→0 v→∞的极限状态时,气体为理想气体。
理想气体状态方程的几种形式
pv RgT
适用于1千克理想气体
式中:v为比体积,m3/kg;p为绝对压力,Pa;T为绝对温度,K;Rg为气体 常数,J/(kg· K);
第9章 气动工作原理及回路设计

气源装置为气动系统提供满足一定质量要求的压缩空气,是气动 系统的重要组成部分。 气动系统对压缩空气的主要要求:具有一定压力和流量,并具有 一定的净化程度。 气源装置由以下四部分组成 气压发生装置——空气压缩机; 净化、贮存压缩空气的装置和设备; 管道系统; 气动三大件。
华中科技大学
放气时间
与充气过程一样,放气过程也分为声速和亚声速两个阶段。容器由 压力p1 将到大气压力pa 所需绝热放气时间为 T=t1+t2 ={(2k /k-1 )[(p1/pe)(k-1)/2k-1) ]+0.945( p1/1.013×105 )(k-1)/2k}τ τ= 5.217×10-3 V (273/T1)1/2/kS 式中 pe 为放气临界压力(1.92×105 Pa)
华中科技大学
9.2气源装置及气动元件
华中科技大学
气动系统由下面几种元件及装置组成 气源装置 压缩空气的发生装置以及压缩空 气的存贮、净化的辅助装置。它为系统提供 合乎质量要求的压缩空气。 执行元件 将气体压力能转换成机械能并完 成做功动作的元件,如气缸、气马达。 控制元件 控制气体压力、流量及运动方向 的元件,如各种阀类;能完成一定逻辑功能 的元件,即气动逻辑元件;感测、转换、处 理气动信号的元器件,如气动传感器及信号 处理装置。 气动辅件 气动系统中的辅助元件,如消声 器、管道、接头等。
华中科技大学
管道系统和气动三大件
管道系统布置原则
气动三大件:分水过滤器,
减压阀,油雾器
华中科技大学
气动三大件
气动三大件是压缩空气质量的最后保证。 分水过滤器 作用是除去空气中的灰尘、
工程热力学第六版素材第09章 气体和蒸汽的流动

第九章气体和蒸汽的流动1.基本概念稳态稳流:稳态稳流是指开口系统内每一点的热力学和力学参数都不随时间而变化的流动,但在系统内不同点上,参数值可以不同。
为了简化起见,可认为管道内垂直于轴向的任一截面上的各种参数都均匀一致,流体参数只沿管道轴向或流动方向发生变化。
音速:音速是微小扰动在物体中的传播速度。
定熵滞止参数:将具有一定速度的流体在定熵条件下扩压,使其流速降低为零,这时气体的参数称为定熵滞止参数。
减缩喷管:当进入喷管的气体是M < 1的亚音速气流时,这种沿着气体流动方向喷管截面积逐渐缩小的喷管称为渐缩喷管。
渐扩喷管:当进入喷管的气体是M > 1的超音速气流时,这种沿气流方向喷管截面积逐渐扩大的喷管称为渐扩喷管。
缩放喷管:如需要将M < 1的亚音速气流增大到M > 1的超音速气流,则喷管截面积应由d f < 0逐渐转变为d f > 0,即喷管截面积应由逐渐缩小转变为逐渐扩大,这种喷管称为渐缩渐扩喷管,或简称缩放喷管,也称拉伐尔(Laval)喷管。
临界参数:在渐缩渐扩喷管中,收缩部分为亚音速范围,而扩张部分为超音速范围。
收缩与扩张之间的最小截面处称为喉部,此处M=1,d f = 0。
该截面称为临界截面,具有最小截面积f min,相应的各种参数都称为临界值,如临界压力p c、临界温度T c、临界比体积v c、临界流速c c等。
应予注意,临界流速c c为临界截面处的当地音速。
节流:节流过程是指流体(液体、气体)在管道中流经阀门、孔板或多孔堵塞物等设备时,由于局部阻力,使流体压力降低的一种特殊流动过程。
这些阀门、孔板或多孔堵塞物称为节流元件。
若节流过程中流体与外界没有热量交换,称为绝热节流,常常简称为节流。
在热力设备中,压力调节、流量调节或测量流量以及获得低温流体等领域经常利用节流过程,而且由于流体与节流元件换热极少,可以认为是绝热节流。
冷效应区:在转回曲线与温度纵轴围成的区域内所有等焓线上的点恒有μj > 0,发生在这个区域内的绝热节流过程总是使流体温度降低,称为冷效应区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章气体与蒸汽的流动9.1 稳定流动的基本方程 (1)9.1.1 稳定流动质量守恒方程(连续性方程) (2)9.1.2 稳定流动能量方程 (3)9.1.3 熵方程 (3)9.1.4 状态方程 (3)9.2 定熵流动的基本特性 (4)9.2.1 定熵流动的特性方程 (4)9.2.2 当地声速和马赫数 (5)9.3 气体在喷管和扩压管中的流动 (7)9.3.1 速度变化与状态变化的关系 (7)9.3.2流速变化、状态变化与流道截面积变化的关系 (8)9.4 喷管中气体流动的计算 (9)9.4.1 喷管的设计计算 (10)9.4.2 喷管的校核计算 (18)9.5 水蒸汽在喷管中的定熵流动 (22)9.5.1 设计计算 (23)9.5.2 校核计算 (24)9.6 有摩擦的绝热流动与绝热节流 (26)9.6.1 有摩擦的绝热流动 (26)9.6.2 绝热节流 (30)9.1 稳定流动的基本方程流动过程在工程上常有出现,例如气轮机中气体流经喷管使其流速增加的过程,叶轮式压气机中气流经过扩压管使其减速增压的过程等等。
由于气体在流动过程中伴有工质热力状态的变化,有热力学能参与能量转换,因此,对这种热流体的流动过程的研究也属于工程热力学研究的范畴,特别是在热能工程上具有重要的实践意义。
流体流动状况的变化是以流速的变化为标志的,根据能量守恒原理,流速变化必然意味着流动过程中有能量的转换和流体热力状态的变化。
另一方面,流体在流道内的流动还必须遵循质量守恒原理,因此,流动速度与流道的尺寸有关,其速度变化需要流道尺寸的配合。
为了实现预期的流动,这两方面都是必须考虑的。
工程上常见的管道内流体的流动是稳定的或接近稳定的。
前已述及,流体在流经任何一个固定点时,其全部参数(热力学参数和力学参数)不随时间变化的流动过程称为稳态流动过程,简称稳定流动。
一般地说,在流道同一截面上各点的同名参数值是不相同的(尤其是流速)。
但为使问题简化起见,可将流道内同一截面上流体的各同名参数都视为一致,每一流体参数只沿流道轴向或流动方向发生变化。
这时,任一截面上的某一参数实际上只是某种平均值而已。
这种参数只在流动方向上有变化的稳定流动称为一维稳定流动。
下面的讨论以一维稳定流动为限。
9.1.1 稳定流动质量守恒方程(连续性方程)图9-1 流体在流道内的流动稳定流动中,任一截面的一切参数均不随时间而变,根据质量守恒原理,流经任一截面的质量流量应为一定值。
在图9-1所示的流道中,任意截面1-1和2-2上的质量流量分别用 1m 和 2m[kg/s]表示,流道截面积为A 1和A 2[m 2],流体的流速为c f1和c f2[m/s],密度为1和2[kg/m 3],则m Ac v Ac v c A v c A m m ======f cf 2f2211f 121ρ=定值 (9-1)写成微分式0)(f f =⎪⎭⎫ ⎝⎛==v Ac d Ac d m d ρ或0f f =-+v dv c dc A dA(9-1a)式(9-1)及(9-1a )称为稳定流动的连续性方程。
它给出了流速、截面面积和比体积(或密度)之间的相互制约关系。
由于连续性方程从质量守恒原理推得,故可普遍适用于稳定流动过程,而不论流体(液体和气体)的性质如何,或过程是否可逆。
9.1.2 稳定流动能量方程根据能量转换与守恒原理可导得稳定流动能量方程。
从第二章中已知,对1kg 流体而言,有net 1221f 22f 12)()(21)-(w z z g c c h h q +-+-+=(9-2)或t 12)(w h h q +-=(9-2a)写成微分式net 2f 21w gdz dc dh q δδ+++=(9-2b)或t w dh q δδ+=(9-2c)式中 net 2f t 21w gdz dc w δδ++=,它们都属于机械能范畴。
因此 t w 称为比技术功,式(9-2)~(9-2c )系由能量守恒原理导得,故对流体的性质没有限制,并与过程的可逆与否无关。
对于开系,可逆稳定流动过程的能量方程可写成⎰-+=2112vdp )-h (h q (9-3)或 vdp dh q -=δ (9-3a)因此=-v d p9.1.3 熵方程第三章中已导得任意过程均需满足的熵方程:T qS ds ds δδ≥+=g f(9-4)式中,等号适用于可逆过程,不等号适用于不可逆过程。
9.1.4 状态方程在稳定流动过程中,流体的状态变化过程可看作准平衡过程。
在每一截面上,流体基本热力学状态参数之间的关系由状态方程0=f(p,v,T) (9-5)来确定。
以上式(9-1a )、(9-2b )、(9-3a )、(9-4)、(9-5)五个方程是任意稳定流动所遵循的基本方程组。
对于不同情况下的流动过程,可根据具体条件结合基本方程组来进行分析讨论。
9.2 定熵流动的基本特性9.2.1 定熵流动的特性方程工程上一些具有重要意义的稳定流动过程(例如气流通过喷管或扩压管的流动过程),往往可认为是在绝热绝功的情况下进行的,即 0=q δ, 0net =w δ,且在摩擦影响较小时,可近似认为流动过程是可逆的。
可逆绝热流动过程即是定熵流动过程, 0=ds 。
下面根据稳定流动的基本方程组,结合定熵流动的特征来分析定熵流动的基本特性。
定熵流动的能量方程,在忽略重力位能变化时,可由式(9-2)与式(9-3)简化为()⎰-=-=-212121f 22f 21vdp h h c c (9-6)或vdp dh dc -=-=2f 21 (9-6a)熵方程: 0==T qds δ (9-7)这样式(9-6a )、(9-7)及前面的式(9-1a )、式(9-5)即构成了分析定熵流动的基本方程组。
现将各基本方程联系起来作如下推导:f f 22f f f 2f f 2211111c dc c c dc c v p v dc c p v v vdp p v v dp p v v v dv s s s s=⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= (9-8)上面的推导过程中用到了能量方程(9-6a ),熵方程(9-7)(定熵条件)及在物理学中学到过的声速c 的表达式s v p v c ⎪⎭⎫ ⎝⎛∂∂-=2 (9-9)若令c c Ma f = (9-10)Ma 称为马赫数,并将式(9-8)代入连续性方程(9-1a )得到0f f 2f f =-+c dc Ma c dc A dA或写作f f2)1(c dc Ma AdA -= (9-11)式(9-11)反映了定熵流动过程的特性。
由于它是利用能量方程式(9-6a )、熵方程(9-7)、连续性方程(9-1a )及声波定熵传播速度c 的表达式(9-9)导得的,因而适用于任意流体的定熵流动过程,称为定熵流动的特性方程。
9.2.2 当地声速和马赫数上面我们引入了马赫数Ma ,由其定义可见,利用马赫数可将气体流动分类为: 亚声速流动:Ma< 1;c f < c超声速流动:Ma> 1;c f > c临界流动:Ma= 1;c f = c如果流体是理想气体,在定熵过程中绝热指数可表示为s v p p v ⎪⎭⎫ ⎝⎛∂∂-=γ (9-12)代入声速表达式(9-9)得到T R pv c g γγ== (9-13)对某确定的理想气体而言, γ与R g 为定值,则声速仅与温度有关,且正比于 T 。
对于一般流体,声速将随流体所处的状态不同而变化,我们所指的声速往往是指在某一状态(p, v, T )下的声速值,称为当地声速。
例题9.1 空气流经喷管作定熵流动(图9-1)。
已知进口截面上的空气参数为p 1=0.5MPa 、t 1=500℃、c f1=111.46m/s 。
出口截面的压力p 2=0.104 16MPa ,质量流量 m=1.5kg/s 。
求喷管出口截面上的温度t 2、比体积v 2、流速c f2以及出口截面积A 2。
分别计算进口截面和出口截面处的当地声速,并说明喷管中气体流动的情况。
设空气的比热容c p =1.004kJ/(kg K),R g =0.287kJ/(kg K), =1.4。
解 (1)出口截面上空气的状态参数空气在喷管中作定熵流动,由pv =定值可得γγ11212-⎪⎪⎭⎫ ⎝⎛=p p T TK 78.493Pa 105.0Pa 101046.0K 7734.114.1610112126=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=--γγp p T T根据理想气体状态方程,有/kgm 3605.1Pa 1010416.0K 78.493K)J/(kg 10287.036322g 2=⨯⨯⋅⨯==p T R v(2)出口截面上的流速根据稳定流动能量方程,结合定熵流动特性,简化得2121f 22f )(21h h c c -=-对于理想气体有)(2121T T c h h p -=-则出口截面上的流速为m/s 03.757)m/s 46.111()K 78.493K 773(K)J/(kg 10004.12)(2)(22321f 2121f 212f =+-⨯⋅⨯⨯=+-=+-c T T c c h h c p(3)喷管出口截面积A 2根据连续性方程22f 2v c A m=2232f 22cm 96.26m 002696.0m/s 03.757/kg m 3605.1kg/s)(5.1==⨯==c v m A(4)喷管进口截面和出口截面处的当地声速根据声速计算公式TR pv c g γγ==喷管进口截面处的当地声速为m/s 31.557K 773)K J/kg (10287.04.131g 1=⨯⋅⨯⨯==T R c γ喷管出口截面处的当地声速m/s 42.445K 78.493K)J/(kg 10287.04.132g 2=⨯⋅⨯⨯==T R c γ(5)喷管内流动情况喷管进口截面处气体流速c f1=111.46m/s ,c f1 < c 1;出口截面处气体流速c f2 = 751.03m/s ,c f2 > c 2。
所以,喷管内气体流动情况是由亚声速流动过渡到超声速流动。
9.3 气体在喷管和扩压管中的流动喷管是使气流降压增速的流道,而扩压管是使气流减速增压的流道,无论那种情况,都将引起流体宏观运动动能的变化,根据能量守恒原理,在流动过程中必然有其它形式的能量与之进行相互的转换。
可见,流体速度变化联系着流动过程中不同形式的能量间的相互转化及相应的流体热力状态的变化。
另一方面,流体在流道内的流动还必须满足质量守恒原理。
因此,流体的速度与流道的截面面积有关,流速的改变需要相应的流道截面面积的变化来配合,根据质量守恒原理(连续性方程),流体的流速变化、状态变化和流道截面积的变化是相互制约的。