沉淀的溶解度和影响因素
沉淀产生原理

沉淀产生原理
沉淀是一种物质在溶液中由于化学作用或物理作用而形成的沉淀物的过程,即溶液中的溶质从溶解状态转变为固态状态的过程。
沉淀产生的原理主要涉及溶液中溶质的溶解度和溶液中的溶质浓度。
在溶液中,溶质的溶解度是指单位体积溶剂中能溶解的溶质的最大量。
当溶质的浓度超过其溶解度时,溶质就会发生析出,形成沉淀。
沉淀的生成是通过溶液中的溶质分子之间的相互作用力来实现的。
溶液中溶质浓度的变化也会导致沉淀的产生。
当溶液中溶质的浓度增加到一定程度时,溶液中的溶质相互碰撞的频率增加,使得溶质分子在空间中的运动活性增大。
当达到一定程度时,溶质分子间的空间争夺使得原本稳定的溶液结构被破坏,进而导致一部分溶质分子发生成核行为,从而形成沉淀。
另外,沉淀产生还与温度、压力、溶液的pH值等因素密切相关。
这些因素对溶质和溶剂之间的相互作用力有直接或间接的影响,从而影响沉淀的产生和形态。
总之,沉淀的产生是由于溶质溶解度和溶液中溶质浓度超过一定程度而引起的,涉及溶质分子的相互作用力以及外界因素的影响。
沉淀溶解平衡与沉淀条件的选择

(三) 热溶液中进行沉淀,使沉淀的溶解度略有增 加,可降低溶液的相对过饱和度,为防沉淀热溶 解损失,应在沉淀完成后,冷却后过滤。 ( 四 ) 陈化 沉淀完毕后,让沉淀和溶液一起放置 一段时间。可使沉淀晶形完整、纯净、粗大晶体 长大。加热和搅拌可缩短陈化时间。
二、无定形沉淀的沉淀条件
无定形沉淀一般溶解度很小,溶解损失可忽 略不计。主要考虑减少杂质吸附和防止形成胶体 溶液。 (一 ) 在较浓的溶液进行沉淀,加入沉淀剂的速度 可适当加快。沉淀完毕后,立刻加入大量热水冲 稀并搅拌,使被吸附的部分杂质转入溶液。 (二) 在热溶液中进行沉淀。可防止胶体生成,减少 杂质的吸附作用,并可使生成的沉淀紧密些。 (三)溶液中加入适当的电解质,以防止胶体溶液的 生成。但加入应是可挥发性盐类如铵盐等。 (四)不必陈化。
(二)后沉淀现象
沉淀放置过程中,溶液中杂质离子慢慢沉淀到沉
淀上的现象,称为后沉淀现象。
如在 Cu 2+ 、 Zn 2+ 的酸性溶液通入 H 2 S 最初得到的
CuS↓并不夹杂ZnS。但若↓与溶液长时间接触,由 于CuS↓表面吸附溶液的S2-,使↓表面 [S2-]增加,当 [Zn2+]×[S2-] > Ksp,ZnS时,在CuS↓表面析出ZnS沉 淀。
纯水可不考虑离子强度引起活度系数的减小。
溶解度的大小是选择适宜沉淀剂的重要依据。
对于其它类型MmAn的沉淀:
s m n
K sp m n
m n
适用于构晶离子无任何副反应。
(三)溶度积和条件溶度积
当有副反应发生,构晶离子有多种型体存在, 设其各型体的总浓度分别为[M’]及[A’] :
(二)活度积和溶度积 aM+aA- / aMA(水)= K2Biblioteka 得:aM+×aA- =
第二节沉淀的溶解度及其影响因素

第二节沉淀的溶解度及其影响因素在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。
通常,在重量分析中要求被测组分在溶液中的残留量在0.000 1g 以内,即小于分析天平的称量允许误差。
但是,很多沉淀不能满足这个条件。
例如,在1 000 mL水中,BaSO4的溶解度为0.002 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。
因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。
一、沉淀的溶解度当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系:MA (固)MA (水)M+ + A-式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即:a (M+)×a (A-) == (7—1)式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是:a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2)式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。
将式( 7 - 2 )代入(7 – 1 )得(M+) ceq(M+)·( A-) ceq(A-) = (7—3)故= ceq(M+)·ceq(A—) = (7—4)称为微溶化合物的溶度积常数,简称溶度积。
在纯水中MA的溶解度很小,则ceq(M+) = ceq(A—) = so(7—5)ceq(M+)·ceq(A—) = so2 =(7—6)上二式中的so是在很稀的溶液内,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。
一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。
实际上溶解度是随其他离子存在的情况不同而变化的。
因此溶度积只在一定条件下才是一个常数。
如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。
沉淀的溶解度及其影响因素

沉淀溶解是沉淀形成的相反过程。构晶离子聚集形成沉淀,获得晶格能,晶 格能越大,沉淀越完全。但占据沉淀表面位点的溶质仍有未饱和的键存在,溶剂 分子与固体表面的溶质的相互作用,易于使其溶剂化回到溶液中,导致沉淀的溶 解。 (一)溶解度、溶度积和条件溶度积 1. 溶解度s 对于1∶1型沉淀MA,在水中存在下列平衡:
MA(S)
⇌
MA(水) (M+A-)
⇌
M+ + A-
分子状态或离子对化合物
MA 的溶解部分
MA的溶解度
s = [MA(水)]+[M+] = [MA(水)] + [A-] = s0 + [M+] = s0 + [A-]
式中: s0 为分子溶解度或固有溶解度。 例如,AgCl溶于水中
对于有些物质可能是离子化合物(mMn+ nAm-),如CaSO4溶于水中
此时,溶液中金属离子总浓度
和沉淀剂总溶度
分别为
引入相应的副反应系数
、
,则
即
称为条件溶度积。 4. 溶解度和溶度积的关系 设 MnAn 溶解于水中达到沉淀溶解平衡时,
对于大多数电解质来说,So都较小,一般计算中往往忽略So项。 则
得
故
(二)影响沉淀溶解度的因素 在沉淀重量分析法中,为降低溶解损失,减小误差,必须了解各种影响沉淀 溶解度的因素。 1. 同离子效应 向溶液中加入构晶离子时,沉淀的溶解度减小。 例题 计算25℃时, BaSO4在纯水中和含0.01 mol· L-1 SO42-的水溶液中的溶解度。
由附录表立的两因素:当沉淀剂过量时:开始 同 离子效应占主导地位过量太多时,盐效应 。 3. 酸效应 溶液的酸度对 S 的影响: 多元弱酸盐 CaCO3 、 CaC2O4, 氢氧化物 Fe(OH)3、 Al(OH)3, [H+] S [H+] S
影响沉淀溶解度的因素

(
s=
K sp =1.3 10- 5 mol / L
)
1.0 2.0
同离子效应与络合效应对难溶物的溶解度的影响
[Cl-]/(mol/L)
0 130
0.001 0.01 7.6 8.7
0.1 45
s (AgCl) /×107
2015年2月10日星期二
1600 7100
分析化学教研室
第12页
总结
K sp [M ] [ A]
2015年2月10日星期二 分析化学教研室 第7页
例10-4 计算CuS在纯水中的溶解度。(1) 不考虑S2-的水解; (2) 考虑S2-的水解。
解:不考虑S2-的水解
s = [Cu 2+ ] = [ S 2- ] = = 6.0? 10- 36
K sp
2.4´ 10- 18 mol / L
- 36
2 4
酸效应+同离子效应
CaC2O4 Ca2++ C2O42-
a CO
2
4
2-(H)
=1+ b1[H+] + b2[H+]2 = 2.55
s
0.10 mol/L
2 2 [Ca 2 ][C2O4 ]a C O2 ( H ) K spaC O2 ( H ) K sp ] [Ca 2 ][C2O4 2 4 2 4
MA ƒ
M
+
+
MLn
● ● ●
A
-
L
ML
s [ M ] s [ A] [M ]aM ( L)
s [ A][M ] [ A][ M ]a M ( L ) K spa M ( L ) K sp
第四章:沉淀溶解

沉淀的转化 溶液中溶解0.01molCaSO4,计算 例:欲在1.0LNa2CO3溶液中溶解 欲在 Na2CO3初始浓度的最小值? 初始浓度的最小值? 已知 KSP(CaCO3)=5.0×10-9 KSP(CaSO4)=9.1×10-6 解:
CaSO4 = Ca 2+ + SO4
CO32CaCO3
= (m ) (nS) S
m n
n+ m
m− n
S = m+n
Ksp,MmAn mn
m n
S = m+n
名称 AgBr BaSO4 Ag2CrO4
Ksp,MmAn mn
7.1×10-4 1.1×10-5 7.9×10-5
m n
溶解度(mol.L-1)
溶度积 5.0×10-13 1.1×10-10 2.0×10-12
四、络合效应 MA (s) M n+ + A mL ML …MLn
S = [ M ' ] = [ M ]α M ( L ) = [ A]
ቤተ መጻሕፍቲ ባይዱ
S = [ A][ M ' ] = [ A][ M ]α M ( L ) = K SPα M ( L ) = K ' SP
2 溶度积规则及其应用
2.1、溶度积规则 、
K ap , MA = f (T )
活度积常数
a M = γ M [ M n + ],
a A = γ A[ Am− ]
K sp , MA = f (T , I )
K ap , MA = γ M γ A [ M n + ][ A m − ] = γ M γ A K sp , MA
K sp , MA = [ M n + ][ A m − ]
沉淀溶解平衡知识点

沉淀溶解平衡知识点沉淀溶解平衡是化学中重要的概念之一,它描述了在某种条件下溶液中发生的物质的沉淀和溶解的平衡状态。
在化学反应中,物质可以从溶液中沉淀出来,也可以从固体状态溶解到溶液中。
了解沉淀溶解平衡的知识,对于理解和控制化学反应过程具有重要意义。
本文将介绍沉淀溶解平衡的基本概念和相关的知识点。
一、溶液的溶解度溶解度是指在一定条件下溶液中能溶解的物质的最大量。
不同物质的溶解度受到温度、压力、溶剂性质等因素的影响。
一般来说,温度升高可以增加物质的溶解度,而压力的变化对溶解度的影响较小。
溶解度的测定方法有多种,常用的包括测定饱和溶液中物质的质量、体积和浓度等。
二、溶液中物质的沉淀和溶解当一个物质溶解到溶液中,溶液中的浓度随之增加。
当溶液中物质的浓度超过其溶解度时,就会发生沉淀反应,即物质从溶液中沉淀出来形成固体颗粒。
沉淀的过程可以用沉淀反应方程式来描述,例如:AgNO3(aq) + NaCl(aq) → AgCl(s) + NaNO3(aq)其中,AgNO3和NaCl是溶解物质,AgCl是沉淀物质,NaNO3是剩余的溶解物质。
相反,当溶液中物质的浓度低于其溶解度时,就会发生溶解反应,即固体物质从溶质态转变为溶质态。
溶解的过程也可以用溶解反应方程式来描述。
三、溶解度积常数在沉淀溶解平衡中,溶液中沉淀物质的浓度和溶解物质的浓度之间存在一个定量关系,这个关系由溶解度积常数来表示。
溶解度积常数是指在特定温度下,溶解物质溶解生成的离子在溶液中的浓度的乘积。
对于沉淀反应,溶解度积常数是沉淀物质的溶解度的平方,例如:Ksp = [Ag+][Cl-]其中,Ksp是溶解度积常数,[Ag+]和[Cl-]分别是溶液中银离子和氯离子的浓度。
溶解度积常数的大小可以反映溶解物质的溶解性,当Ksp值较大时,表示溶解度较高,溶解物质较易溶解。
四、影响沉淀溶解平衡的因素沉淀溶解平衡受到多种因素的影响,包括温度、浓度、压力和溶剂性质等。
7.1影响沉淀溶解度的因素有那些是怎样发生影响的.

7.1影响沉淀溶解度的因素有那些?是怎样发生影响的?解:影响沉淀溶解度的因素有1.同离子效应:溶液中构晶离子的浓度越大,溶解度越小。
2.pH值的影响,即酸效应:对于弱酸盐的沉淀,pH越小,溶解度越大。
这是因为弱酸根受H+影响,形成了非酸根的阴离子或以弱酸形式存在。
3.配位效应:若溶液中存在能与构晶离子形成配合物的配位剂时,其浓度越大,则溶解度越大。
4.盐效应:溶液中其它非构成沉淀的盐类的浓度越高,溶解度增大。
这是由于这类离子的存在,减少了构成沉淀的离子相互碰撞的机会。
5.氧化还原效应:由于加入氧化剂或还原剂,改变了构成沉淀中离子的氧化数,改变了沉淀的组成,会影响其溶解度。
7.2形成沉淀的性状主要与哪些因素有关?哪些是本质因素?解:沉淀可分为晶型沉淀和非晶型沉淀两种。
沉淀的性状是由聚集速度和定向速度的关系来决定的。
当聚集速度大于定向速度时,形成非晶型沉淀。
否则,形成晶型沉淀。
其中定向速度是沉淀物质本身的性质。
而聚集速度可通过实验条件的选择适度地改变。
7.3已知在常温下,下列各盐的溶解度,求其溶度积(不考虑水解的影响)(1)AgBr 7.1×10-7mo1·L-1解:AgBr Ag++Br-因此[Ag+]=[Br-]=7.1×10-7溶度积Ksp(AgBr)=(7.1×10-7)×(7.1×10-7)=5.0×10-13(2) BaF2 6.3×10-3 mo1·L-1BaF2Ba2++2F-∴[Ba2+]=6.3×10-3[F-]=2×6.3×10-3溶度积Ksp(BaF2)=[Ba2+][F-]2=(6.3×10-3)×(2×6.3×10-3)2=1.0×10-67.4计算下列溶液中CaC2O4的溶解度解:这道题主要是要了解酸效应及同离子效应对溶解度的影响,这是因为存在着下列平衡:C2O42-+H+HC2O4-HC2O4-+H+H2C2O4而HC2O4-和H2C2O4都不会与Ca2+形成CaC2O4测定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沉淀的溶解度及其影响因素在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。
通常,在重量分析中要求被测组分在溶液中的残留量在0.000 1g 以,即小于分析天平的称量允许误差。
但是,很多沉淀不能满足这个条件。
例如,在1 000 mL水中,BaSO4的溶解度为0.002 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。
因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。
一、沉淀的溶解度当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系:MA (固)MA (水)M+ + A-式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即:a (M+)×a (A-) == (7—1)式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是:a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2)式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。
将式( 7 - 2 )代入(7 – 1 )得(M+) ceq(M+)·( A-) ceq(A-) = (7—3)故= ceq(M+)·ceq(A—) = (7—4)称为微溶化合物的溶度积常数,简称溶度积。
在纯水中MA的溶解度很小,则ceq(M+) = ceq(A—) = so(7—5)ceq(M+)·ceq(A—) = so2 =(7—6)上二式中的so是在很稀的溶液,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。
一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。
实际上溶解度是随其他离子存在的情况不同而变化的。
因此溶度积只在一定条件下才是一个常数。
如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。
所以在稀溶液中,仍常用离子浓度乘积来研究沉淀的情况。
如果溶液中的电解质浓度较大(例如以后将讨论的盐效应对沉淀溶解度的影响),就必须用式 (7 - 3) 来考虑沉淀的情况。
对于其他类型沉淀如MmAn的溶解度公式,根据质量作用定律可推导为:= [ceq (M n+)]m·[ceq (A m-)]n=((7—7)= = = (7—8)在一定温度下,难溶电解质在纯水中都有其一定的溶度积,其数值的大小是由难溶电解质本身的性质所决定的。
外界条件变化,例如酸度的变化、配位剂的存在等,都将使金属离子浓度或沉淀剂浓度发生变化,因而影响沉淀的溶解度和溶度积。
这和配位滴定中,外界条件变化引起金属离子或配位剂浓度变化,因而影响稳定常数的情况相似。
二、影响沉淀溶解度的因素影响沉淀溶解度的因素很多,如同离子效应、盐效应、酸效应及配位效应等。
此外,温度、溶剂、沉淀的颗粒大小和结构,也对溶解度有影响,分别讨论如下。
•同离子效应为了减少溶解损失,当沉淀反应达到平衡后,应加入过量的沉淀剂,以增大构晶离子(与沉淀组成相同的离子)浓度,从而减小沉淀的溶解度。
这一效应称为同离子效应(commom-ion effect)。
对重量分析来说,沉淀溶解损失的量不超过一般称量的精确度(0.2 mg),即处于允许的误差围之。
但一般沉淀很少能达到这要求。
例如用BaCl2使SO42—沉淀成BaSO4,(BaSO4) = 1.1×10—10, 当加入BaCl2的量与SO42—的量符合化学计量关系时,在200 mL溶液中溶解的BaSO4质量为×233× = 0.000 49g = 0.49 mg溶解所损失的量已超过重量分析的要求。
但是,如果加入过量的BaCl2,则可利用同离子效应来降低BaSO4的溶解度。
若沉淀达到平衡时,过量的ceq(Ba2+)= 0.01 mol·L-1,可计算出200 mL溶液中溶解的BaSO4的质量为×233×= 5.1×10-7 g = 0.000 51 mg显然,这已远小于允许沉淀溶解损失的质量,可以认为沉淀已经完全。
因此,在进行重量分析确定沉淀剂用量时,常要求加入过量沉淀剂,利用同离子效应来降低沉淀的溶解度,以使沉淀完全。
沉淀剂过量的程度,应根据沉淀剂的性质来确定。
若沉淀剂不易挥发,应过量少些,如过量20 % ~ 50 %;若沉淀剂易挥发除去,则可过量多些,甚至过量100 %。
必须指出,沉淀剂决不能加得太多,否则可能发生其他影响(如盐效应、配位效应等),反而使沉淀的溶解度增大。
•盐效应在难溶电解质的饱和溶液中,加入其他强电解质, 会使难溶电解质的溶解度比同温度时在纯水中的溶解度增大,这种现象称为盐效应(salt effect)。
例如在强电解质KNO3的溶液中,AgCl、BaSO4的溶解度比在纯水中大,而且溶解度随KNO3的浓度增大而增大,当溶液中KNO3的浓度由0增到0.01 mol·L—1时,AgCl的溶解度由1.28×10—5 mol·L—1增到1.43×10—5 mol·L-1。
发生盐效应的原因是由于离子的活度系数与溶液中加入的强电解质的种类和浓度有关,当溶液中强电解质的浓度增大到一定程度时,离子强度增大而使离子活度系数明显减小。
但在一定温度下,是常数,由(7—4)可看出c (M+) c (A—)必然要增大,致使沉淀的溶解度增大。
因此在利用同离子效应降低沉淀溶解度时,应考虑到盐效应的影响,即沉淀剂不能过量太多。
例1 计算在0.008 0 mol·L—1 MgCl2溶液中BaSO4的溶解度?解:I ==mol·L-1 = 0. mol·L-1查化学手册得:0.56,0.55s = ceq (Ba2+)/cθ= ceq (SO42-)/cθ= == = 1.9×10—5 mol·L—1与在纯水中的溶解度(1.05×10—5 mol·L—1)相比较,则= 181 %即BaSO4在0.008 0 mol·L—1 MgCl2溶液中比在纯水中的溶解度增大81 %。
应该指出,如果沉淀本身的溶解度越小,盐效应的影响就越小,可以不予考虑。
只有当沉淀的溶解度比较大,而且溶解的离子强度很高时,才考虑盐效应的影响。
•酸效应溶液的酸度对沉淀溶解度的影响,称为酸效应(acid effect)。
酸效应的发生主要是由于溶液中H+浓度的大小对弱酸、多元酸或难溶酸等离解平衡的影响。
若沉淀是强酸盐,如AgCl、BaSO4等,其溶解度受酸度影响不大。
若沉淀是弱酸、多元酸盐或氢氧化物时,酸度增大时,组成的阴离子如CO32—、C2O42—、PO43—、SiO32—和OH—等与H+结合,降低了阴离子的浓度,使沉淀的溶解度增大。
反之,酸度减小时,组成沉淀的金属离子可能发生水解,形成带电荷的OH—配合物,于是降低了阳离子的浓度而增大沉淀的溶解度。
下面以计算草酸钙沉淀的溶解度为例,来说明酸度对溶解度的影响。
ceq(Ca2+)×ceq (C2O42—) = (7—9)草酸是二元酸,在溶液中具有下列平衡在不同酸度下,溶液中存在的沉淀剂的总浓度c’(C2O42—)总应为:c’(C2O42—)总 = ceq(C2O42—) + ceq(HC2O4—) + ceq( H2C2O4)能与Ca2+形成沉淀的是C2O42—-,而= (7—10)式中的是草酸的酸效应系数,其意义和EDTA的酸效应系数完全一样。
将式(7—10)代入式 (7—9) 即得:ceq(Ca2+) .c’(C2O42—)总= = (7—11)式中是在一定酸度条件下草酸钙的溶度积,称为条件溶度积。
利用条件溶度积可以计算不同酸度下草酸钙的溶解度。
s (CaC2O4) = ceq (Ca2+) =c’(C2O42—)总 == (7—12)例 2比较CaC2O4在pH为4.00和2.00的溶液中的溶解度。
解:设CaC2O4在pH为4.00的溶液中的溶解度为s1, 已知= 2.0×10—9, H2C2O4的= 5.9×10—2, = 6.4×10—5, 此时= 1 + β1c (H+) +β2 c2 (H+) = 2.56s1 = = 7.2×10—5 mol·L—1同理,设CaC2O4在pH为2.00的溶液中的溶解度为s2,由计算可得:= 185s2 = = 6.1×10—4 mo l·L—1由上述计算可知,沉淀的溶解度随溶液酸度增加而增加。
在pH = 2.00时CaC2O4的溶解损失已超过重量分析要求,若要符合误差允许围,则沉淀反应需在pH = 4 ~ 6的溶液中进行。
•配位效应若溶液中存在配位剂,它能与生成沉淀的离子形成配合物,使沉淀溶解度增大,甚至不产生沉淀,这种现象称为配位效应(complexing effect)。
例如用Cl—沉淀Ag+时,Ag+ + Cl—AgCl若溶液中有氨水,则NH3能与Ag+配位,形成 [ Ag (NH3)2 ]+ 配离子,AgCl在0.01 mol·L—1氨水中的溶解度比在纯水中的溶解度大40倍。
如果氨水的浓度足够大,则不能生成AgCl沉淀。
又如Ag+溶液中加入Cl—, 最初生成AgCl沉淀,但若继续加入过量的Cl—,则Cl—能与Ag+配位成AgCl2—和AgCl32—等配离子,而使AgCl沉淀逐渐溶解。
AgCl在0.01 mol·L—1HCl溶液中的溶解度比在纯水中的溶解度小,这时同离子效应是主要的。
若Cl—浓度增加到0.5 mol·L—1, 则AgCl的溶解度超过纯水中的溶解度,此时配位效应的影响已超过同离子效应;若Cl—再增加,则由于配位效应起主要作用,AgCl沉淀甚至可能不出现。
因此,用Cl—沉淀Ag+时,必须严格控制Cl—浓度。
应该指出,配位效应使沉淀溶解度增大的程度与沉淀的溶度积和形成配合物的稳定常数的相对大小有关。
形成的配合物越稳定,配合效应越显著,沉淀的溶解度越大。
依据以上讨论的共同离子效应、盐效应、酸效应和配位效应对沉淀溶解度的影响程度,在进行沉淀反应时,对无配位反应的强酸盐沉淀,应主要考虑同离子效应和盐效应;对弱酸盐或难溶酸盐,多数情况下应主要考虑酸效应;在有配位反应,尤其在能形成较稳定的配合物,而沉淀的溶解度又不太小时,则应主要考虑配位效应。
除上述因素外,温度、其他溶剂的存在及沉淀本身颗粒的大小和结构,也都对沉淀的溶解度有所影响。
5.其它影响因素(1)温度的影响溶解一般是吸热过程,绝大多数沉淀的溶解度随温度升高而增大。