第二节沉淀的溶解度及其影响因素
沉淀的溶解度及其影响因素

沉淀溶解是沉淀形成的相反过程。构晶离子聚集形成沉淀,获得晶格能,晶 格能越大,沉淀越完全。但占据沉淀表面位点的溶质仍有未饱和的键存在,溶剂 分子与固体表面的溶质的相互作用,易于使其溶剂化回到溶液中,导致沉淀的溶 解。 (一)溶解度、溶度积和条件溶度积 1. 溶解度s 对于1∶1型沉淀MA,在水中存在下列平衡:
MA(S)
⇌
MA(水) (M+A-)
⇌
M+ + A-
分子状态或离子对化合物
MA 的溶解部分
MA的溶解度
s = [MA(水)]+[M+] = [MA(水)] + [A-] = s0 + [M+] = s0 + [A-]
式中: s0 为分子溶解度或固有溶解度。 例如,AgCl溶于水中
对于有些物质可能是离子化合物(mMn+ nAm-),如CaSO4溶于水中
此时,溶液中金属离子总浓度
和沉淀剂总溶度
分别为
引入相应的副反应系数
、
,则
即
称为条件溶度积。 4. 溶解度和溶度积的关系 设 MnAn 溶解于水中达到沉淀溶解平衡时,
对于大多数电解质来说,So都较小,一般计算中往往忽略So项。 则
得
故
(二)影响沉淀溶解度的因素 在沉淀重量分析法中,为降低溶解损失,减小误差,必须了解各种影响沉淀 溶解度的因素。 1. 同离子效应 向溶液中加入构晶离子时,沉淀的溶解度减小。 例题 计算25℃时, BaSO4在纯水中和含0.01 mol· L-1 SO42-的水溶液中的溶解度。
由附录表立的两因素:当沉淀剂过量时:开始 同 离子效应占主导地位过量太多时,盐效应 。 3. 酸效应 溶液的酸度对 S 的影响: 多元弱酸盐 CaCO3 、 CaC2O4, 氢氧化物 Fe(OH)3、 Al(OH)3, [H+] S [H+] S
沉淀的溶解度和影响因素

沉淀的溶解度及其影响因素在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。
通常,在重量分析中要求被测组分在溶液中的残留量在0.000 1g 以,即小于分析天平的称量允许误差。
但是,很多沉淀不能满足这个条件。
例如,在1 000 mL水中,BaSO4的溶解度为0.002 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。
因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。
一、沉淀的溶解度当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系:MA (固)MA (水)M+ + A-式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即:a (M+)×a (A-) == (7—1)式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是:a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2)式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。
将式( 7 - 2 )代入(7 – 1 )得(M+) ceq(M+)·( A-) ceq(A-) = (7—3)故= ceq(M+)·ceq(A—) = (7—4)称为微溶化合物的溶度积常数,简称溶度积。
在纯水中MA的溶解度很小,则ceq(M+) = ceq(A—) = so(7—5)ceq(M+)·ceq(A—) = so2 =(7—6)上二式中的so是在很稀的溶液,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。
一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。
实际上溶解度是随其他离子存在的情况不同而变化的。
因此溶度积只在一定条件下才是一个常数。
如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。
分析化学 第六章 重量分析法和沉淀滴定法

通辽职业学院
3.电解法
利用电解原理,使待测金属离子在电极上还原析出, 然后称重,电极增加的重量即为金属重。 重量分析法优点:其准确度较高,相对误差一般为 0.1-0.2%。
缺点:
程序长、费时多,操作繁琐,也不适用于微量组 分和痕量组分的测定。
分析化学
通辽职业学院
二、沉淀重量法对沉淀形式和称量形式的要求
Ba2+ SO42SO42- Ba2+ SO42SO42-
沉淀
Ba2+
Cl
-
Ca2+
K+
Ba2+ SO42Cl SO42- Ba2+ SO4
2-
Ca2+
Na+ Cl
-
Ba2+ SO42吸附层 扩散层
分析化学
通辽职业学院
(2) 吸留和包藏 吸留(occlusion):在沉淀过程中,若生成沉淀 的速度过快,则表面吸附的杂质来不及离开沉淀表面 就被沉淀下来的离子所覆盖,而杂质就被包藏在沉淀 内部,从而引起共沉淀。 包藏(inclusion):在沉淀过程中,母液也可能 被包夹在沉淀当中,从而引起共沉淀。 (3)混晶 当杂质离子的半径与构晶离子的半径相近时,所形 成的晶体结构相同,则它们极易生成混晶。 如:BaSO4和PbSO4, AgCl和AgBr. BaSO4和KMnO4等。 分析化学
K sp
K ap
②对于MmAn型沉淀,溶度积的表达式为:
MmAn
mM + nA
[Mn ]m [Am- ]n Ksp
分析化学
通辽职业学院
(2)条件溶度积 MA M
OH
+
+
沉淀滴定与沉淀重量法

沉淀微粒大小的影响因素
成核速度 沉淀微 粒大小 晶核长大速度 温度、搅拌 温度、 等沉淀条件 总结
> >
晶核长大速度
小的沉 淀微粒
成核速度
大的沉 淀微粒
浓度 非晶形沉淀 晶形沉淀
聚集速度 > 定向速度 聚集速度 < 定向速度
沉淀的纯度
影响沉淀纯度的因素
共沉淀 coprecipitation
后沉淀 postprecipitation
沉淀滴定与沉淀重量法
江银枝 2011春
沉淀的溶解度及其影响因素
溶解度 solubility 在一定的温度和压力下,物质在一定量的溶剂中, 在一定的温度和压力下,物质在一定量的溶剂中,当沉淀与 溶解达到平衡时所溶解的最大量。 溶解达到平衡时所溶解的最大量。 例: CaF2 = Ca2+ + 2FH+
HC2O4 - H2C2O4 C(C2O42-) = 0.1 mol/L
S = [Pb′] ≠ [(C2O42-) ′]
S=
′ Ksp
2− [(C2O4 )′]
=
KspαPbαC O2−
2 4
CC O2−
2 4
重量分析法概述
重量法的分类及特点
分类 挥发法 X·nH2O △
md
干燥剂 X + nH2O(g) ↑ 干燥剂· 干燥剂 nH2O
H2 O SO42SO42Cu2 + Cu2+
特点 不需用基准物质 准确度高 不适用于微量分析 手续繁琐、 手续繁琐、费时 应用 主要应用于含量不太低的 Si, S, P, W, Mo, Ni, Zr, Hf, Nb, Ta、稀土 、 元素及水分等挥发组分 的精确分析
影响沉淀溶解度的因素

(
s=
K sp =1.3 10- 5 mol / L
)
1.0 2.0
同离子效应与络合效应对难溶物的溶解度的影响
[Cl-]/(mol/L)
0 130
0.001 0.01 7.6 8.7
0.1 45
s (AgCl) /×107
2015年2月10日星期二
1600 7100
分析化学教研室
第12页
总结
K sp [M ] [ A]
2015年2月10日星期二 分析化学教研室 第7页
例10-4 计算CuS在纯水中的溶解度。(1) 不考虑S2-的水解; (2) 考虑S2-的水解。
解:不考虑S2-的水解
s = [Cu 2+ ] = [ S 2- ] = = 6.0? 10- 36
K sp
2.4´ 10- 18 mol / L
- 36
2 4
酸效应+同离子效应
CaC2O4 Ca2++ C2O42-
a CO
2
4
2-(H)
=1+ b1[H+] + b2[H+]2 = 2.55
s
0.10 mol/L
2 2 [Ca 2 ][C2O4 ]a C O2 ( H ) K spaC O2 ( H ) K sp ] [Ca 2 ][C2O4 2 4 2 4
MA ƒ
M
+
+
MLn
● ● ●
A
-
L
ML
s [ M ] s [ A] [M ]aM ( L)
s [ A][M ] [ A][ M ]a M ( L ) K spa M ( L ) K sp
无机化学 - 沉淀溶解平衡

Kspθ与S的定量关系
① AB型: AB
A++ B-
溶解度为 S mol·L–1 S S
K
SP
ceq ( A c
)
ceq ( B c
)
S2
c
2
② AB2 、A2B型:Mg(OH)2,Ag2SO4
AB2
A2++ 2B-
S 2S
K
SP
S
5.3×10-5 < 1.7×10-4
∴ 不同类型的难溶电解质,
Kspθ大,S不一定大, 通过计算比较S
14
练习
1.下列叙述正确的是( ) A.用水稀释含有AgCl固体的溶液时,AgCl的标准溶度积常数不变 B.标准溶度积常数大者,溶解度也大 C.由于AgCl水溶液导电性很弱,所以它是弱电解质 D.难溶电解质离子浓度的乘积就是该物质的标准溶度积常数
解: ① ∵ Kspθ=c1 [Ag+]c[I-]=8.3×10-17
Kspθ=c2 [Ag+]c[Cl-]=1.8×10-10 c1 [Ag+]=8.3×10-17/0.010= 8.3×10-15 (AgI先↓)
c2 [Ag+]=1.8×10-10/0.010= 1.8×10-8 (AgCl后↓)
B.3.510-5 mol / L
C.5.010-5 mol / L
D.1.7 10-3 mol / L
(D)
2.
室温下,La2
(C2O4
)3?在纯水中的溶解度为1.1106
?mol
/
L,? 其K
sp
()
A.7.3 1012
沉淀溶解平衡知识点

沉淀溶解平衡知识点沉淀溶解平衡是化学中重要的概念之一,它描述了在某种条件下溶液中发生的物质的沉淀和溶解的平衡状态。
在化学反应中,物质可以从溶液中沉淀出来,也可以从固体状态溶解到溶液中。
了解沉淀溶解平衡的知识,对于理解和控制化学反应过程具有重要意义。
本文将介绍沉淀溶解平衡的基本概念和相关的知识点。
一、溶液的溶解度溶解度是指在一定条件下溶液中能溶解的物质的最大量。
不同物质的溶解度受到温度、压力、溶剂性质等因素的影响。
一般来说,温度升高可以增加物质的溶解度,而压力的变化对溶解度的影响较小。
溶解度的测定方法有多种,常用的包括测定饱和溶液中物质的质量、体积和浓度等。
二、溶液中物质的沉淀和溶解当一个物质溶解到溶液中,溶液中的浓度随之增加。
当溶液中物质的浓度超过其溶解度时,就会发生沉淀反应,即物质从溶液中沉淀出来形成固体颗粒。
沉淀的过程可以用沉淀反应方程式来描述,例如:AgNO3(aq) + NaCl(aq) → AgCl(s) + NaNO3(aq)其中,AgNO3和NaCl是溶解物质,AgCl是沉淀物质,NaNO3是剩余的溶解物质。
相反,当溶液中物质的浓度低于其溶解度时,就会发生溶解反应,即固体物质从溶质态转变为溶质态。
溶解的过程也可以用溶解反应方程式来描述。
三、溶解度积常数在沉淀溶解平衡中,溶液中沉淀物质的浓度和溶解物质的浓度之间存在一个定量关系,这个关系由溶解度积常数来表示。
溶解度积常数是指在特定温度下,溶解物质溶解生成的离子在溶液中的浓度的乘积。
对于沉淀反应,溶解度积常数是沉淀物质的溶解度的平方,例如:Ksp = [Ag+][Cl-]其中,Ksp是溶解度积常数,[Ag+]和[Cl-]分别是溶液中银离子和氯离子的浓度。
溶解度积常数的大小可以反映溶解物质的溶解性,当Ksp值较大时,表示溶解度较高,溶解物质较易溶解。
四、影响沉淀溶解平衡的因素沉淀溶解平衡受到多种因素的影响,包括温度、浓度、压力和溶剂性质等。
水化学 5沉淀

S2-S1/S1×100%=66%
计 算 表 明 , 当 溶 液 中 NaNO3 的 浓 度 由 0 增 加 至 0.010mol·L-1时,BaSO4的溶解度增大了66%。
3、酸效应 溶液的酸度给沉淀溶解度带来的影响,称 为酸效应。 当酸度增大( PH 减小)时,组成沉淀的 阴离子与H+结合,降低了阴离子的浓度,使 沉淀的溶解度增大。
根据MA(固)
MA(水) 平衡
K1=aMA(水)/aMA(固)
由于aMA(固)=1,且中性分子的活度系数近似为1, 则
aMA(水)=[MA](水)=K1=S0
S0 称为物质的分子溶解度或固有溶解度。
当溶解达到平衡时,则MA的溶解度S等于:
S=S0+[M+]=S0+[A-]
★各种难溶化合物的固有溶解度(S0)相差很大。例如 HgC12 在室温下的固有溶解度约为 0.25mol/L ; AgCl 的固有溶解度在1.0×10-7~6.2×10-7mol/L之间。 ★当难溶化合物的固有溶解度较大时 ( 即 MA( 水 ) 的离 解度较小),在计算溶解度时必须加以考虑。 ★由于许多沉淀的固有溶解度比较小,所以计算溶 解度时,一般可以忽略固有溶解度的影响, 所以,S=[M+]=[A-] 。
方法。
Ag+ + ClAgCl
Ag+ + SCN-
AgSCN
★银量法从滴定方式来看,可分为:
直接银量法和间接银量法
★银量法从所使用的指示剂的不同 ,又 可分为:
莫尔法
佛尔哈德法
法扬斯法
一、沉淀滴定曲线
以0.1000 mol/L AgNO3标准溶液滴定20.00 ml 0.1000mol/L NaCl溶液为例 1、滴定前 溶液中[Cl-]决定于NaCl浓度 [Cl-]=0.1000 mol/L pCl=-lg[Cl-]=1.00
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节沉淀的溶解度及其影响因素在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。
通常,在重量分析中要求被测组分在溶液中的残留量在0.000 1g 以内,即小于分析天平的称量允许误差。
但是,很多沉淀不能满足这个条件。
例如,在1 000 mL水中,BaSO4的溶解度为0.002 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。
因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。
一、沉淀的溶解度当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系:MA (固)MA (水)M+ + A-式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即:a (M+)×a (A-) == (7—1)式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是:a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2)式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。
将式( 7 - 2 )代入(7 – 1 )得(M+) ceq(M+)·( A-) ceq(A-) = (7—3)故= ceq(M+)·ceq(A—) = (7—4)称为微溶化合物的溶度积常数,简称溶度积。
在纯水中MA的溶解度很小,则ceq(M+) = ceq(A—) = so(7—5)ceq(M+)·ceq(A—) = so2 =(7—6)上二式中的so是在很稀的溶液内,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。
一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。
实际上溶解度是随其他离子存在的情况不同而变化的。
因此溶度积只在一定条件下才是一个常数。
如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。
所以在稀溶液中,仍常用离子浓度乘积来研究沉淀的情况。
如果溶液中的电解质浓度较大(例如以后将讨论的盐效应对沉淀溶解度的影响),就必须用式 (7 - 3) 来考虑沉淀的情况。
对于其他类型沉淀如MmAn的溶解度公式,根据质量作用定律可推导为:= [ceq (M n+)]m·[ceq (A m-)]n=((7—7)= = = (7—8) 在一定温度下,难溶电解质在纯水中都有其一定的溶度积,其数值的大小是由难溶电解质本身的性质所决定的。
外界条件变化,例如酸度的变化、配位剂的存在等,都将使金属离子浓度或沉淀剂浓度发生变化,因而影响沉淀的溶解度和溶度积。
这和配位滴定中,外界条件变化引起金属离子或配位剂浓度变化,因而影响稳定常数的情况相似。
二、影响沉淀溶解度的因素影响沉淀溶解度的因素很多,如同离子效应、盐效应、酸效应及配位效应等。
此外,温度、溶剂、沉淀的颗粒大小和结构,也对溶解度有影响,分别讨论如下。
同离子效应为了减少溶解损失,当沉淀反应达到平衡后,应加入过量的沉淀剂,以增大构晶离子(与沉淀组成相同的离子)浓度,从而减小沉淀的溶解度。
这一效应称为同离子效应(commom-ion effect)。
对重量分析来说,沉淀溶解损失的量不超过一般称量的精确度(0.2 mg),即处于允许的误差范围之内。
但一般沉淀很少能达到这要求。
例如用BaCl2使SO42—沉淀成BaSO4,(BaSO4) = 1.1×10—10, 当加入BaCl2的量与SO42—的量符合化学计量关系时,在200 mL溶液中溶解的BaSO4质量为×233× = 0.000 49g = 0.49 mg溶解所损失的量已超过重量分析的要求。
但是,如果加入过量的BaCl2,则可利用同离子效应来降低BaSO4的溶解度。
若沉淀达到平衡时,过量的ceq(Ba2+)= 0.01 mol·L-1,可计算出200 mL溶液中溶解的BaSO4的质量为×233×= 5.1×10-7 g = 0.000 51 mg显然,这已远小于允许沉淀溶解损失的质量,可以认为沉淀已经完全。
因此,在进行重量分析确定沉淀剂用量时,常要求加入过量沉淀剂,利用同离子效应来降低沉淀的溶解度,以使沉淀完全。
沉淀剂过量的程度,应根据沉淀剂的性质来确定。
若沉淀剂不易挥发,应过量少些,如过量20 % ~ 50 %;若沉淀剂易挥发除去,则可过量多些,甚至过量100 %。
必须指出,沉淀剂决不能加得太多,否则可能发生其他影响(如盐效应、配位效应等),反而使沉淀的溶解度增大。
盐效应在难溶电解质的饱和溶液中,加入其他强电解质, 会使难溶电解质的溶解度比同温度时在纯水中的溶解度增大,这种现象称为盐效应(salt effect)。
例如在强电解质KNO3的溶液中,AgCl、BaSO4的溶解度比在纯水中大,而且溶解度随KNO3的浓度增大而增大,当溶液中KNO3的浓度由0增到0.01 mol·L—1时,AgCl的溶解度由1.28×10—5 mol·L—1增到1.43×10—5 mol·L-1。
发生盐效应的原因是由于离子的活度系数与溶液中加入的强电解质的种类和浓度有关,当溶液中强电解质的浓度增大到一定程度时,离子强度增大而使离子活度系数明显减小。
但在一定温度下,是常数,由(7—4)可看出c (M+) c (A—)必然要增大,致使沉淀的溶解度增大。
因此在利用同离子效应降低沉淀溶解度时,应考虑到盐效应的影响,即沉淀剂不能过量太多。
例1 计算在0.008 0 mol·L—1 MgCl2溶液中BaSO4的溶解度?解:I ==mol·L-1 = 0.024 mol·L-1查化学手册得:0.56,0.55s = ceq (Ba2+)/cθ= ceq (SO42-)/cθ= == = 1.9×10—5 mol·L—1与在纯水中的溶解度(1.05×10—5 mol·L—1)相比较,则= 181 %即BaSO4在0.008 0 mol·L—1 MgCl2溶液中比在纯水中的溶解度增大81 %。
应该指出,如果沉淀本身的溶解度越小,盐效应的影响就越小,可以不予考虑。
只有当沉淀的溶解度比较大,而且溶解的离子强度很高时,才考虑盐效应的影响。
酸效应溶液的酸度对沉淀溶解度的影响,称为酸效应(acid effect)。
酸效应的发生主要是由于溶液中H+浓度的大小对弱酸、多元酸或难溶酸等离解平衡的影响。
若沉淀是强酸盐,如AgCl、BaSO4等,其溶解度受酸度影响不大。
若沉淀是弱酸、多元酸盐或氢氧化物时,酸度增大时,组成的阴离子如CO32—、C2O42—、PO43—、SiO32—和OH—等与H+结合,降低了阴离子的浓度,使沉淀的溶解度增大。
反之,酸度减小时,组成沉淀的金属离子可能发生水解,形成带电荷的OH—配合物,于是降低了阳离子的浓度而增大沉淀的溶解度。
下面以计算草酸钙沉淀的溶解度为例,来说明酸度对溶解度的影响。
ceq(Ca2+)×ceq (C2O42—) = (7—9)草酸是二元酸,在溶液中具有下列平衡在不同酸度下,溶液中存在的沉淀剂的总浓度c’(C2O42—)总应为:c’(C2O42—)总 = ceq(C2O42—) + ceq(HC2O4—) + ceq( H2C2O4)能与Ca2+形成沉淀的是C2O42—-,而= (7—10)式中的是草酸的酸效应系数,其意义和EDTA的酸效应系数完全一样。
将式(7—10)代入式 (7—9) 即得:ceq(Ca2+) .c’(C2O42—)总= = (7—11)式中是在一定酸度条件下草酸钙的溶度积,称为条件溶度积。
利用条件溶度积可以计算不同酸度下草酸钙的溶解度。
s (CaC2O4) = ceq (Ca2+) =c’(C2O42—)总 == (7—12)例 2比较CaC2O4在pH为4.00和2.00的溶液中的溶解度。
解:设CaC2O4在pH为4.00的溶液中的溶解度为s1, 已知= 2.0×10—9, H2C2O4的= 5.9×10—2, = 6.4×10—5, 此时= 1 + β1c(H+) +β2 c2 (H+) = 2.56s1 = = 7.2×10—5 mol·L—1同理,设CaC2O4在pH为2.00的溶液中的溶解度为s2,由计算可得:= 185s2 = = 6.1×10—4 mol·L—1由上述计算可知,沉淀的溶解度随溶液酸度增加而增加。
在pH = 2.00时CaC2O4的溶解损失已超过重量分析要求,若要符合误差允许范围,则沉淀反应需在pH = 4 ~ 6的溶液中进行。
配位效应若溶液中存在配位剂,它能与生成沉淀的离子形成配合物,使沉淀溶解度增大,甚至不产生沉淀,这种现象称为配位效应(complexing effect)。
例如用Cl—沉淀Ag+时,Ag+ + Cl—AgCl若溶液中有氨水,则NH3能与Ag+配位,形成 [ Ag (NH3)2 ]+ 配离子,AgCl在0.01 mol·L—1氨水中的溶解度比在纯水中的溶解度大40倍。
如果氨水的浓度足够大,则不能生成AgCl沉淀。
又如Ag+溶液中加入Cl—, 最初生成AgCl沉淀,但若继续加入过量的Cl—,则Cl—能与Ag+配位成AgCl2—和AgCl32—等配离子,而使AgCl沉淀逐渐溶解。
AgCl在0.01 mol·L—1HCl溶液中的溶解度比在纯水中的溶解度小,这时同离子效应是主要的。
若Cl—浓度增加到0.5 mol·L—1, 则AgCl的溶解度超过纯水中的溶解度,此时配位效应的影响已超过同离子效应;若Cl—再增加,则由于配位效应起主要作用,AgCl沉淀甚至可能不出现。
因此,用Cl—沉淀Ag+时,必须严格控制Cl—浓度。
应该指出,配位效应使沉淀溶解度增大的程度与沉淀的溶度积和形成配合物的稳定常数的相对大小有关。
形成的配合物越稳定,配合效应越显著,沉淀的溶解度越大。
依据以上讨论的共同离子效应、盐效应、酸效应和配位效应对沉淀溶解度的影响程度,在进行沉淀反应时,对无配位反应的强酸盐沉淀,应主要考虑同离子效应和盐效应;对弱酸盐或难溶酸盐,多数情况下应主要考虑酸效应;在有配位反应,尤其在能形成较稳定的配合物,而沉淀的溶解度又不太小时,则应主要考虑配位效应。
除上述因素外,温度、其他溶剂的存在及沉淀本身颗粒的大小和结构,也都对沉淀的溶解度有所影响。
5.其它影响因素(1)温度的影响溶解一般是吸热过程,绝大多数沉淀的溶解度随温度升高而增大。