小学六年级奥数 立体几何常用技巧_PDF压缩

合集下载

数学立体几何解题技巧必看

数学立体几何解题技巧必看

数学立体几何解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些数学立体几何解题技巧的学习资料,希望对大家有所帮助。

高考数学答题技巧:立体几何解答立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(完整版)六年级奥数--体积、表面积

(完整版)六年级奥数--体积、表面积

六年级奥数——体积、表面积一、知识要点解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。

把物体从水中取出,水面下降部分的体积等于物体的体积。

这是物体全部浸没在水中的情况。

如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。

(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。

(3)求一些不规则形体体积时,可以通过变形的方法求体积。

(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定。

二、精讲精练【例题1】有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。

把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。

如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。

两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。

把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。

3×3×0.06+2×2×0.04=0.7(立方米)0.7÷6的平方=7/360(米)=1又17/18(厘米)答:大水池的水面升高了1又17/18厘米。

练习1:1、有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。

把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?2、用直径为20厘米的圆钢,锻造成长、宽、高分别为30厘米、20厘米、5厘米的长方体钢板,应截取圆钢多长(精确到0.1厘米)?3、将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗),求这个大正方体的体积。

小学奥数 六年级奥数 小升初几何重点考查内容—(立体几何表面积与体积常考题型

小学奥数 六年级奥数 小升初几何重点考查内容—(立体几何表面积与体积常考题型

1小升初几何重点考查内容(★★)(2010年第8届走美6年级第9题)21个棱长为1厘米的小正方形组成一个立体如下图,它的表面积是______平方厘米。

(★★☆)(第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米,若将木块从容器中取出,水面将下降______厘米。

(★★★)一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米,现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后,现在水深多少厘米?(★★★☆)(2008年仁华考试题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径是20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是多少平方米?(★★★★)(2006年第十一届华杯赛决赛试题)如图,ABCD是矩形,BC=6厘米,AB=10厘米,对角线AC、BD相交于点O。

图中的阴影部分以CD为轴旋转一周,则阴影部分扫出的立体图形的体积是多少立方厘米?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节!1.图中的立体图形是由14个棱长为5CM的立方体组成的,求这个立体图形的表面积?A.1000B.950C.1050D.11002.在一只长为40厘米宽为25厘米水深为20厘米的玻璃鱼缸中放入一个棱长为10厘米的正方体铁块,水可上升到多少厘米?A.20B.1C.21D.193.一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?A.15厘米B.14厘米C.12厘米D.12.4厘米4.厚度为1毫米的纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是6厘米,内直径是4厘米。

这卷纸的总长是多少米?A.15.7米B.1.57米C.157米D.0.157米5.如图,ABCD是矩形,6cmAB=,对角线AC、BD相交O。

小学数学奥数解题技巧大全100讲pdf版

小学数学奥数解题技巧大全100讲pdf版

第一讲观察法在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没有文字说明。

这道题旨在引导儿童观察、思考,初步培养他们的观察能力。

这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

例2看每一行的前三个数,想一想接下去应该填什么数。

(适于二年级程度)6、16、26、____、____、____、____。

六年级奥数-第五讲.几何-立体部分.教师版

六年级奥数-第五讲.几何-立体部分.教师版

第五讲 几何——立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.知识点拨:一、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED CBA①在六个面中,两个对面是相等的,即三组对面两两相等. ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥例题精讲:【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【解析】 我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:.【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 2】 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【例 3】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5【例 4】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【例 5】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 6】 把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【例 7】 一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 8】 (xx 年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)(单位:厘米)【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【例 9】 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【例 10】 如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【例 11】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC ∆扫出的立体图形的体积.(π 3.14=)【例 12】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?ABAB练习1. 一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)253015练习2. (xx 年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大1002cm ,则这个圆柱体木棒的侧面积是________2cm .(π取3.14)第2题【备选4】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【备选5】(xx 年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.。

最新小学奥数之立体几何问题

最新小学奥数之立体几何问题

立体图形⑴ 立体图形的表面积和体积公式长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED BA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?改.又是多少?【例 2】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)练习:在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 3】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 4】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?(锯一次增加两个面)练习.一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.表面积最小:互相重合的面最多时表面积最小【例 5】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?体积:例1. 如图11-6,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?例2. 某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如图11-9所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?⑵不规则立体图形的表面积整体观照法例1. 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.例2. 如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.例3.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.例4.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?例5.下图是由18个边长为1厘米的小正方体拼成的,求它的表面积。

六年级奥数-第五讲.几何-立体部分.教师版

六年级奥数-第五讲.几何-立体部分.教师版

六年级奥数-第五讲.几何-立体部分.教师版work Information Technology Company.2020YEAR第五讲 几何——立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.知识点拨:一、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED CBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥例题精讲:【例 1】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【例 2】【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【例 3】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【例 4】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 5】【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),12⨯12⨯4=1(平方厘米),1 4⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【例 6】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次,6+1⨯1⨯2⨯6=18(平方米).【巩固】(2008年走美六年级初赛)一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2563168(cm)⨯=.【例 7】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少【例 8】【例 9】25块积木【解析】当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【例 10】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?【例 11】⑴当b=2h时,如何打包?⑵当b<2h时,如何打包?⑶当b>2h时,如何打包?【解析】图2和图3正面的面积相同,侧面面积=正面周长⨯长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h+6b,图3的周长是12h+4b.两者的周长之差为2(b-2h).当b=2h时,图2和图3周长相等,可随意打包;当b<2h时,按图2打包;当b>2h 时,按图3打包.图3图2图1hba【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【解析】考虑所有的包装方法,因为6=1⨯2⨯3,所以一共有两种拼接方式:第一种按长宽高1⨯1⨯6拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高1⨯2⨯3拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【例 12】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:⨯⨯=(平方分米),44464⨯⨯=(平方分米).这个⨯⨯=(平方分米);侧面:55410055250立体图形的表面积为:5010064214++=(平方分米).【例 13】(2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.【解析】(法1)四个正方体的表面积之和为:2222+++⨯=⨯=(平方厘米),(1235)6396234重叠部分的面积为:22222222213(221)(321)(321)39141440⨯+⨯+++++++=+++=(平方厘米),所以,所得到的多面体的表面积为:23440194-=(平方厘米).(法2)三视图法.从前后面观察到的面积为222++=平方厘米,从左右两个面观察53238到的面积为225334=平方厘米.+=平方厘米,从上下能观察到的面积为2525表面积为()++⨯=(平方厘米).3834252194【例 14】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【解析】从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面2+个左面2+个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(9810)254++⨯=(平方厘米).上下面左右面前后面【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米【解析】该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于(977)246++⨯=个小正方形的面积,所以该图形表面积为46平方厘米.【例 15】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【解析】44(1234)456⨯++++⨯=(平方米).【例 16】棱长是m厘米(m为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m的最小值是多少?【例 17】【解析】 切割成棱长是1厘米的小正方体共有3m 个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为13:12,而131225+=,所以小正方体的总数是25的倍数,即3m 是25的倍数,那么m 是5的倍数.当5m =时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有5554265⨯+⨯⨯=个,表面没有红色的小正方体有1256560-=个,个数比恰好是13:12,符合题意.因此,m 的最小值是5.【例 18】 有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【例 19】【解析】 要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有3(42)8-=(个),用黑色的;在面上但不在边上的小正方体有2(42)624-⨯=(个),其中30822-=个用黑色.这样,在表面的44696⨯⨯=个11⨯的正方形中,有22个是黑色,962274-=(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【例 20】 三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【例 21】【解析】 每个长方体的棱长和是288396÷=厘米,所以,每个长方体长、宽、高的和是96424÷=厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个87⨯面,有8756⨯=个;涂两面的长方体,若两面不相邻,应涂两个87⨯面,有872112⨯⨯=个;若两面相邻,应涂一个87⨯面和一个97⨯面,此时有()7892105⨯+-=个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个87⨯面、一个97⨯面,有()78894147⨯++-=个;若三面两两相邻,有()()()()()()718171918191146-⨯-+-⨯-+-⨯-=个,所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有56105146307++=个.【例 22】 把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【例 23】【解析】 设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设100a b =⨯,那么分成的小正方体个数为()()()()221242104a b ab a b a b +⨯+⨯=+++=++,为了使小正方体的个数尽量少,应使()a b +最小,而两数之积一定,差越小积越小,所以当10a b ==时它们的和最小,此时共有()()102102144+⨯+=个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是10042331÷+⨯=.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令312227=++,此时共有2227108⨯⨯=个小正方体.因为108144<,所以至少要把这个大长方体分割成108个小正方体.【例 24】 把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【例 25】【解析】 一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.红红红红红红红红红红红其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有52422222⨯+⨯+⨯=(个).(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明22是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴⑵⑶⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由9个方格组成的环,这9个方格中只能有4个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的18个方格中最多能有8个可染成红色.⑶剩下633839212⨯⨯-⨯-⨯=个方格,分布在6条棱上,这12个格子中只能有6个能染成红色.综上所述,能被染成红色的方格最多能有88622++=个格子能染成红色,第一种解法中已经给出22个红方格的染色方法,所以22个格子染成红色是最多的情况.【例 26】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【例 27】【解析】本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米,第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:()333⨯⨯-++=(立方厘米).2115121296110712129996663121263912【例 28】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块? 【例 29】A【解析】 分层来看,如下图(切面平行于纸面)共有黑色积木17块.【巩固】这个图形,是否能够由112⨯⨯的长方体搭构而成?【解析】 每一个112⨯⨯的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由112⨯⨯的长方体搭构而成.【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少33223323322323111111【解析】 第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).765434565第三层654323454第二层第一层343212345上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是(2745)3216+⨯=.【例 30】 (05年武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【解析】 求体积:开了315⨯⨯的孔,挖去31515⨯⨯=,开了115⨯⨯的孔, 挖去11514⨯⨯-=;开了215⨯⨯的孔, 挖去215(22)6⨯⨯-+=,剩余部分的体积是:555(1546)100⨯⨯-++=.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:22412100⨯+=. 求表面积:表面积可以看成外部和内部两部分.外部的表面积为55612138⨯⨯-=,内部的面积可以分为前后、左右、上下三个方向,面积分别为()22515121320⨯⨯+⨯-⨯-⨯=、()2153513132⨯⨯+⨯-⨯-=、()2151511214⨯⨯+⨯-⨯-=,所以总的表面积为138203214204+++=.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:32上下方向:30左右方向:40总表面积为()2323040204⨯++=.【总结】“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【巩固】(2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?第8题【解析】对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数目)的题目一般可以采用“切片法”来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的),然后分别计算每一片或每一层的体积或小正方体数目,最后再把它们相加.采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分.第1层第2层第3层第4层第5层从图中可以看出,第1、2、3、4、5层剩下的小正方体分别有22个、11个、11个、6个、22个,所以总共还剩下22111162272++++=(个)小正方体.【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个【解析】解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有5525⨯=个,由侧面图形抽出的小正方体有5525⨯=个,正面图形和⨯=个,由底面图形抽出的小正方体有4520侧面图形重合抽出的小正方体有1221228⨯+⨯+⨯=个,正面图形和底面图形重合抽出的小正方体有13227⨯+⨯=个,底面图形和侧面图形重合抽出的小正方体有⨯+⨯+⨯=个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,1211227-=,所以右图中剩++---+=,所以共抽出了52个小正方体.1255273252520877452下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:【例 31】(2009年迎春杯高年级组复赛)右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的倍.⑷⑶⑵⑴⑾⑽⑼⑻⑺⑹⑸【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去1ABDA 、1CBDC 、111D AC D 、111B AC B );而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去1BACB 、1DACD ).D 1C 1B 1A 1D CBAABCDA 1B 1C 1D 1假设左图中的立方体的棱长为a ,右图中的立方体的棱长为b ,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:3231114233a a a a -⨯⨯⨯=,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为3231122233b b b b -⨯⨯⨯=. 由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即2b a =.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:()33331212::21:163333a b a a =⨯=,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【例 32】 图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?【例 33】图⑴图⑵【解析】首先,我们把展开图折成立体图形,见下列示意图:图⑴图⑵对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面,那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微妙关系:1和图3一致!60°图⑶图⑷由图⑷可见,图⑴这个立体的体积与图⑶这个被切去了8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是1111112222348⨯⨯⨯⨯=,所以切掉8个角后的体积是1518486-⨯=.再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为12的立方体来套.如果把图⑵的立体图形放入边长为12的立方体里的话是可以放进去的.12这是切去了四个角后的图形,从上面的分析可知一个角的体积为148,所以图⑵的体积是:1111142224824⨯⨯-⨯=,那么前者的体积是后者的5120624÷=倍.【例 34】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【例 35】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【例 36】【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米).【例 37】 (第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米)。

六年级奥数考点:立体图形的表面积问题

六年级奥数考点:立体图形的表面积问题

考点:立体图形的表面积问题一、知识要点小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。

从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。

因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。

在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。

(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。

反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。

(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。

若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。

二、精讲精练【例题1】从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?这是一道开放题,方法有多种:①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。

图27--1②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。

图27--2③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。

图27--3练习1:1、(课后)从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?切下一块后,切口处的表面减少了前、后、上面3个1×1的正方形,新增加了左右下面三个1×1的正方形,所以表面积大小不变。

2、把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小长方体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?4×4×6-2×2×2=92平方厘米3、在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?中心挖去的洞的体积是:12×3×3-13×2=7立方厘米,挖洞后木块的体积:33-7=20立方厘米,中心挖洞后每面增加的面积是12×4-12=3平方厘米,挖洞后木块的表面积:(32+3)×6=72平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厘米的正方体小洞,第三个正方体小洞的挖法和
前两个相同,棱长为
1 4
厘米,那么最后得到的
立体图形的表面积是多少平方厘米?
【加加点睛】 求表面积——三视图
【例3】(★★★)香港保良局小学数学世界邀请赛
如图,原来的大正方体是由125个小正方体所构成的。其中有些 小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方 体的挖除部分。请问剩下的部分共有多少个小正方体?
立体几何常用技巧
加油站 1.直线型立体几何:
⑴长方体的表面积和体积的计算公式 表面积:S长方体 2(ab bc ca); 体积:V长方体 abc。 正方体是各棱相等的长方体,它是长方体的特例, 它的六个面都是正方形。如果它的棱长为a, 那么: S正方体 6a2,V正方体 a3。
V

r 2h、
V

1 3

r
2
பைடு நூலகம்h。
【例1】(★★)走美6年级试题
21个棱长为1厘米的小正方体组成一个立体如下图 ,它的表面积是______平方厘米。
1
【例2】(★★)
下图是一个棱长为2厘米的正方体,在正方体上表
面的正中,向下挖一个棱长为1厘米的正方体小
洞,接着在小洞的底面正中向下挖一个棱长为
1 2
【加加点睛】
完全没过时:h水
=
V水
V铁块 S容器

部分没过时:h水
=
V水 S容器 S铁块

水溢出时:h水 =h容器
【例7】(★★★★) 如图若以长方形的一条宽AB为轴旋转一周后,甲乙 两部分所成的立体图形的体积比是多少? A
B
【例8】(★★★★★)华杯赛决赛试题
如图,ABCD是矩形,BC=6cm, AB=10cm,对角线 AC、BD相交O。图中的阴影部分以CD为轴旋转一周 ,则阴影部分扫出的立体的体积是多少立方厘米?
⑵由小立方体堆砌而成的立体图形,其表面积可用三视 图法求解: S (正视图面积+俯视图面积+侧视图面积+凹槽数) 2
⑶水中浸物问题的水面高度公式:
完全没过时:h水
=
V水
V铁块 S容器

部分没过时:h水
=
V水 S容器 S铁块

水溢出时:h水 =h容器
2.曲线型立体几何:
圆柱与圆锥的体积公式分别是
【加加点睛】 找不变量——体积
3
【例6】(★★★★) 如图,一个底面长30分米,宽10分米,高12分米的长方体水池 ,存有四分之三水,请问: ⑴将一个高11分米,体积330立方分米的圆柱放入水池,水面 的高度为多少分米?
⑵如果再放入一个同样的圆柱,水面高度又变成了多少分米?
⑶如果再放入一个同样的圆柱,水面高度又变成了多少分米?
( π取3)
A
D
O
B
C
4
【加加点睛】
圆柱:V r 2h、
圆锥:V

1 3

r
2
h。
【本讲总结】
长方体:
体积:切片法;表面积:三视图
旋转体体积:圆柱:V
r 2h、
圆锥:V

1 3

r
2
h。
重要思想:寻找不变量
重点例题:例3,例4,例5,例8
5
【加加点睛】 求体积——切片法
2
【例4】(★★★★) 如图,原来的大正方体是由125个棱长为1的小正 方体所构成的。其中有些小正方体已经被挖除, 图中涂黑色的部分就是贯穿整个大正方体的挖除 部分。请问剩下的部分的表面积是多少?
【加加点睛】 求表面积——三视图法
【例5】(★★★)
图中所示的是我们生活中常用的卷筒纸,从纸的包装纸上得到以 下资料:“两层300格,每格11.4厘米×11厘米(长×宽)”。我们用 尺子量出整卷卫生纸的内外半径分别为2.3厘米和5.8厘米,每层卫 生纸的厚度为多少(π取3)?(精确到0.01毫米)。
相关文档
最新文档