离散数学等价关系

合集下载

离散数学___等价关系与偏序关系

离散数学___等价关系与偏序关系
19
思考:
设A={a, b, c, d}, 给定π1,π2,π3,π4,π5,π6如下: π1= { {a, b, c}, {d} }, π2= { {a, b}, {c}, {d} } π3= { {a}, {a, b, c, d} }, π4= { {a, b}, {c} } π5= { ,{a, b}, {c, d} }, π6= { {a, {a}}, {b, c, d} } 问哪些是A的划分, 哪些不是 A 的划分? 答案: π 1和π 2 是A的划分, 其他都不是 A 的划分.
(2)当(a,b) ∈R时有(b,a) ∈R,所以满足对称性;
(3)当(a,b) ∈R和(b,c) ∈R时有(a,c) ∈R,所以R是可传递的。
由此可得同年龄关系 R是等价关系。
4
再如设集合A的情况同上所述 若令集合A={a , b , d , c , e , f } 同房间 同房间
其中a ,b, d同住一个房间,c, e ,f同住另一个房间。 如果同住一个房间的大学生认为是相关的,那么 “同房间”关 系 R也是等价关系。 (1)因为每一个大学生都和自已是同房间的,所以满足自反性;
7
(1)a ,b,c都姓“张”,d,e,f 都姓“李” a b
√ √ √
c
√ √ √
d
e
f
a √ b √
c √ d e f
a b c
√ √ √ √ √ √ √
d e f


a 1 1 1 0 0 0
b c d e f 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1
用刀分
{

离散数学第三章第四节

离散数学第三章第四节

R= R1R2R3 ={<a,a>,<b,b>,<c,c>,<d,d>,<e,e>, <a,b>,<b,a>,<d,e>,<e,d>}
15
5、等价关系、商集及划分之间的关系(4)
例3:给出A={1,2,3}上的所有等价关系。 解:因A的所有划分如下图所示:
A上的所有等价关系就是π1 、π2 、π3 、π4 、π5对应的等 价 关 系 ,它们依次为 EA , R2 , R3 , R4 , IA ,其中 EA=A A为全域关系, IA= {<1,1> ,<2,2> ,<3,3> }, R2={<2,3>,<3,2>} IA R3={<1,3>,<3,1>} IA R4={<2,1>,<1,2>} IA
12
5、等价关系、商集及划分之间的关系(1)
定理4 集合A上的等价关系R确定A的一个划分,这个划分 就是商集A/R。 证:1、A/R={[a]R|aA},显然
aA
[a]
R
A
2、对aA,有a[a]R,所以A中的每个元素都属于 某个分块。 3、下面证明A中的任一个元素仅属于某一个分块。 设aA ,a[b]R且a[c]R,那么,bRa,cRa 。因 R对称,所以aRc。又因R是传递的,所以bRc。按定理3, [b]R=[c]R 。 综上所述,A/R是A关于R的一个划分。
10
3、等价类(2)
定理3 设R为非空集合A上的等价关系,a,b A, aRb当且仅当[a]R=[b]R。
证明:若aRb,任取c[a]R , c[a]RaRccRacRbbRcc[b]R , 故[a]R[b]R。 同理可证[b]R[a]R。 故[a]R=[b]R 。 反之,若[a]R=[b]R ,则 a[a]R a[b]R bRa aRb

离散数学等价关系

离散数学等价关系

等价关系是设R是非空集合A上的二元关系,若R是自反的、对称的、传递的,则称R是A上的等价关系。

给定非空集合A,若有集合S={S ,S ,…,S },其中S A,S(i=1,2,…,m)且S S = (i j)同时有S =A,称S是A的划分。

研究等价关系的目的在于将集合中的元素进行分类,选取每类的代表元素来降低问题的复杂度,如软件测试时,可利用等价类来选择测试用例。

扩展资料:
定义:
若关系R在集合A中是自反、对称和传递的,则称R为A上的等价关系。

所谓关系R 就是笛卡尔积 A×A 中的一个子集。

A中的两个元素x,y有关系R,如果(x,y)∈R。

我们常简记为xRy。

自反:任意x属于A,则x与自己具有关系R,即xRx;
对称:任意x,y属于A,如果x与y具有关系R,即xRy,则y与x 也具有关系R,即yRx;
传递:任意x,y,z属于A,如果xRy且yRz,则xRz
x,y具有等价关系R,则称x,y R等价,有时亦简称等价。

离散数学第四章等价关系和偏序关系

离散数学第四章等价关系和偏序关系
20
偏序集的特定元素
定义 设<A,≼>为偏序集, BA, y∈B. (1) 若x(x∈B→y≼x) 成立, 则称 y 为 B 的最小元. (2) 若x(x∈B→x≼y) 成立, 则称 y 为 B 的最大元. (3) 若x (x∈B∧x ≺ y) 成立, 则称 y 为B的极小元. (4) 若x (x∈B∧y ≺ x) 成立, 则称 y 为B的极大元.
定义 设A为非空集合, 若A的子集族π(π P(A)) 满足下面条件:
2 覆盖 1, 称 [x]R 为 x 关于R 的等价类, 简称为 x 的等价类, 简
例6 设偏序集<A,≼>如下图所示,求 A 的极小元、最小元、极大元、最大元. 例2 给出A={1,2,3}上所有的等价关系
4 和 6 覆盖 2. 设 A={1,2,…,8}, R={ <x,y>| x,y∈A∧x≡y(mod 3) }
例6 设偏序集<A,≼>如下图所示,求 A 的极小元、 最小元、极大元、最大元. 设 B={b,c,d}, 求 B 的下 界、上界、下确界、上确界.
极小元:a, b, c, g; 极大元:a, f, h; 没有最小元与最大元. B的下界和最大下界都 不存在, 上界有d 和 fห้องสมุดไป่ตู้ 最小上界为 d.
25
18
哈斯图实例
例4 <{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }, R整除> <P({a, b, c}), R>
19
哈斯图实例(续)
例5 已知偏序集<A,R> 的哈斯图如右图所示, 试求出集合A和关系 R的表达式.
A={a, b, c, d, e, f, g, h} R={<b,d>,<b,e>,<b,f>,<c,d>, <c,e>,<c,f>,<d,f>,<e,f>,<g,h>}∪IA

离散数学(3.10等价关系和等价类)

离散数学(3.10等价关系和等价类)
例如 数的相等关系是任何数集上的等价关系。
又例如 一群人的集合中姓氏相同的关系也是
等价关系。
但父子关系不是等价关系,因为它不可传递。
例1 设A是任意集合,则A上的恒等关系和全
域关系UA均是A上的等价关系。
例2 设 A {a,b, c, d} ,A上的关系
{a, a,a,b,b, a,b,b,c,c,c, d,d,c,d, d}
显然有 [0] [3] [3] [6] [1] [4] [2] [2] [5] [1]
而 Z1, Z2 , Z3 恰好为 Z 的一个划分。
3.8.2等价类的性质(The Properties of
Equivalence class )
class )
பைடு நூலகம்
AB

3.8.3等价关系与划分(Equivalence Relations &
Partitions)
3.8.1等价关系的定义(The Definition of
Equivalence Relation )
1. 等价关系
定义3.8.1集合A上的关系ρ,如果它是自反的,对
称的,且可传递的,则称ρ是A上的等价关系。
例4 对于例2中的ρ来说
[a] {a,b}, [b] {a,b}
[c] {c, d}, [d ] {c, d}
例5 整数集Z关于模3同余关系ρ的等价类共有三个:
Z1 [0] { ,3n, ,6,3,0,3,6, ,3n, },
Z2 [1] { ,3n 1, ,5,2,1,4,7, ,3n 1, }, Z3 [2] { ,3n 2, ,4,1,2,5,8, ,3n 2, }

离散数学等价关系

离散数学等价关系

等价类:在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。

设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。

等价类应用十分广泛,如在编程语言中,我们使用等价类来判定标识符是不是表示同一个事物。

定义:在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。

设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。

A的关于R的等价类记作。

当只考虑一个关系时,我们省去下表R并把这个等价类写作[a]。

在软件工程中,是把所有可能输入的数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例,从而减少了数据输入量从而提高了效率,称之为等价类方法,该方法是一种重要的、常用的黑盒测试用例设计方法。

分类:在离散数学中,等价类的划分基于以下定理:设R是定义在集合A上的等价关系。

那么R的等价类构成S的划分。

反过来,给定集合S的划分{ |i∈I},则存在一个等价关系R,它以集合作为它的等价类。

因为等价关系的a 在a 中和任何两个等价类要么相等要么不交集不相交的性质。

得出X 的所有等价类的集合形成X 的集合划分划分: 所有X 的元素属于一且唯一的等价类。

反过来,X 的所有划分也定义了在X 上等价关系。

在软件工程中等价类划分及标准如下:划分等价类等价类是指某个输入域的子集合。

在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,并合理地假定:测试某等价类的代表值就等于对这一类其他值的测试,因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件就可以用少量代表性的测试数据取得较好的测试结果。

等价类划分有两种不同的情况:有效等价类和无效等价类。

1)有效等价类是指对于程序的规格说明来说是合理的、有意义的输入数据构成的集合。

利用有效等价类可检验程序是否实现了规格说明所规定的功能和性能。

离散数学等价关系与偏序关系

离散数学等价关系与偏序关系
6
等价类
设R是非空集合A上的等价关系, 则A上互相等价的元素构成了A的 若干个子集,称作等价类
定义 设R为非空集合A上的等价关系, x∈A,令
[x]R = { y | y∈A∧xRy } 称 [x]R 为 x 关于R 的等价类, 简称为 x 的等价类, 简 记为[x].
实例 A={ 1, 2, … , 8 }上模 3 等价关系的等价类: [1]=[4]=[7]={1,4,7} [2]=[5]=[8]={2,5,8} [3]=[6]={3,6}
如果顶点 xi 连通到xk , 则 从 xi到 xk 有 边
1
例:给定集合X={a,b,c},R和S是X中的关系,给

R {a,b, a, c, c, b}
S {a,b, b, c, c, a}
试求出t(R),t(S),并画出关系图
解:t(R) R1 R2 R3 R
t(S) S1 S2 S3 S1 S2 S3
11
例题
例1 设A={a, b, c, d}, 给定π1,π2,π3,π4,π5,π6如下:
π1= { {a, b, c}, {d} }, π2= { {a, b}, {c}, {d} } π3= { {a}, {a, b, c, d} }, π4= { {a, b}, {c} } π5= { ,{a, b}, {c, d} }, π6= { {a, {a}}, {b, c, d} }
关系性质判别
定义
条件 关系 矩阵
自反
反自反
对称
反对称
x(x∈A→<x x(x∈A→
,x>R)
<x,x>R)
xy(x,y∈A∧ <x,y>∈R→<y,x >∈R)

离散数学求等价类例题

离散数学求等价类例题

离散数学求等价类例题
在离散数学中,等价关系是一种非常重要的关系。

等价关系描述了两个对象之间的某种关系,使得它们可以被分类到同一个等价类中。

在这里,我们将讨论一个求等价类的例题。

假设我们有一个集合S={1,2,3,4,5,6,7,8,9,10,11,12},并且我们定义了一个关系R,如果两个元素的差是3的倍数,则它们在R下是等价的。

现在我们的任务是找出所有在R下等价的元素,并将它们分别放在它们自己的等价类中。

首先,我们可以列出所有的可能的元素对。

这样做可以帮助我们更好地理解哪些元素在R下是等价的。

我们可以使用以下步骤来找到所有的等价类:
1. 将每个元素放在它自己的等价类中。

2. 对于每个等价类中的元素,找到与它等价的所有元素。

如果有一个元素与该等价类中的元素等价,则将其添加到该等价类中。

3. 重复步骤2,直到没有新的元素可以添加到任何等价类中。

在这个例子中,我们可以得到以下等价类:
{1,4,7,10}
{2,5,8,11}
{3,6,9,12}
这些等价类中的元素在R下是等价的。

我们可以看到,其中的每个等价类都包含了与其内部元素等价的所有元素。

通过这个例题,我们可以更好地理解等价关系和等价类的概念。

它们在离散数学中有着广泛的应用,对于我们理解和解决许多问题都是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学是一门研究离散量结构及其相互关系的数学学科,是现代数学的重要分支。

离散的含义是指不同的连接元素,主要根据离散量研究结构和它们之间的关系,其对象通常是有限的或可数的元素。

离散数学已广泛应用于各个学科,尤其是计算机科学和技术。

同时,离散数学也是计算机专业许多专业课程必不可少的高级课程,例如编程语言,数据结构,操作系统,编译技术,人工智能,数据库,算法设计和分析以及计算机理论基础。

通过对离散数学的研究,我们不仅可以掌握处理离散结构的描述工具和方法,为后续课程创造条件,还可以提高抽象思维和严格的逻辑推理能力,打下坚实的基础。

参与未来的创新研发工作。

随着信息时代的到来,以微积分为代表的连续数学在工业革命时代的主导地位发生了变化,离散数学的重要性逐渐为人们所认识。

离散数学教授的思想和方法广泛地反映在计算机科学和技术及相关专业的各个领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,所有这些都与离散数学密切相关。

因为数字电子计算机是离散结构,所以它只能处理离散或离散的定量关系。

因此,计算机科学本身以及与计算机科学及其应用密切相关的现代科学研究领域都面临着如何为离散结构建立相应的数学模型的问题。

以及如何离散化通过连续数量关系建立的数学模型,以便可以通过计算机对其进行处理。

离散数学是一门综合性学科,由传统逻辑,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系论,图论和树,抽象代数(包括代数系统,组)组成。

,环,域等),布尔代数和计算模型(语言和自动机)。

离散数学已应用于现代科学和技术的许多领域。

离散数学也可以说是计算机科学的基本核心学科。

离散数学中有一个著名的典型例子-四色定理,也称为四色猜想,它是现代世界上三个主要的数学问题之一。

它是由英国制图员弗朗西斯·古斯里(Francis guthrie)于1852年提出的。

当他为地图着色时,他发现了一种现象:“每张地图只能用四种颜色着色,而具有共同边界的国家可以使用不同的颜色。

”那么可以通过数学证明吗?100多年后的1976年,肯尼思·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用了计算机辅助计算,这花了1200个小时和100亿次判断,终于证明了四色定理,这在世界上引起了轰动。

这是离散数学与计算机科学合作的结果。

离散数学可以看作是数学与计算机科学之间的桥梁,因为离散数学不仅可以与诸如集合论和图论之类的数学知识区分开,而且与计算机科学中的数据库理论和数据结构有关,这可以导致人们进入计算机科学的思维领域,促进计算机科学的发展。

相关文档
最新文档