上海理工大学高数试卷_A1_2

合集下载

上海上海理工大学附属初级中学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(含答案解析)

上海上海理工大学附属初级中学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(含答案解析)

一、选择题1.已知P 为抛物线24y x =上任意一点,抛物线的焦点为F ,点(2,1)A 是平面内一点,则||||PA PF +的最小值为( )A .1B C .2D .32.已知曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则实数a 的取值范围是( )A .(][),10,1-∞-B .(]1,1-C .[)1,1-D .[]()1,01,-+∞3.已知F 1、F 2分别为双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,点A 在双曲线上,且∠F 1AF 2=60°,若∠F 1AF 2的角平分线经过线段OF 2(O 为坐标原点)的中点,则双曲线的离心率为( )A B C D .24.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .235.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D .6.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B .15C .14D .47.已知O 为坐标原点设1F ,2F 分别是双曲线2219x y -=的左右焦点,P 为双曲线左支上的任意一点,过点1F 作12F PF ∠的角平分线的垂线,垂足为H ,则OH =( ) A .1B .2C .3D .48.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A B .C D 9.设1F ,2F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120F PF ∠=︒,则点P 到x 轴的距离为( )A .21B .21C .21D 10.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( )A .1B .2 C D 111.设P 是椭圆221259x y +=上一点,M 、N 分别是两圆:()2241x y ++=和()2241x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,1212.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫-⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( )A .B .C D 二、填空题13.已知A 、B 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右顶点,M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,始终满足()()12fk f k =,其中()ln 2x f x ⎛⎫= ⎪⎝⎭,则C 的离心率为______ .14.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.15.数学中有许多形状优美、寓意美好的曲线,曲线22:4C x y x y +=+就是其中之一.曲线C 对应的图象如图所示,下列结论:①直线AB 的方程为:20x y ++=; ②曲线C 与圆228x y +=有2个交点; ③曲线C 所围成的“心形”区域的面积大于12; ④曲线C 恰好经过4个整点(即横、纵坐标均为整数的点). 其中正确的是:________.(填写所有正确结论的编号)16.如图,直线3y x =-与抛物线24y x =交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为________.17.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12, F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足1212::1:2:3MPF MPF MF F SSS=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.18.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:x0 426y22 2-22-则2C 的虚轴长为______.19.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.20.设点P 是抛物线24y x =上的一个动点,F 为抛物线的焦点,若点B 的坐标为()4,2,则PB PF +的最小值为________.三、解答题21.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.22.已知椭圆1C :22221(0)x y a b a b +=>>的离心率为32,椭圆1C 的一个短轴端点恰好是抛物线2C :24x y =的焦点F . (1)求椭圆1C 的方程;(2)过点F 的直线交抛物线2C 于,M N 两点,连接NO ,MO ,线段NO ,MO 的延长线分别交椭圆1C 于A ,B 两点,记OMN 与OAB 的面积分别为OMN S △、OAB S,设OMNOAB SSλ=-,求λ的取值范围.23.已知圆22:(2)5C x y +-=,直线:10l mx y -+=. (1)判定直线l 与圆C 的位置关系,并说明理由;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.24.如图,A 为椭圆2212x y +=的下顶点,过点A 的直线l 交抛物线22(0)x py p =>于,B C 两点,C 是AB 的中点.(1) 求证:点C 的纵坐标是定值;(2)过点C 作与直线l 倾斜角互补的直线l '交椭圆于,M N 两点.问:p 为何值时,BMN △的面积最大?并求面积的最大值.25.已知椭圆C :()222210x y a b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(1)求椭圆C 的方程;(2)过点()1,0Q 的直线l 与椭圆C 相交于,A B 两点.点()4,3P ,记直线PA ,PB 的斜率分别为12,k k ,当12k k ⋅最大时,求直线l 的方程. 26.已知抛物线:()()()222:2,2,0,2,00C y x M a N a a =->,过点M 垂直于x 轴的垂线与抛物线C 交于,B C ,点,D E 满足(),01CE CN ND NB λλλ==<<(1)求证:直线DE 与抛物线有且仅有一个公共点;(2)设直线DE 与此抛物线的公共点Q ,记BCQ △与DEN 的面积分别为12,S S ,求12S S 的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.D【解析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,∴要求PA PF+取得最小值,即求PA PD +取得最小,当,,D P A 三点共线时PA PD +最小,为213--=(),故选D. 2.C解析:C 【分析】利用绝对值的几何意义,由3y x =+,可得0y ≥时,3yx ,0y <时,3y x =--,则可得曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),再无其它交点,把3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,分类讨论,可得结论 【详解】解:由3y x =+,可得0y ≥时,3yx,0y <时,3y x =--,所以曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),为了使曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则将3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,当1a =-时,3y =满足题意,因为曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点, 所以>0∆,且3是方程的根, 所以9(1)01a a-<+,即11a -<<时,方程两根异号,满足题意, 综上,a 的取值范围为[)1,1-, 故选:C 【点睛】此题考查曲线的交点问题,考查分析问题的能力,考查分类思想,属于中档题3.B解析:B首先根据角平分线定理和双曲线的定义求得1AF 和2AF 的值,再结合余弦定理计算离心率. 【详解】不妨设点A 在第一象限,12F AF ∠的角平分线交x 轴于点M ,因为点M 是线段2OF 的中点,所以12:3:1FM MF =,根据角平分线定理可知1231AF AF =,又因为122AF AF a -=,所以13AF a =,2AF a =,由余弦定理可得22221492372c a a a a a =+-⨯⨯⨯=,所以2274c a =,所以72c e a ==.故选:B 【点睛】本题考查双曲线的离心率,双曲线的定义,三角形角平分线定理,重点考查转化思想,计算能力,属于中档题型.4.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭,过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.5.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,222()a m c n =++,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->, 即2220c a ->,则可得2e >.故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.B解析:B 【分析】由曲线的对称性,以及数形结合分析得115b a =,从而求得其离心率. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =,所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.7.C解析:C 【分析】根据中位线性质得到22111()22OH BF PF PF a ==-=得到答案. 【详解】如图所示:延长1F H 交2PF 于B12F PF ∠的平分线为PA ,1F B PA H ⊥⇒为1F B 中点,1PF BP =,在12F F B △中,O 是12F F 中点,H 为1F B 中点,⇒22111()322OH BF PF PF a ==-==故选:C 【点睛】关键点点睛:本题考查了双曲线的性质,利用中位线性质将212OH BF =是解题的关键. 8.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k -⋅=-,所以3||3k =, 又||1OF =,所以OPQ △的面积S =121143||||18||223OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.9.C解析:C 【分析】如图,设1=PF m ,2=PF n ,由双曲线定义知=23m n -,平方得:22212m n mn +-=,在12F PF △中利用余弦定理可得:2228m n mn ++=,即可得到163mn =,再利用等面积法即可求得PD 【详解】由题意,双曲线22134x y -=中,2223,4,7a b c === 如图,设1=PF m ,2=PF n ,由双曲线定义知=223m n a -= 两边平方得:22212m n mn +-=在12F PF △中,由余弦定理可得:2222cos120428m n mn c +-==,即2228m n mn ++=两式相减得:316mn =,即163mn = 利用等面积法可知:11sin120222mn c PD =⨯⨯,即1632732PD ⨯=⨯ 解得42121PD = 故选:C.【点睛】关键点睛:本题考查双曲线的定义及焦点三角形的几何性质,解题的关键是熟悉焦点三角形的面积公式推导,也可以直接记住结论:(1)设1F ,2F 分别为椭圆22221x y a b+=的左,右焦点,点P 为椭圆上的一点,且12F PF θ∠=,则椭圆焦点三角形面积122tan2F PF Sb θ=(2)设1F ,2F 分别为双曲线22221x y a b-=的左,右焦点,点P 为双曲线上的一点,且12F PF θ∠=,则双曲线焦点三角形面积122tan2F PF b Sθ=10.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin3MF c π==,∴1)2MF ME c a +==,∴1c e a ===. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.11.C解析:C 【分析】先依题意判断椭圆焦点与圆心重合,再利用椭圆定义以及圆的性质得到最大值和最小值即可. 【详解】如图,由椭圆及圆的方程可知两圆圆心分别为()()4,0,4,0A B -,恰好是椭圆的两个焦点,由椭圆定义知210PA PB a +==,连接PA ,PB 分别与圆相交于M ,N 两点,此时PM PN +最小,最小值为28PA PB R +-=;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时PM PN +最大,最大值为212PA PB R ++=.故选:C . 【点睛】本题考查了椭圆的定义,考查了圆外的点到圆上的点的距离最值问题,属于中档题.12.B解析:B 【分析】令2MA MC =,则12MA MC=,所以()()22221212x y MAMCx m y n ⎛⎫++ ⎪⎝⎭==-+-,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n ,则()()22221212x y MAMCx m y n ⎛⎫++ ⎪⎝⎭==-+-,整理得:22222421333m n m n x y x y ++-+++=, 比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -, 当点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小,最小为210.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.二、填空题13.【分析】设出的坐标利用直线的斜率的乘积结合已知条件推出斜率乘积转化求解双曲线的离心率即可【详解】设由M 是双曲线上异于AB 的动点若直线MAMB 的斜率分别为则又则由得因为所以可得显然不成立;则所以所以故【分析】设出,,M A B 的坐标,利用直线的斜率的乘积,结合已知条件,推出斜率乘积,转化求解双曲线的离心率即可. 【详解】设()()(),,,0,,0M m n A a B a -,由M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,则21222n n n k k m a m a m a ⋅=⋅=+--, 又22221m n a b -=,则2212222n b k k m a a==⋅-, 由()ln 2x f x ⎛⎫= ⎪⎝⎭,得()()1212ln ,ln 22k k fk f k ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, 因为()()12fk f k =,所以21ln ln 22k k ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 可得2122k k=显然不成立; 则2211ln ln ln 02222k k k k ⎛⎫⎛⎫⎛⎫+=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以21211224k k k k ⋅⇒==,所以c e a ===【点睛】方法点睛:求双曲线离心率的值的常用方法:由,a b 或,a c 的值,得e === 列出含有,,a b c 的齐次方程,借助222b c a =-消去b ,然后转化为关于e 的方程求解;14.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为: 解析:53【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以53e =. 故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.15.②③【分析】求出点结合直线方程的知识可判断①;联立方程可求出交点坐标即可判断②;在曲线上取点由可判断③;求出整点即可判断④【详解】对于①曲线令则;令则;所以点所以直线AB 的方程为:即故①错误;对于②解析:②③ 【分析】求出点()2,0A ,()0,2B ,结合直线方程的知识可判断①;联立方程可求出交点坐标,即可判断②;在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,由ADEFG S 可判断③;求出整点即可判断④. 【详解】对于①,曲线22:4C xy x y +=+,令0x =,则2y =±;令0y =,则2x =±; 所以点()2,0A ,()0,2B ,所以直线AB 的方程为:221x y+=即20x y +-=, 故①错误;对于②,由222248x y x y x y ⎧+=+⎨+=⎩可得22x y =⎧⎨=⎩或22x y =-⎧⎨=⎩, 所以曲线C 与圆228x y +=有2个交点()2,2,()2,2-,故②正确;对于③,在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,顺次连接各点,如图,则12442122ADEFG S =⨯+⨯⨯=, 所以曲线C 所围成的“心形”区域的面积大于12,故③正确;对于④,曲线经过的整点有:()2,0±,()0,2±,()2,2±,有6个,故④错误. 故答案为:②③. 【点睛】本题考查了曲线与方程的应用,考查了运算求解能力与转化化归思想,合理转化条件是解题关键,属于中档题.16.【分析】设点将直线的方程与抛物线的方程联立求得点的坐标进而可得出的坐标由此可计算得出梯形的面积【详解】设点并设点在第一象限由图象可知联立消去得解得或所以点因此梯形的面积为故答案为:【点睛】本题考查抛 解析:48【分析】设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线的方程联立,求得点A 、B 的坐标,进而可得出P 、Q 的坐标,由此可计算得出梯形APQB 的面积.【详解】设点()11,A x y 、()22,B x y ,并设点A 在第一象限,由图象可知12x x >,联立234y x y x =-⎧⎨=⎩消去y ,得21090x x -+=,解得19x =,21x =,1196x y =⎧∴⎨=⎩或2212x y =⎧⎨=-⎩, 所以点()9,6A 、()1,2B -、()1,6P -、()1,2Q --,10AP ∴=,2BQ =,8PQ =,因此,梯形APQB 的面积为()()10284822AP BQ PQ S +⋅+⨯===.故答案为:48. 【点睛】本题考查抛物线中梯形面积的计算,解题的关键就是求出直线与抛物线的交点坐标,考查计算能力,属于中等题.17.【分析】首先得点则这样和的面积可表示出来从而可得点坐标代入直线方程得到的等式变形后可求得离心率【详解】由图像可知点则由则则则由则则点由点M 在直线上则则由则故答案为:【点睛】本题考查求双曲线的离心率解解析:23+ 【分析】首先得点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cSa=,这样12MF F △和2MPF 的面积可表示出来,从而可得M 点坐标,代入直线方程2y x =得到,,a b c 的等式,变形后可求得离心率.【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cSa=, 由1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3Mc x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.故答案为:23+. 【点睛】本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的齐次式,本题中利用12MF F △和2MPF 的面积得出M 点坐标,从而得到要找的等式.18.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.19.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.20.【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求的最小值进而可推断出当三点共线时最小则答案可得【详解】设点在准线上的射影为则根据抛物线的定义可知所以要求取得最小值即求取得最小当三 解析:5【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,进而把问题转化为求PB PD +的最小值,进而可推断出当D 、P 、B 三点共线时PB PD +最小,则答案可得. 【详解】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,所以,要求PB PF +取得最小值,即求PB PD +取得最小, 当D 、P 、B 三点共线时PB PD +最小为()415--=. 故答案为:5. 【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D 、P 、B 三点共线时PB PD +最小是解题的关键,考查数形结合思想的应用,属于中等题. 三、解答题21.32214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF 中,有22BF b c a =+=,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以2222131142c b e a a ==-=-= (2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0.设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my nx y b=+⎧⎨+=⎩,得()22224240m y mny n b +++-= 所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t=m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题.22.(1)2214x y +=;(2)[1,)+∞.【分析】(1)解关于,,a b c 的方程组即得解;(2)求出OMNS =1OABS=,即得λ的取值范围.【详解】解:(1)因为椭圆1C 的一个短轴端点恰好是抛物线2C :24x y =焦点()0,1F , 所以1b =.由2c a =,222a b c =+,解得2a =, 所以椭圆1C 的方程为2214x y +=.(2)因为过F 的直线交2C 于M ,N 两点,所以直线的斜率存在,设直线方程为1y kx =+,()11,M x y ,()22,N x y ,联立241x y y kx ⎧=⎨=+⎩,故2440x kx --=.216160k ∆=+>恒成立,121244x x kx x +=⎧⎨=-⎩, 由121211122OMNS OF x x x x =⨯-=⨯⨯-, 故()22221212121144444OMNSx x x x x x k ⎡⎤=-=+-=+⎣⎦,所以OMNS=不妨设()22,N x y 在第一象限,所以设直线ON :11(0)y k x k =>,则12214y k xx y =⎧⎪⎨+=⎪⎩,解得A ⎛⎫, 设直线OM :2y k x =,同理B ⎛⎫, 又因为22121212121212144164x x y y x x k k x x x x =⋅===-⋅,可得B ⎛⎫. 又因为点A 到直线OB的距离d ==所以11122OABSd OB =⋅⋅==.所以211OMNOABS Sλ=-=≥.综上:λ的取值范围是[1,)+∞. 【点睛】方法点睛:圆锥曲线中的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解.23.(1)直线l 与圆C 相交;答案见解析;(2)223124x y ⎛⎫+-= ⎪⎝⎭. 【分析】(1)易知直线:10l mx y -+=经过定点()0,1D ,而点D 在圆C 内部,即可得证; (2)根据题意设中点M 的坐标为(),x y ,由直线和圆相交的性质可得AB CM ⊥,在RT CDM 中, 由勾股定理得222CM DM CD +=,带入坐标即可得解.【详解】(1)证明:∵直线:10l mx y -+=经过定点()0,1D ,点D 到圆心()0,2的距离等于1 故定点()0,1在圆的内部,故直线l 与圆C 相交.(2)设中点M 的坐标为(),x y ,则由直线和圆相交的性质可得AB CM ⊥. 由于定点()0,1D 、圆心C 、点M 构成直角三角形, 由勾股定理得222CM DM CD +=, ∴22222(2)(1)(21)x y x y +-++-=-,2222640x y y +-+=,即223124x y ⎛⎫+-= ⎪⎝⎭. 此圆在圆22:(2)5C x y +-=的内部,故点M 的轨迹方程为:223124x y ⎛⎫+-= ⎪⎝⎭. 【点睛】本题考查了直线和圆的位置关系,考查了直线过定点问题,同时考查了求轨迹方程,有一定的计算量,属于中档题. 本题涉及的题型和方法有:(1)直线过定点,直线过定点是常考题型,在给出含参直线方程时要注意直线有过定点的可能;(2)直接法求轨迹方程,这类问题的方法是:利用所给条件直接列方程,整理即为所求.24.(1)证明见解析;(2)当914p =. 【分析】(1)由题意可得:()0,1A -,不妨设2,2t B t p ⎛⎫ ⎪⎝⎭,则222 ,4t t p C p ⎛⎫- ⎪⎝⎭,代入抛物线方程,整理得24t p =,计算可得点C 的纵坐标值为12,从而得证;(2)由题意可得:BMNAMN S S=,求得直线l 的斜率,可求得直线l '的斜率和方程,不妨记3m t=-,则:2l y mx '=+,代入椭圆方程并整理得()2221860m x mx +++=, 设()11,M x y ,()22,N x y ,求得MN 的值和点A 到直线l '的距离d =据三角形的面积公式和基本不等式可求BMN △的面积的最大值,即可求解. 【详解】(1)易知()0,1A -,不妨设2,2t B t p ⎛⎫ ⎪⎝⎭,则222 ,4t t p C p ⎛⎫- ⎪⎝⎭,代入抛物线方程得222224t t p p p -⎛⎫= ⎪⎝⎭,得24t p =,∴42142C p p y p -==, 故点C 的纵坐标为定值. (2)∵点C 是AB 的中点,BMNAMN SS=,设直线l 的斜率为k ,则11322k t t -==, 所以直线l '的斜率为3k t'=-, ∴直线l '的方程为1322t y x t ⎛⎫-=-- ⎪⎝⎭,即32y x t=-+, 不妨记3m t=-,则:2l y mx '=+, 代入椭圆方程并整理得()2221860m x mx +++=,设()11,M x y ,()22,N x y ,则12122286,2121m x x x x m m +=-=++12|MN x x -= 点A 到直线l '的距离d =所以12AMNSN d M =≤=⋅==当且仅当2242323m m -=-时取等号,解得272m =,所以229187t m ==,从而29414t p ==故当914p =时,BMN △的面积最大. 【点睛】关键点点睛:设出2,2t B t p ⎛⎫ ⎪⎝⎭结合()0,1A -,可得222 ,4t t p C p ⎛⎫- ⎪⎝⎭利用点C 在抛物线上可求出24t p =,利用其计算224t pp-的值;第二问关键是根据倾斜角互补可得直线l '与直线l的斜率互为相反数,直线l '的方程为32y x t=-+,利用弦长公式和点到直线距离公式,三角形面积公式将BMN △的面积表示出来,最关键的是利用基本不等式求最值,这是难点也是易考点.25.(1)22142x y +=;(2)10x y --=.【分析】(1)已知条件得2b c ==,再求得a ,可得椭圆标准方程;(2)当直线l 的斜率为0时,12k k 的值,当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,代入椭圆方程整理后应用韦达定理得1212,y y y y +,计算12k k ,化为m 的函数,然后换元,设41t m =+,求出12k k 的最大值,及m 的值得直线方程. 【详解】(1)由已知得2b c ==.又2224a b c =+=,所以椭圆的方程为22142x y +=.(2)①当直线l 的斜率为0时,则12k k ⋅=33342424⨯=-+; ②当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,将1x my =+代入22142x y+=,整理得22(2)230m y my ++-=.则12222m y y m -+=+,12232y y m -=+. 又111x my =+,221x my =+,所以,112134y k k x -⋅=-2234y x -⋅-1212(3)(3)(3)(3)y y my my --=-- 12122121293()93()y y y y m y y m y y -++=-++=2232546m m m ++=+23414812m m +=++. 令41t m =+,则122324225t k k t t ⋅=+-+32254()2t t=++-1≤所以当且仅当5t =,即1m =时,取等号. 由①②得,直线l 的方程为10x y --=.【点睛】关键点点睛:本题考查求椭圆标准方程,考查椭圆中的最值问题.解题方法是设而不求的思想方法,即设交点坐标11(,)A x y ,22(,)B x y ,设直线l 的方程为1x my =+,直线方程代入椭圆方程整理后应用韦达定理得1212,y y y y +,然后代入12k k ,化为m 的函数,用换元法求得最值.26.(1)证明见解析;(2)2. 【分析】(1)由已知先求出,B C ,设(),D x y ,结合题干得ND NB λ=,NE NC λ=,结合向量关系求得,D E 点坐标,利用点斜式得DE l 方程,联立DE l 与抛物线即可求证; (2)结合三角形面积公式得112BCQ S S BC h ==⋅△,212DEN D E S S NG y y ==⋅-△,由(1)的结论可得h ,由直线DE l 方程可求得直线DE 与x 轴交点坐标G ,从而得到NG ,12,S S 作比即可求解. 【详解】()1易知()()222,2,2,2B a a C a a -,设(),D x y ,由ND NB λ=,可得()()222,4,2x a y a a λ+=,故有()()242,2D a a λλ-,同理()()224,(1)2E a a λλ--,于是直线DE 的方程是()()()2124242y a x a aλλλ-=---, 即()224288)2(x ay a λλλ=-+--①与抛物线方程联立, 得到()()22210y a λ--=,此方程有两个相等的根:221()y a λ=-代入①,得()22221x a λ=-,故直线DE 与抛物线有且仅有一个公共点()()()22221,221Q aa λλ--()()()2321112421622BCQ Q S S BC h a a x a λλ==⋅=⋅-=-△设直线DE 与x 轴交于()()22282,0G a a λλ--,于是()()223221182822DEN D E S S NG y y a a a λλλλ==⋅-=⋅-=-⋅△ 故有122S S = 【点睛】方法点睛:本题考查由直线与抛物线的位置关系求证公共点问题,抛物线中三角形的面积问题,考查了数学运算的核心素养,常用以下方法:(1)涉及交点问题常采用直线与曲线联立方程求解法,有且仅有一个公共点可直接求解,若是关于()x y 的一元二次方程,即证0∆=;(2)对于三角形面积问题,较为规则的可直接用公式法求解,对于三角形不规则的,常采用切割法,如本题中的DEN S △.。

上海市杨浦区上海理工大学附中2023届数学高一上期末统考试题含解析

上海市杨浦区上海理工大学附中2023届数学高一上期末统考试题含解析
【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题
13、5
【解析】直接求出集合A、B,再求出 ,即可得到答案.
【详解】因为集合 ,集合 ,
所以 ,
所以 的元素个数为5.
故答案为:5.
14、
【解析】 当 时,有 ,此时 ,此时 为减函数,
不合题意.若 ,则 ,故 ,检验知符合题意
2022-2023学年高一上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
故选:C.
二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)
11、
【解析】先求出 ,再结合二次函数的内容求解.
【详解】由 得 , ,
故当 时,有最小值 ,当 时,有最大值 .
故答案为: .
12、
【解析】观察函数 的解析式,推断函数的性质,借助函数性质解不等式
【详解】令 ,则 ,得 ,即函数 的图像关于 中心对称,且 单调递增,不等式 可化为 ,即 ,得 ,解集为
10.规定从甲地到乙地通话 min的电话费由 (元)决定,其中 >0,[ ]是大于或等于 的最小整数,如[2]=2,[2.7]=3,[2.1]=3,则从甲地到乙地通话时间为4.5 min的电话费为( )元
A.4.8B.5.2
C.5.6D.6
二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)

上海理工大学高等数学A(2)要点复习题

上海理工大学高等数学A(2)要点复习题

高等数学A (II )复习第八章 空间解析几何与向量代数1.已知(2,3, 1), (1,1, 3)a b =-=-,求(1)b a b a 2 ,2)(⨯⋅- (2) (+2)(2)a b a b ⋅-(3)(+2)(2)a b a b ⨯-2.已知3) ˆ,(,4 ,3π===b a b a ,求以(32)(2)a b a b -+和为边的平行四边形面积3.求过点)1, 1 ,1(-,且与直线10210x y z x y z -+-=⎧⎨+++=⎩平行的直线方程.4.求过点)3, 1 ,2(,且(1)通过直线12131:-=-=+z y x l 的平面方程; (2)与l 垂直相交的直线方程.5.求过直线⎩⎨⎧=+--=+-0620223z y x y x ,且与点)1,2 ,1(的距离为1的平面方程.6.指出下列方程所表示的图形:(1)2210x y --= (2)222+20x y z -=(3)221z x y =-- (4)222++210x y z z -+=第九章 多元函数微分法及其应用7.计算(若不存在,给出理由):(1) (,)(0,0)lim x y →(2) x y x y x 1)0,0(),()cos 1(lim -→(3) (,)(0,0)sin()lim x y x y x y →+-(4)sin()2(,)(0, )(1)lim xy x x y a xy →-8.z =,求,z z x y ∂∂∂∂9.yz x u =,求u 的偏导数10.已知)ln(y x y x z =,求)1,1(dz11.(,)y z xf y x =,f 具有二阶连续偏导数,求yx z ∂∂∂212.()(1)ln ,y z xf x y x f x=+-其中具有二阶导数, 求证:222222(1)z z x y x y x y ∂∂-=+∂∂13.已知函数(,)z z x y =由)](,[z xy f z ϕ=确定,f 具有连续偏导,ϕ可导, 求z z x y∂∂∂∂,14.求由方程320z xz y -+=确定曲面),(y x z z =在点)1, 1 ,1(处的切平面方程和法线方程.15.求曲线2sin 4,cos 1,sin t z t y t t x =-=-=在点)22 ,1 ,12(-π处切线与z 轴正向的夹角16.求曲面2222+3z 21x y +=上平行于平面460x y z ++=的切平面方程.17.证明:曲面1xyz =上任意点处切平面与三坐标面所围成的四面体的 体积为常数.18.在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最近.19.过点)31, 1 ,2(的平面中,哪个平面与三个坐标面所围立体体积最小.20.求内接于半径为a 的球且有最大体积的长方体.第十章 重积分21.交换积分次序:⎰⎰+-2 2 2 1 ),(y y dx y x f dy .22.分别在直角坐标和极坐标系下将⎰⎰Ddxdy y x f ),(化为二次积分,其中D 由x y =与2x y =所围成(f 在D 上连续)23. 求⎰⎰+Ddxdy y x 22 其中0,41:22≥≤+≤x y x D .24.求⎰⎰-+22 0 222 0 1y y dx y x dy .25.求⎰⎰1 1 0 y xy dx e dy .26.求D σ,其中D 为22x y x +≤.27.求2()Dx y d σ+⎰⎰,其中D 由224,x y x y ==及1=y 围成.28.求由曲面z =与222z x y =--所围成的立体体积29.求⎰⎰⎰Ω+=dv y x I )(22,其中Ω由z y x 222=+及平面2=z 围成.30.求(1)I z x y dv Ω=++⎰⎰⎰,其中Ω由z =上半球面22z x y =+所围成.31.求⎰⎰⎰Ω++=dv z y x z I 222,其中Ω由1222≤++z y x 与)(322y x z +≥确定.31.计(1)I z x y dv Ω=++⎰⎰⎰,其中Ω由z =上半球面22z x y =+所围成.32.求由2222222222),0(, ,y x z R r r z y x R z y x +=<<=++=++所围立体的体积.第十一章 曲线与曲面积分33.ds y x L⎰+ 22,其中L 为半圆周:0 ,222≥=+x y x34.dy x y dx xy L)( -+⎰,其中L 为x y =2上从(0,0)到(1,1)的一段.35. 3223 ()()Lx xy dx x y y dy +++⎰,其中L 为2y x =上从(0,0)到(1,1)的一段.36.2 (sin +)(cos )x x y Le y x y dx e y e dy -++⎰,其中L 为圆周22x x y -=上从点)0 ,2(到)0 ,0(的一段.37.ydS ∑⎰⎰,其中∑为上半球面:222y x R z --=.38.2(+)ydzdx z x dxdy ∑+⎰⎰,其中∑为柱面122=+y x 被0=z 与1x z +=所截得部分的外侧.39.⎰⎰∑++zdxdy dydz z x )2(,其中∑:)10(22≤≤+=z y x z 取上侧.第十二章级数40.判别敛散性,若是一般项级数收敛,则说明是条件收敛还是绝对收敛(1)∑∞=123 cosnnnnπ(2)nnnn)12(1∑∞=-(3)∑∞=-132)1(n nn n(4)∑∞=+-1)1ln()1(nnn41.求收敛域(1)∑∞=⋅13nnnnx(2)∑∞=-1)12(nnnx42.求和函数(1)∑∞=+1)1 (nnnnx(2)∑∞=-1)1(nnxn43.将函数展开成幂级数(1)将)1ln()1(x x ++展开成x 的幂级数(2)将652--x x x 展开成5-x 的幂级数.。

上海理工大学高数期末复习试题

上海理工大学高数期末复习试题

释 疑 解 难(第七章)(第七章)一、求垂直于平面0=z 且通过点)1,1,1(0-M 到直线îíì==+-001:x z y L 垂线的平垂线的平 面方程。

面方程。

解:解:直线L 的方向向量}1,1,0{--=l,过点0M 与直线L 的平面N 的方程的方程 0)1()1(=--+-z y ,即0=+z y解方程组ïîïíì=+==+-0001z y x z y ,得直线L 与平面N 的交点)21,21,0(1-M 由题意,设所求平面方程为0=++D By Ax ,将0M 、1M 坐标代入,得坐标代入,得ïîïíì=+-=+-02D B D B A ,解得D A =,D B 2=,所求的平面方程为:012=++y x 。

二、证明两直线二、证明两直线231212-=-+=-z y x 与112111-=+=--z y x共面,并求该平面方程。

共面,并求该平面方程。

解:解:记)3,2,2(1-M ,}2,1,1{1-=l ,)1,1,1(2-M ,}1,2,1{2-=l则}2,1,1{21--=M M∵0211121211)(2121=----=×´M M l l ∴两直线共面。

∴两直线共面。

取}1,3,5{21--=´=l l n则所求平面方程为则所求平面方程为0)3()2(3)2(5=-++---z y x ,即0135=--+z y x 。

三、求平面02122=++-z y x 与05247=-+z x 所成二面角的平分面方程。

所成二面角的平分面方程。

解:解:过两平面交线的平面束方程过两平面交线的平面束方程0)5247(2122=-++++-z x z y x l ,即,即0)521()242(2)71(=-+++-+l l l z y x其法向量}242,2,71{l l +-+=n,已知两平面法向量分别是,已知两平面法向量分别是}2,2,1{1-=n 与}24,0,7{2=n由题意知||||||||2211n n n n n n n n ×±=×,解得253±=l 所以所求平面方程为所以所求平面方程为025*******=++-z y x 和027011252=+--z y x 。

上海市杨浦区上海理工大学附中2025届高三第一次模拟考试数学试卷含解析

上海市杨浦区上海理工大学附中2025届高三第一次模拟考试数学试卷含解析

上海市杨浦区上海理工大学附中2025届高三第一次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( )A .3πB .4πC .8πD .13π2.设1F ,2F 是双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,O 是坐标原点,过点2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为( )A B C .2 D .33.设f (x )是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->>B .0.40.33(log 0.3)(2)(2)f f f -->>C .0.30.43(2)(2)(log 0.3)f f f -->>D .0.40.33(2)(2)(log 0.3)f f f -->>4.已知函数()sin 22f x x π⎛⎫=+⎪⎝⎭,则函数()f x 的图象的对称轴方程为( ) A .,4x k k Z ππ=-∈ B .+,4x k k Z ππ=∈ C .1,2x k k Z π=∈ D .1+,24x k k Z ππ=∈ 5.若2n x⎛ ⎝的二项式展开式中二项式系数的和为32,则正整数n 的值为( ) A .7 B .6 C .5 D .46.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?7.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要8.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交9.函数()2cos2cos221x xf x x =+-的图象大致是( )A .B .C .D .10.某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .411.已知复数41i z i =+,则z 对应的点在复平面内位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.已知函数()2cos sin 6f x x x m π⎛⎫=⋅++ ⎪⎝⎭(m ∈R )的部分图象如图所示.则0x =( )A .32π B .56π C .76π D .43π- 二、填空题:本题共4小题,每小题5分,共20分。

《高等数学》(上理工) 试卷A

《高等数学》(上理工) 试卷A

华南理工大学 广州汽车学院 2008——2009学年度第一学期期末考试 《高等数学》(上册•理工类) 试卷A考生注意:1.考前请将密封线内各项填写清楚,“序号”即交作业的序号,勿写学号;2.本试卷共四个大题,满分100分,考试时间120分钟;3.所有答案应直接写在试卷上。

一.填空题(本大题共5小题,每小题3分,共15分。

将答案写在横线上)1.函数ln(1)y x =+的定义域是 。

2.设0sin 2lim 3x kx x→=,则常数k = 。

3.设y =dy = 。

4.不定积分2x dx xe ⎰= 。

5.反常积分 (0)a pI a dxx +∞=>⎰,当1p >时,I = 。

二.单项选择题(本大题共5小题,每小题3分,共15分。

将正确选项的字母填在括号内)1.曲线ln y x x =在点(1,0)处的切线方程是 ( ) A .(ln 1)(1)y x x =+- B .1y x -= C .1y x =- D .(1)y x =--2.设||,0;()1,0,x x f x x x ⎧≠⎪=⎨⎪=⎩,则()f x 在0x =处 ( )A .0lim ()x f x →不存在 B .'(0)f 存在C .0lim ()x f x →存在,但()f x 在0x =处不连续D .()f x 在0x =处连续,但不可导3.在区间[1,1] -上,不满足罗尔中值定理条件的是 ( ) A .2()1x f x e =- B .2()ln(1)f x x =+ C.()f x = D .21()1f x x=+ 4.下列等式中,正确的是 ( ) A .[()]()d f x dx f x =⎰ B .[()]()df x dx f x dx dx=⎰ C .()()df x f x =⎰ D .' ()()f x dx f x C =+⎰5.设()f x 连续,且()sin xa f t dt x x =⎰,则()2f π= ( )A .sin cos x x x +B .12π-C .2πD .1三.计算题(本大题共7小题,每小题7分, 共49分) 1.求极限 22sin 1lim (2)x x x ππ→--。

高等数学A1_试_题(A)附答案

高等数学A1_试_题(A)附答案

2006-2007学年第一学期 高等数学(A1)试题(A 卷)一、填空(本题共5小题,每小题3分,满分15分) 1.已知=++=⎪⎭⎫ ⎝⎛+)(,31122x f xx x x f 则 ____________. 2.设)(0x f '存在,则()()=--+→hh x f h x f h 000lim ____________.3.设)(x f 的原函数为xx ln ,则()='⎰dx x f ____________.4.向量{}4,3,4-=a在向量{}1,2,2=b上的投影是____________. 5. )1(1)(+=x xx f 按的幂展开到n 阶的泰勒公式是_________ .二、选择题(本题共5小题,每小题3分,满分15分) 1.设()x f 可导且()210='x f ,当0→∆x 时,()x f 在0x 处的微分dy与x ∆比较是( )无穷小.(A ) 等价 (B ) 同阶 (C ) 低阶 (D ) 高阶2.已知c bx ax x y +++=3323,在1-=x 处取得极大值,点(0,3)是拐点, 则( ).3,0,1)(3,1,0)(==-==-==c b a B c b a A 均错以上)( 0,1,3)(D c b a C =-==3.设)(x f 在[-5,5]上连续,则下列积分正确的是( ).[][]0)()()(0)()()(5555=--=-+⎰⎰--dx x f x f B dx x f x f A[][]0)()()(0)()()(550=--=-+⎰⎰dx x f x f D dx x f x f C4. 设直线L 为12241z y x =-+=-,平面0224:=-+-z y x π 则( ).上;在;平行于ππL L A )B ()(.(D);)(斜交与垂直于ππL L C5. 若0532<-b a ,则方程043235=++-c bx ax x ( ) (A ) 无实根; (B ) 有五个不同的实根. (C ) 有三个不同的实根; (D ) 有惟一实根;三、计算下列各题(本题共4小题,每小题7分,共28分) 1. .,1ln2sec 22dxdy ee y xxx求+-=2.设)(x y y =是由方程)ln()(2y x y x x y --=-确定的隐函数,求d y .3.求32)21ln(limxdtt x x ⎰+→.4. 求由参数方程()⎩⎨⎧=+=ty t x arctan 1ln 2所确定的函数的二阶导数.22dx yd四、求下列积分(本题共3小题,每小题7分,满分21分) 1.dx xx ⎰-21ln .2.⎰-dxxx42.3.().ln 11 12dx x x e ⎰-五、(7分)设,ln 1)(,1x xx f b a +=<<求证:)(41)()(0a b a f b f -≤-<.六、(7分)已知直线L 在平面01:=-++z y x π上,并且与直线⎪⎩⎪⎨⎧=+-=+=t z t y t x L 11:1垂直相交,求L 的方程.七、(7分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D .(1) 求D 的面积A .(2) 求D 绕直线x=e 旋转一周所成的旋转体的体积V .2006-2007学年第一学期 高等数学(A1)试题(A 卷)答案一、填空(本题共5小题,每小题3分,满分15分) 1.1)(2+=x x f ; 2. )(20x f '; 3.C xx +-2ln 1; 4. 2;5.[]之间与介于1,)1()1()1()1()1(111212-+-++++++++-=+++x x x x x xn n n nξξ二、选择题(本题共5小题,每小题3分,满分15分) 1. B 2. A 3. B 4. C 5. D三、计算下列各题(本题共4小题,每小题7分,共28分) 1. 解:()'⎪⎪⎭⎫ ⎝⎛+-'='1ln 2sec 22x xxe e y 2分⎪⎪⎭⎫ ⎝⎛+--=122212tan 2sec 2ln 222x xxxx e e6分112tan 2sec 2ln 22+-=xxx x e7分2. 解:[]1)ln()(2+--=-y x dy dx dx dy 5分 ()()dxy x y x dy -+-+=ln 3ln 2 7分3. 解:220323)21l n (l i m )21l n (l i mxx xdtt x x x +=+→→⎰4分 ⎪⎪⎪⎪⎭⎫⎝⎛+==→→xx x x x x x 6214l i m32l i m 2022032= 7分4. 解:ttt t dxdy21121122=++= 4分3222224112121tt tt tdxy d +-=+⋅-= 7分四、求下列积分(本题共3小题,每小题7分,满分21分) 1. 解:⎪⎭⎫⎝⎛--=-⎰⎰x d x dx x x 1112)ln (ln 2分⎰+--=dxxxx 211ln 4分C xx C xxx +-=+---=ln 11ln 7分2. 解:⎰⎰=∈=-tdtdxxx tx t 2220224tansec ),(π3分C t t dt t +-=-=⎰2tan 2)1(sec 22 6分Cxx+--=2242arccos7分3. 解:()()x d x dx x x e e ln ln 11lim ln 11 1212⎰⎰-→-=-+εε 4分()[]2ln arcsin lim 1πεε==-→+e x 7分五、(7分)设,ln 1)(,1x xx f b a +=<<求证:)(41)()(0a b a f b f -≤-<.证明:由拉格朗日中值定理()01)()(2>--=-a b a f b f ξξ 3分记)1(1)(2>-=x xx x g 4分⎪⎩⎪⎨⎧><==<<>-='20,2 ,021 ,02)(3x x x x x x g 5分 因此2=x 是)(x g 在),1(+∞内的最大值点,且41)2()(=≤g x g ,于是)(41)()(0a b a f b f -≤-< 7分六、(7分)已知直线L 在平面01:=-++z y x π上,并且与直线⎪⎩⎪⎨⎧=+-=+=t z t y t x L 11:1垂直相交,求L 的方程.解:直线L 的方向向量为k i kj is22111111-=-= 3分 将L 1代入平面方程得:1-=t ,π与1L 的交点坐标为(0,2,-1) 5分 直线L 的方程为:11021-+=-=z y x 或⎩⎨⎧==++201y z x 7分七、(7分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D .(1) 求D 的面积A .(2) 求D 绕直线x=e 旋转一周所成的旋转体的体积V .解:设切点坐标为:()00x x ln ,切线方程为:)(ln 0001x x x x y -=- 1分由于切线过原点,得切点坐标为:()1,e 2分 切线方程为:ex y =3分(1)()12ln 2ln 21 1-=--=-=⎰e x x x e xdx e D ee 5分(2)()22 65 312122πππππ+-=--=⎰e e dy e e e V y7分。

上海理工大学高数试卷_A1_1

上海理工大学高数试卷_A1_1

五. (6 分)计算 I n 六. (8 分)设
0 x n e x dx .

xeห้องสมุดไป่ตู้ x , f x 1 , 4 x2
2
x0 2 x0
, 计算1 f x 3dx .
4
七. (8 分)求由抛物线 y 2 x , y x 围成的平面图形的面积,以及此图形绕 x 轴旋转而成
2 2
的立体体积. 八. (6 分)若 f x 在 a, b 上连续,在 a, b 内可导,且 f a f b 0 , 求证:存在一点 x0 a, b ,使 f x0 f x0 0 .
2
8. 设
f x x a x , x 在x a 处 连续,求f a .
x0
,
f x x 二. (8 分)设 f x 在 , 有连续的二阶导数, f 0 0, g x f 0
上海理工大学
第一学期《高等数学 A》试卷-1
编号 一 二 三 四 五 六 七 八
姓 名
得分 阅卷人 一. 计算下列各题.(48 分) 1. lim (csc x ).
x0
学 号
班 级
任 课 教 师
装 订 线 外 不 要 答 题 , 装 订 线 内 不 要 写 姓 名 、 学 号 、 班 级 、 任 课 老 师 , 违 者 试 卷 按
0
1 x
2. .
y ln( x 1 x 2 ) ,求 y 和 y .
y 1 xe y ,求
dy . dx
3.
4.
2
1
x
1 3 x dx .

2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(sin x) tan x ,则 y =
1 3
.
6. 若 f x a sin x sin 3x 的极值点是 x 7.

3
,则 a
.

2 0
4 x 2 dx
. .
8.设
f ( x) x , x [1,4] ,由拉格朗日中值定理,则 =
二. 求解下列各题.(24 分)
sin n 2 n n 1
.
2.
e f ( x) a x 5
1 x
x0 x0
2

f ( x) 在 x 0 处连续,则 a
.
3. d

sec
f x
x2 1
x dx . 2
4. 设
1 1 t2
dt , 则 f 1
.
5.设 y
x x
(2)上述图形绕 x 轴旋转一周所得的旋转体的体积.
七. (6 分)设
f u 在 0, 上连续,证明:


0
xf sin x dx

2 0

f sin x dx .
求计算


0
x sin x dx . 2 sin 2 x
2
四. (8 分)对任意实数 x ,证明不等式:
1 x ln( x 1 x 2 ) 1 x 2 .
五. (8 分)将长为 a 的一段铁丝截成两段,用一段围成正方形,另一段围成圆,为使正方形与 圆的面积之和最小,问两段铁丝的长各为多少? 六. (14 分)求: (1)由 y 轴, y e 及 y e 过原点处的切线所围成的平面图形的面积.
上海理工大学
第一学期《高等数学 A》试卷-2
编号 一 二 三 四 五 六 七
姓 名
得分 阅卷人
学 号
班 级
任 课 教 师

装 订 线 外 不 要 答 题 , 装 订 线 内 不 要 写 姓 名 、 学 号 、 班 级 、 任 课 老 师 , 违 者 试 卷 按
0
一. 计算题.(4 8=32 分) 1. lim
分 处 理
1 x . 1. lim x0 ln 1 2x x 2 sin
2.
y 9 x 2 2e 2 , 求 dy .
y
3. 求曲线 xe
y 1 在点 1, 0 处的切线方程.
4.
x
2
arctan xdx .
1
三. (8 分)求微分方程 y
y 满足 y | 1的解. x 1 2 y ln y y x
相关文档
最新文档