上海理工大学高等代数试卷12
上海理工大学继续教育学院 线性代数补考复习题

, e3
。
21.计算三阶行列式
a b c b c a c a b
b a c ,c b a a c b
b a a ,c b b a c c
;若方程组有 。
kx x 2 1 22.已知方程组 1 。系数行列式 D 3x1 2 x 2 5
唯一解,则 D ,此时得 k
30.若向量 e1 , e2 构成向量空间 V 的一个规范正交基,则
e1
, e2
, e1 , e2
。
31.计算三阶行列式(未写出的元素为 0)
a b c
,
a b c
a ,d e
b f c
。
2 x1 kx2 2 32.已知方程组 。系数行列式 D x1 x 2 3
2 3 1 1 1 1 A 1 1 1 , B 1 2 4 。 5 1 1 1 1 0
AB
, 3 AB 2 A
, AT B
。
14.已知二阶方阵
a 2 A 。 A 1 a
, A*
R( A)
, A 1
, nA 1
。
46.已知方程组 Ax b 为
x1 2 x 2 1 。 A 1 2 x1 2 x 2 2
47.已知方程组
; x1
, x2
。
x1 x 2 2 x3 0 x1 2 x1 x 2 x3 0 。 2 x 2 x 4 x 0 2 3 1
A : a1 (1,1,3,1)T , a2 (1,1,1,3)T , a3 (5,2,8,9)T , a4 (1,3,1,7)T 。
2012-2015高等代数A卷

淮北师范大学2012年招收硕士研究生考题(A )招生专业:基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论考试科目:高等代数说明:答案必须写在答题纸上,写在本考题纸上的无效。
--------------------------------------------------------------------------------------------------------------------一、简答题(每题9分,共54分)1、若()()323121x xf x f x x +++,证明:()()121,1x f x x f x --. 2、已知向量组12,,,n ααα线性无关,向量组12,,,,n αααβ线性相关,证明:β可由向量组12,,,n ααα唯一线性表出.3、已知等价的向量组秩相等,问秩相等的向量组是否等价?举例说明.4、设3级矩阵A 的行列式值是-2,计算1*2---A A .5、设2级矩阵A 的特征多项式为()21021f λλλ=-+,计算1A -的特征多项式.6、设A 是n 级矩阵,若()1r A n =-,且12,αα是方程组0AX =的两个不同的解,求齐次线性方程组0AX =的通解.二、(12分)证明:多项式()!!212p x x x x f p++++= 在有理数域上不可约,其中p 是一个素数.三、(12分) 计算n 级行列式72000007200057200057 =n D四、(12分)设,A B 是两个n 级实对称矩阵,且B 是正定矩阵,证明:存在n 级实可逆矩阵T ,使T T AT 与T T BT 同时为对角形.五、(14分)设B A ,为n 级矩阵,满足22B A =,但||||B A ≠。
证明: (1)A 为可逆矩阵;(2)B A +不是可逆矩阵.六、(15分) 设()ij A a =是m n ⨯矩阵(m n <),已知齐次线性方程组0AX =的基础解系为()12,,,(1,2,,)Ti i i in b b b i n m β==-。
2021-2022年部分高校高等代数考研真题

A
=
1 0 2
−1 1 3
−1 0 1
2 0 −1
1 −2 −2 −1
求 A 的包含 ε1 的最小的不变子空间.
3 1 −1 3. 求 A = −1 3 1 的若尔当标准形及有理标准形.
022
二、证明题.
1. 已知向量组 α1, α2, · · · , αr 线性无关, 且可由向量组 β1, β2, · · · , βs 线性表 出, 证明: 存在某个向量 βj (1 ≤ j ≤ s), 使得向量组 βj, α2, · · · , αr 线性无关.
1 2
1 1
c −2 0
112
(1) 若 A 有特征值 4, 1, −2 , 求 a, b, c. (2) 设 α = (1, k, 1)T 是 B−1 的一个特征向量, 求 k .
五、(15 分) 设 A, B 都是 n 阶实对称矩阵, 且 A 正定, 证明: AB 的特征值 都是实数.
六、(15 分) 设 σ 是 n 维线性空间 V 上的一个线性变换, 证明: σ 的秩 +σ 的零度 = n.
1
北京交通大学 2022 年高等代数考研真题
北京交通大学 2022 年高等代数考研真题
一、填空题 (每题 3 分)
1. 2n 级排列 13 · · · (2n − 1)(2n)(2n − 2) · · · 42 的逆序数为
.
2. 设 4 阶方阵 A, B 的伴随矩阵为 A∗, B∗, 且它们的秩为 r(A) = 3, r(B) =
1
2x1 3x1
+ 3x2 + 5x2
+ (a + 2)x3 + 4x4 = b + 3 + x3 + (a + 8)x4 = 5
上海理工大学高数期末复习试题

释 疑 解 难(第七章)(第七章)一、求垂直于平面0=z 且通过点)1,1,1(0-M 到直线îíì==+-001:x z y L 垂线的平垂线的平 面方程。
面方程。
解:解:直线L 的方向向量}1,1,0{--=l,过点0M 与直线L 的平面N 的方程的方程 0)1()1(=--+-z y ,即0=+z y解方程组ïîïíì=+==+-0001z y x z y ,得直线L 与平面N 的交点)21,21,0(1-M 由题意,设所求平面方程为0=++D By Ax ,将0M 、1M 坐标代入,得坐标代入,得ïîïíì=+-=+-02D B D B A ,解得D A =,D B 2=,所求的平面方程为:012=++y x 。
二、证明两直线二、证明两直线231212-=-+=-z y x 与112111-=+=--z y x共面,并求该平面方程。
共面,并求该平面方程。
解:解:记)3,2,2(1-M ,}2,1,1{1-=l ,)1,1,1(2-M ,}1,2,1{2-=l则}2,1,1{21--=M M∵0211121211)(2121=----=×´M M l l ∴两直线共面。
∴两直线共面。
取}1,3,5{21--=´=l l n则所求平面方程为则所求平面方程为0)3()2(3)2(5=-++---z y x ,即0135=--+z y x 。
三、求平面02122=++-z y x 与05247=-+z x 所成二面角的平分面方程。
所成二面角的平分面方程。
解:解:过两平面交线的平面束方程过两平面交线的平面束方程0)5247(2122=-++++-z x z y x l ,即,即0)521()242(2)71(=-+++-+l l l z y x其法向量}242,2,71{l l +-+=n,已知两平面法向量分别是,已知两平面法向量分别是}2,2,1{1-=n 与}24,0,7{2=n由题意知||||||||2211n n n n n n n n ×±=×,解得253±=l 所以所求平面方程为所以所求平面方程为025*******=++-z y x 和027011252=+--z y x 。
(11)--12-13学年高等代数(I)试卷及参考答案

AC BD
(2) eØb AŒ_, þ¡ ª´Ä¤á? `²nd.
( 7 • 1 5•)
© Ê!(15©) A´••r n Ý , y²: (1) •3••r n Ý B¦ ABA = A; (2) ÷vþã^‡ B´•˜ …= AŒ_.
( 7 • 1 6•)
© 8!(10©) •þ|α1, α2, . . . , αm, β1, β2, . . . , βm ••m, …α1, α2, . . . , αm‚5 Ã'. y²•3áõ‡êc¦ cα1 + β1, cα2 + β2, . . . , cαm + βm‚5Ã'.
(g, g′) = x2 + 3x +1 ( 附 辗 转 相 除 法 过 程 ). 从 而 有 f (x) = (x −1)(x2 + 3x +1)2 . 由
x2 + 3x +1 在有理数域上的不可约性知上式即为 f (x) 在有理数域上的标准分解.
2. 解答:
由| A |= 1,| B |= −1可知
⎛ 1 −2 1 a ⎞ ⎛ 1 −2 1 a ⎞ ⎛ 1 −2 1 a ⎞
⎜ ⎜
2
−1
−1
3
⎟ ⎟
→
⎜ ⎜
0
3
−3
3
−
2a
⎟ ⎟
→
⎜ ⎜
0
3
−3
3
−
2a
⎟ ⎟
⎜⎝ 1 1 −2 2a ⎟⎠ ⎜⎝ 0 3 −3 a ⎟⎠ ⎜⎝ 0 0 0 3a − 3⎟⎠
⎛1
→
⎜ ⎜
0
−2 1
(完整word版)高等代数试卷及答案(二),推荐文档

一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。
2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。
3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。
4.正交变换在标准正交基下的矩阵为_______________________________。
5.标准正交基下的度量矩阵为_________________________。
6.线性变换可对角化的充要条件为__________________________________。
7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。
8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。
9.叙述维数公式_________________________________________________________________________。
10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。
二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。
( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。
( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。
( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。
上海理工大学高数试卷_A1_1

五. (6 分)计算 I n 六. (8 分)设
0 x n e x dx .
xeห้องสมุดไป่ตู้ x , f x 1 , 4 x2
2
x0 2 x0
, 计算1 f x 3dx .
4
七. (8 分)求由抛物线 y 2 x , y x 围成的平面图形的面积,以及此图形绕 x 轴旋转而成
2 2
的立体体积. 八. (6 分)若 f x 在 a, b 上连续,在 a, b 内可导,且 f a f b 0 , 求证:存在一点 x0 a, b ,使 f x0 f x0 0 .
2
8. 设
f x x a x , x 在x a 处 连续,求f a .
x0
,
f x x 二. (8 分)设 f x 在 , 有连续的二阶导数, f 0 0, g x f 0
上海理工大学
第一学期《高等数学 A》试卷-1
编号 一 二 三 四 五 六 七 八
姓 名
得分 阅卷人 一. 计算下列各题.(48 分) 1. lim (csc x ).
x0
学 号
班 级
任 课 教 师
装 订 线 外 不 要 答 题 , 装 订 线 内 不 要 写 姓 名 、 学 号 、 班 级 、 任 课 老 师 , 违 者 试 卷 按
0
1 x
2. .
y ln( x 1 x 2 ) ,求 y 和 y .
y 1 xe y ,求
dy . dx
3.
4.
2
1
x
1 3 x dx .
2
11-12(2)高等代数与解析几何试卷(A)参考答案及评分标准

中国计量学院2011 ~ 2012学年第 2 学期《高等代数》(2)课程试卷(A )参考答案及评分标准一、单项选择题(每小题3分,共15分)1.D2.B3.D4.C5.A二、填空题(每小题3分,共15分)1.1111⎛⎫ ⎪-⎝⎭;2. __1,-3__;3.100010011⎛⎫⎪ ⎪⎪⎝⎭; 4. 20x y +-= 5.222x y pz +=.三、计算题1.(12分)设A 是3P 中的线性变换,且A 在基)1,1,1(1-=η,)1,0,1(2-=η,)1,1,0(3=η下的矩阵为101110121A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭求A 在基123(1,0,0),(0,1,0),(0,0,1)εεε===下的矩阵.解 因为(1η,2η,3η)=(1ε,2ε,3ε)⎪⎪⎪⎭⎫⎝⎛--111101011, 所以 (1ε,2ε,3ε)=(1η,2η,3η)⎪⎪⎪⎭⎫ ⎝⎛---101110111=(1η,2η,3η)X ,-------------4分故A 在基1ε,2ε,3ε下的矩阵为B =X 1-AX=⎪⎪⎪⎭⎫ ⎝⎛--111101011⎪⎪⎪⎭⎫ ⎝⎛-121011101⎪⎪⎪⎭⎫ ⎝⎛---101110111=⎪⎪⎪⎭⎫⎝⎛--203022211 -------------12分2.(12分)求λ矩阵222211λλλλλλλλλλ()A ⎛⎫-⎪=- ⎪ ⎪+-⎝⎭的标准形、不变因子、行列式因子、初等因子.解 对-λ矩阵作初等变换,有A =)(λ ⎪⎪⎪⎭⎫⎝⎛-+--222211λλλλλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛--222101λλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛+--)1(00001λλλλ → )()1(0000001λλλλD =⎪⎪⎪⎭⎫⎝⎛+ 标准形为: ⎪⎪⎪⎭⎫⎝⎛+=)1(000001)(λλλλD ;----------------------6分 不变因子为:)1()(,)(,1)(321+===λλλλλλd d d ;----------------------8分 行列式因子为:)1()(,)(,1)(2321+===λλλλλλD D D ;----------------------10分 初等因子为:1,,2+λλλ.----------------------12分3.(12分) 设二次型()222123123121323,,22448f x x x x x x x x x x x x =---++ ,求一正交变换 x Ty =,将二次型化为标准形. 解 二次型对应的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=242422221A ,----------------------2分且A 的特征多项式为 2)2)(7(-+=-λλλA E ,特征值为2,7321==-=λλλ.---------------------4分 相应的特征向量为 ()()()1,0,2,0,1,2,2,2,1321=-=-=ααα,---------------------6分正交化,可得()()⎪⎭⎫ ⎝⎛=-=-=1,54,52,0,1,2,2,2,1321βββ, 再单位化,有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=535,534,532,0,51,52,32,32,31321ηηη, ----------------------8分令X=TY ,其中⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=53503253451325325231T ,----------------------10分 则 232221'227y y y AX X ++-=.----------------------12分4.(12分) 求顶点在原点,准线为01,0122=+-=+-z y z x 的锥面方程. 解 设为锥面上任一点),,(z y x M ,过M 与O 的直线为:z Zy Y x X ==----------------------3分 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,, -----------6分 将它们代入准线方程,并消去参数t ,得:0)()(222=-+--y z y z z x即:0222=-+z y x此为所要求的锥面方程. ----------------------12分5. (12分)求过双曲抛物面z y x =-41622上的点(2,1,0)的直母线方程. 解:双曲抛物面z y x =-41622的两族直母线为:⎪⎪⎩⎪⎪⎨⎧=-=+z y x u uy x )24(24 及 ⎪⎪⎩⎪⎪⎨⎧=+=-z yx v v yx 24(24----------------------6分将点(2,1,0)分别代入上面两族直母线的方程,求得,1==v u----------------------10分因此,所求的直母线方程为:⎪⎪⎩⎪⎪⎨⎧=-=+z y x yx 24124 及 ⎪⎩⎪⎨⎧==-024z y x ----------------------12分四、证明题((每小题5分,共10分)1.在2R 中,定义变换(,)(2,2)x y x y x y σ=++. (1)证明:σ是2R 的线性变换.(2)取2R 的一组基:12(1,0),(0,1)εε==,求σ的值域2()σR 及2()σR 的一组基.证明(1)设1221x x A y y σξ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,σ是2R 到R 的映射,且2,,k αβ∀=∈∀∈R R ,有()()k l A k l kA lA σαβαβαβ+=+=+,所以σ是线性变换;-----------------3分(2) 对于2R 的基:12(1,0),(0,1)εε==,有12()(1,2),()(2,1)σεσε==,易知12(),()σεσε线性无关,于是它们构成2()σR 的一组基,且值域为 12()((),())((1,2),(2,1))L L σσεσε==3R .-----------------5分 2.欧氏空间V 中的线性变换A 称为反对称的,如果对任意α,β∈V ,有(A α,β)= —(α,A β). 证明:如果V 1是反对称线性变换A —子空间,则V 1⊥也是A —子空间.证明 任取∈αV 1⊥,可证A ∈αV 1⊥,即A ∈αV 1,事实上,任取β∈V 1,由于V 1是A 子空间,因此A β1V ∈,而∈αV 1⊥,故(α,A β)=0.----------------------3分再由题设,A 是反对称的,知(A α,β)= —(α,A β)=0,----------------------4分由β的任意性,即证A ∈αV 1 .从而V 1⊥也是A —子空间.----------------------5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海理工大学
研究生试题
/学年第 1 学期
课程名称:高等代数
教师签章:年月日教研室主任审查意见:
签章:年月日1.编号栏由研究生部填写。
上海理工大学研究生课程试题* / 学年第 1学期 考试课程 高等代数 学 号 姓 名 得 分
一、(1)实数域上3阶对称矩阵按合同关系可分为几类;
(2)某四元二次型有标准形24
232221432y y y y ++-,求其规范形.(15分)
二、化λ-矩阵A(λ)为标准形. (15分)
22221()1A λλλλλ
λλλλλ⎛⎫- ⎪=- ⎪ ⎪+-⎝
⎭
三、设12,,,m e e e 是n 维欧氏空间V 的标准正交向量组,
证明:对任意的向量u ∈V ,都有
()2
21,m i i u e u =≤∑.(14分)
四、已知三维线性空间V 有两组基:(Ⅰ)123{,,}e e e ,(Ⅱ)321{,2,3}e e e ---
(1)写出(Ⅰ)到(Ⅱ)的过渡矩阵; (2)若向量α在基(Ⅰ)下的坐标为123⎛⎫ ⎪ ⎪ ⎪⎝⎭
,写出α在基(Ⅱ)下的坐标;
(3)定义线性变换s 为1122331(),()2,()3s e e s e e s e e e ===-,分别写出s 关于基(Ⅰ)、(Ⅱ)的矩阵.
(4)求()s α.(20分)
五、设100010312A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
,33{|}W B P AB BA ⨯=∈=, 求W 维数和一组基. (12分)
六、设21,,W W W 是线性空间V 的子空间,,,,212121W W W W W W W W W W +=+=⊆ 证明:21W W =.(12分)
*注:考题全部写在框内,不要超出边界。
内容一律用黑色墨水书写或计算机打印,以便复印。
七、设A 是有限维线性空间V 上的线性变换,如果A A V Im ker +≠, 则{}0Im ker ≠A A .(12分)。