八年级数学全等三角形同步练习题

合集下载

人教版八年级数学上册全等三角形的判定同步训练习题

人教版八年级数学上册全等三角形的判定同步训练习题

人教版八年级数学上册12.2《全等三角形的判定》同步训练习题一.选择题(共10小题)1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015春•南京校级期末)下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③3.(2015•宁波)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠24.(2015•泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对5.(2015•滨湖区一模)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个6.(2015•沂源县校级模拟)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SSS C.SAS D.AAS7.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(2015•漳州一模)小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.① B.② C.③ D.①和②9.(2015春•陕西校级期末)如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFC的理由是()A.SSS B.AAS C.SAS D.HL10.(2014•厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF二.填空题(共10小题)11.(2015•南昌)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.12.(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)13.(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .14.(2015•怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是.15.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.16.(2015•姜堰市一模)如图,E为正方形ABCD边CD上一点,DE=3,CE=1,F为直线BC上一点,直线DF与直线AE交于G,且DF=AE,则DG= .17.(2015春•锡山区)如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2= °.18.(2015春•揭西县期末)如图所示,已知点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,则∠DCE的度数是.19.(2015春•瑶海区期末)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,G在AD 上,且DF=BE.①CE=CF;②EC⊥CF;③△ECG≌△FCG,④若∠GCE=45°,则EG=BE+GD,以上说法正确的是.20.(2015春•苏州期末)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A﹣C 路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.则点P运动时间为时,△PEC与△QFC全等.三.解答题(共10小题)21.(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.22.(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(2015•泸州)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.24.(2015•南充)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.25.(2015•温州)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.26.(2015•金溪县模拟)请从以下三个等式中,选出一个等式填在横线上,并加以证明.等式:AB=CD,∠A=∠C,∠AEB=∠CFD,已知:AB∥CD,BE=DF,.求证:△ABE≌△CDF.证明:27.(2015•大兴区一模)已知,在△ABC中,DE∥AB,FG∥AC,BE=GC.求证:DE=FB.28.(2015•西安模拟)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.29.(2015•铁岭一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.30.(2015春•鄄城县期末)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B,C在AE的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)BD=DE+CE成立吗?为什么?(2)若直线AE绕点A旋转到如图2位置时,其他条件不变,BD与DE,CE关系如何?请说明理由.人教版八年级数学上册12.2《全等三角形的判定》同步训练习题参考答案一.选择题(共10小题)1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC选A【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2015春•南京校级期末)下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③【考点】全等三角形的判定.【分析】熟练综合运用判定定理判断,做题时要结合已知与全等的判定方法逐个验证.【解答】解:因为两个三角形的两个角对应相等,根据内角和定理,可知另一对对应角也相等,那么总能利用ASA来判定两个三角形全等,故选项①正确;两个全等的直角三角形都和一个等边三角形不全等,但是这两个全等的直角三角形可以全等,故选项②错误;判定两个三角形全等时,必须有边的参与,否则不会全等,故选项③正确.故选C.【点评】AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2015•宁波)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【考点】全等三角形的判定;平行四边形的性质.【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.4.(2015•泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.5.(2015•滨湖区一模)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个【考点】全等三角形的判定.【分析】根据30°角所对的直角边等于斜边的一半以及垂线段最短的性质求出AC边的最短值,然后选择即可得解.【解答】解:如图,AC⊥BC时,∵∠ABC=30°,AB=4,∴AC=AB=×4=2,∵垂线段最短,∴AC≥2,∴在1、2、3、4、5中可取的值有2、3、4、5,当AC=2时可以作1个三角形,当AC=3时可以作2个三角形,当AC=4时可以作1个三角形,当AC=5时可以作1个三角形,共1+2+1+1=5,所以,三角形的个数是5个.故选C.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,垂线段最短,求出AC边的最小值是解题的关键.6.(2015•沂源县校级模拟)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SSS C.SAS D.AAS【考点】全等三角形的判定;作图—基本作图.【分析】由作图可得CO=DO,CE=DE,OE=OE,可利用SSS定理判定三角形全等.【解答】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.8.(2015•漳州一模)小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.9.(2015春•陕西校级期末)如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFC的理由是()A.SSS B.AAS C.SAS D.HL【考点】全等三角形的判定.【分析】根据垂直定义求出∠AEC=∠BFD=90°,根据平行线的性质得出∠A=∠B,根据全等三角形的判定定理AAS推出即可.【解答】解:∵CE⊥AB,DF⊥AB,∴∠AEC=∠BFD=90°.∵AC∥DB,∴∠A=∠B.在△AEC和△BFD中,∴Rt△AEC≌Rt△BFC(AAS),故选B.【点评】本题考查了全等三角形的判定,平行线的性质,垂直定义的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等的判定定理除了具有以上定理外,还有HL定理.10.(2014•厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.二.填空题(共10小题)11.(2015•南昌)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和R t△AOP≌R t△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.12.(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF .(只填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.13.(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3 .【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.14.(2015•怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是90°.【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据全等三角形的判定与性质,可得∠ODA与∠BAE的关系,根据余角的性质,可得∠ODA与∠OAD的关系,根据直角三角形的判定,可得答案.15.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60 度.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】几何图形问题.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为:60.【点评】本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.16.(2015•姜堰市一模)如图,E为正方形ABCD边CD上一点,DE=3,CE=1,F为直线BC上一点,直线DF与直线AE交于G,且DF=AE,则DG= 或.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【专题】分类讨论.【分析】分两种情况:①由正方形的性质得出∠ADE=∠DCF=90°,AD=DC=4,由勾股定理求出AE,由HL证明Rt△ADE≌Rt△DCF,得出∠AED=∠DFC,证出∠DGE=90°,由△ADE的面积=AE×DG=AD×DE,即可求出DG的长;②如图2所示:同①得:Rt△ADE≌Rt△DCF,得出CF=DE,DF=AE,作GM⊥BC于M,作GN⊥DC于N;证出△GMF∽△DCF,△GNE∽△ADE,得出比例式,,设GM=4x,则FM=3x,GF=5x,GN=MC=3+3x,EN=4x+1,解方程求出x,得出GF,即可得出DG的长.【解答】解:分两种情况:①如图1所示:∵四边形ABCD是正方形,∴∠ADE=∠DCF=90°,AD=DC=3+1=4,AD∥BC,∴AE===5,在Rt△ADE和Rt△DCF中,,∴Rt△ADE≌Rt△DCF(HL),∴∠AED=∠DFC,∵∠DFC+∠CDF=90°,∴∠AED+∠CDF=90°,∴∠DGE=90°,∵△ADE的面积=AE×DG=AD×DE,∴DG==;②如图2所示:同①得:Rt△ADE≌Rt△DCF,∴CF=DE=3,DF=AE=5,作GM⊥BC于M,作GN⊥DC于N;则GM∥DC,GN∥AD,∴△GMF∽△DCF,△GNE∽△ADE,∴=,=,设GM=4x,则FM=3x,∴GF=5x,GN=MC=3+3x,EN=4x+1,∴,解得:x=,∴GF=,∴DG=DF+GF=5+=;综上所述:DG的长为或;故答案为:或.【点评】本题考查了正方形的性质、勾股定理、全等三角形的判定与性质、相似三角形的判定与性质;本题有一定难度,需要进行分类讨论,特别是②中,需要证明三角形相似才能得出结果.17.(2015春•锡山区期末)如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2= 50 °.【考点】全等三角形的判定与性质.【分析】易证△ABC和△ADC均为直角三角形,即可证明RT△ABC≌RT△ADC,可得∠1=∠CAD,即可解题.【解答】解:∵∠B=∠D=90°,∴△ABC和△ADC均为直角三角形,在RT△ABC和RT△ADC中,,∴RT△ABC≌RT△ADC(HL),∴∠1=∠CAD,∴∠2=90°﹣∠CAD=50°.故答案为 50°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证RT△ABC ≌RT△ADC是解题的关键.18.(2015春•揭西县期末)如图所示,已知点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,则∠DCE的度数是105°.【考点】全等三角形的判定与性质;等腰三角形的性质;等腰直角三角形.【分析】根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据CE=CA,∠CAD=15°,求出∠ACE=150°即可利用角的和差求解.【解答】解:∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∠ABD=∠ABC﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∵∠CAD=15°,CE=CA,∴∠CED=∠CAD=15°,∴∠ECA=150°,∴∠DCE=∠ECA﹣∠ACD=150°﹣45°=105°.故答案为:105°.【点评】此题主要考查等腰直角三角形,线段垂直平分线的性质与判定、等腰三角形的性质等知识点,难易程度适中,是一道很典型的题目.。

人教版初二数学上册全等三角形同步检测题(含答案)

人教版初二数学上册全等三角形同步检测题(含答案)

人教版初二数学上册全等三角形同步检测题(含答案)人教版初二数学上册全等三角形同步检测题(含答案)(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列说法正确的是() A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,分别表示△ABC的三边长,则下面与△一定全等的三角形是() A B C D 3.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是() A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE 4. 在△ABC和△ 中,AB= ,∠B=∠ ,补充条件后仍不一定能保证△ABC≌△ ,则补充的这个条件是( ) A.BC= B.∠A=∠ C.AC= D.∠C=∠ 5.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是() A.边角边 B.角边角 C.边边边 D.边边角7.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是() A.∠A与∠D 互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠2 8. 在△和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件() A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC 于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌ △BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10. 如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等()A.∥ B. C.∠=∠ D.∠=∠ 二、填空题(每小题3分,共24分) 11. 如果△ABC和△DEF这两个三角形全等,点C和点E,点B和点D分别是对应点,则另一组对应点是,对应边是,对应角是,表示这两个三角形全等的式子是 . 12. 如图,在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是 . 13. 如图为6个边长相等的正方形的组合图形,则∠ 1+∠2+∠3= .14.如图所示,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE是度. 15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= . 16.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8 cm,BD=5 cm,那么点D到直线AB的距离是 cm.17.如图所示,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是. 18. 如图所示,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC= 15 cm,则△DEB的周长为 cm.三、解答题(共46分) 19.(6分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.20. (8分)如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数. 21.(6分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. 求证:(1)EC=BF;(2)EC⊥BF.22. (8分)如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E, F在AC上,BD=DF. 证明:(1)CF=EB.(2)AB=AF+2EB.23. (9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F. 求证:AF平分∠BAC. 24. (9分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F ,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点 H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.第十二章全等三角形检测题参考答案 1. C 解析:能够完全重合的两个三角形全等,全等三角形的大小相等且形状相同,形状相同的两个三角形相似,但不一定全等,故A错;面积相等的两个三角形形状和大小都不一定相同,故B错;所有的等边三角形不全等,故D错. 2.B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等; B.与三角形有两边及其夹角相等,二者全等; C.与三角形有两边相等,但夹角不相等,二者不全等; D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B. 3. D 解析:∵ △ABE≌△ACD,∠1=∠2,∠B=∠C,∴ AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确; AD的对应边是AE而非DE,所以D错误.故选D. 4. C解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C 不满足三角形全等的条件. 5. D 解析:∵ △ABC和△CDE都是等边三角形,∴ BC=AC,CE=CD,∠BCA=∠ECD=60°,∴ ∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴ 在△BCD和△ACE 中,∴ △BCD≌△ACE(SAS),故A成立. ∵ △BCD≌△ACE,∴∠DBC=∠CAE. ∵ ∠BCA=∠ECD=6 0°,∴ ∠ACD=60°. 在△BGC和△AFC中,∴ △BGC≌△AFC,故B成立. ∵ △BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴ △DCG≌△ECF,故C成立.6. B 解析:∵ BF⊥AB,DE⊥BD,∴ ∠ABC=∠BDE. 又∵ CD=BC,∠ACB=∠DCE,∴ △EDC≌△ABC(ASA). 故选B. 7. D 解析:∵ AC⊥CD,∴ ∠1+∠2=90°,∵ ∠B=90°,∴ ∠1+∠A=90°,∴ ∠A=∠2. 在△ABC和△CED中,∴ △ABC≌△CED,故B、C选项正确. ∵∠2+∠D=90°,∴ ∠A+∠D=90°,故A选项正确. ∵ AC⊥CD,∴ ∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D. 8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED. 9. D 解析:∵ AB=AC,∴∠ABC=∠ACB.∵ BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴ ①△BCD≌△CBE (ASA );由①可得CE=BD, BE=CD,∴ ③△BDA≌△CEA (SAS);又∠EOB=∠DOC,所以④△BOE≌△COD (AAS).故选D. 10. C 解析:A.∵ ∥,∴ ∠=∠. ∵ ∥∴ ∠=∠. ∵ ,∴ △≌△,故本选项可以证出全等;B.∵ =,∠=∠,∴ △≌△,故本选项可以证出全等; C.由∠=∠证不出△≌△,故本选项不可以证出全等;D.∵ ∠=∠,∠=∠,,∴ △≌△,故本选项可以证出全等.故选C. 11. 点A与点F AB与FD,BC与DE,AC与FE ∠A=∠F,∠C=∠E,∠B=∠D △ABC≌△FDE 解析:利用全等三角形的表示方法并结合对应点写在对应的位置上写出对应边和对应角. 12. △△△ 13. 135° 解析:观察图形可知:△ABC≌△BDE,∴ ∠1=∠DBE. 又∵ ∠DBE+∠3=90°,∴∠1+∠3=90°.∵ ∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°. 14. 60 解析:∵△ABC是等边三角形,∴ ∠ABD=∠C,AB=BC.∵ BD=CE,∴△ABD≌△BCE,∴ ∠BAD=∠CBE. ∵ ∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴ ∠APE=∠ABE+∠BAD=60°.15. 55° 解析:在△ABD与△ACE中,∵ ∠1+∠CAD=∠CAE +∠CAD,∴ ∠1=∠CAE. 又∵ AB=AC,AD=AE,∴ △ABD ≌△ACE(SAS).∴ ∠2=∠ABD. ∵ ∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=3 0°,∴ ∠3=55°. 16.3 解析:由∠C=90°,AD平分∠CAB,作DE⊥AB于E,所以D 点到直线AB的距离是DE的长. 由角平分线的性质可知DE=DC. 又BC=8 cm,BD=5 cm,所以DE=DC=3 cm.所以点D到直线AB的距离是3 cm.1 7. 31.5 解析:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵ OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴ OD=OE=OF. ∴=×OD×BC+×OE×AC+×OF×AB =×OD×(BC+AC+AB)=×3×21=31.5. 18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE, AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=BC=15(cm). 19. 分析:(1)根据△≌△是对应角可得到两个三角形中对应相等的三条边和三个角;(2)根据(1)中的相等关系即可得的长度.解:(1)因为△≌△是对应角,所以. 因为GH是公共边,所以. (2)因为2.1 cm,所以=2.1 cm. 因为3.3 cm,所以. 20. 分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.解:∵ △ABC≌△ADE,∴ ∠DAE=∠B AC=(∠EAB-∠CAD)=.∴ ∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠D GB=∠DFB-∠D=90°-25°=65°. 21. 分析:首先根据角间的关系推出再根据边角边定理,证明△≌ △.最后根据全等三角形的性质定理,得知.根据角的转换可求出. 证明:(1)因为,所以. 又因为在△与△中,错误!未指定书签。

八年级数学直角三角形全等的判定同步练习

八年级数学直角三角形全等的判定同步练习

1.1 探索勾股定理1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边,ο90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边,ο90=∠C ,则a 2+b 2=c 2.2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 335.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 .7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.AC B3m 4m20m 12.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.14.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?16.如下图所示,△ABC 中,AB =15 cm ,AC =24 cm ,∠A =60°,求BC 的长.A小汽车 小汽车 B C观测点A 17.如图,在四边形ABCD 中,∠BAD=90°,∠DBC=90°,AB=3,AD=4,BC=12,求CD 的长。

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章三角形全等的判定》同步练习题附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在△ACD与△ABD中∠C=∠B,再添加下列哪个条件,能判定△ADC≌△ADB()A.AC=AB B.AC⊥CD C.DA平分∠BDC D.CD=BD2.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSSBC若ΔABC的面积3.如图,AE垂直于∠ABC的平分线于点D,交BC于点E,CE=13为12,则ΔCDE的面积是()A.2B.3C.4D.64.工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分別与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≅△MOC,共依据是()A.SSS B.SAS C.ASA D.AAS5.如图,在△ABC中∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.10cm6.如图,为了测出池塘两端A,B间的距离,小铱在地面上取一个可以直接到达A点和B点的点O,连接AO并延长到C,使OC=OA;连接BO并延长到D,使OD=OB,连接CD并和测量出它的长度,小铱认为CD的长度就是A,B间的距离,她是根据△OAB≌△OCD来判断的AB=CD,那么判定这两个三角形全等的依据是().A.SSS B.SAS C.ASA D.AAS7.“又是一年三月三”.在校内劳动课上,小明所在小组的同学们设计了如图所示的风筝框架.已知∠B=∠E,AB=DE,BF=EC,△ABC的周长为24cm,FC=3cm制作该风筝框架需用材料的总长度至少为()A.44cm B.45cm C.46cm D.48cm8.如图,AB⊥BC,EC⊥BC,AD⊥DE,AD=DE,AB=3,BC=8,则CE长为()A.4 B.5 C.8 D.10二、填空题9.如下图,已知AC=AB,要使△ABE≌△ACD.则需添加一个条件.10.数学实践活动课中,老师布置了“测量小口圆柱形瓶底部内径”的探究任务,某学习小组设计了如下方案:如图,用螺丝钉将两根小棒AC,BD的中点O固定,现测得C,D之间的距离为75mm,那么小口圆柱形瓶底部的内径AB=mm.11.如图,在Rt△ABC中∠BAC=90°,AB=AC分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为.12.如图,△ABC中,AD是中线AC=3,AB=5则AD的取值范围是.13.如图,在四边形ABEF中,AB=4,EF=6,点C是BE上一点,连接AC、CF,若AC=CF,∠B=∠E=∠ACF,则BE的长为.三、解答题14.图1是郝老师制作的风筝,图2是风筝骨架的示意图,其中AB=AC,BD=CD,∠C=23°.求∠B的度数.15.如图,已知在△ABC中,D、E是BC上两点,且∠ADE=∠AED,∠BAD=∠EAC,求证:AB=AC.16.如图,C是AB上一点,点D,E分别在AB两侧AD∥BE,且AD=BC,BE=AC求证:CD=EC.17.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,求∠ABO度数.18.课间,小明拿着老师的直角三角尺玩,不小心掉到两堆砖块之间,如图所示,已知∠ACB= 90°,AC=BC,AD⊥DE,BE⊥DE.(1)试说明:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a(每块砖的厚度相同)参考答案1.C2.A3.A4.A5.C6.B7.B8.B9.∠C=∠B (答案不唯一)10.7511.13厘米12.1<AD <413.1014.解:在△ABD 和△ACD 中{AB =AC AD =AD BD =CD ∴△ABD ≌△ACD(SSS) ∴∠B =∠C ∵∠C =23° ∴∠B =23°.15.证明:∵∠ADE =∠AED∴AD =AE ,∠ADB =∠AEC在△ABD 与△ACE 中{∠BAD =∠EAC AD =AE ∠ADB =∠AEC∴△ABD ≌△ACE(ASA)∴AB =AC16.证明:∵AD ∥BE∴∠A =∠B在△ADC 和△BCE 中{AD =BC∠A =∠B AC =BE∴△DAC ≌△CBE∴CD =CE ;17.解:∵OM ⊥AB ,ON ⊥BC ∴∠OMB =∠ONB =90°在Rt △OMB 和Rt △ONB 中{OM =ON OB =OB∴Rt △OMB ≌Rt △ONB(HL)∴∠OBM =∠OBN∵∠ABC =30°∴∠ABO =15°.18.(1)解:∵∠ACB =90°∴∠ACD +∠BCE =90°∵AD ⊥DE∴∠ACD +∠DAC =90°∴∠BCE =∠DAC在△ADC 与△CEB 中{∠ADC =∠BEC =90°∠BCE =∠DACAC =BC∴△ADC ≌△CEB(AAS);(2)解:∵△ADC ≌△CEB∴DC =BE ,AD =CE∴DE =DC +CE =BE +AD =35cm ∵一共有7块砖∴每块砖块的厚度a 为:35÷7=5cm .。

青岛版八年级数学上册1.1全等三角形-同步练习(word版含答案)

青岛版八年级数学上册1.1全等三角形-同步练习(word版含答案)

1.1全等三角形基础过关1. 如图,△ABC≌△ECD,AB和EC是对应边,C和D是对应顶点,则下列结论中错误的是()A. AB=CEB. ∠A=∠EC. AC=DED. ∠B=∠D1题 2题2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. 如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°4题 6题5.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI______全等.(填“一定”或“不一定”或“一定不”)6.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=______.7.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.能力提升8.如图,△ABC与△DEF是全等三角形,则图中的相等线段()A.1 B.2 C.3 D.48题 9题 10题9.如图,△ABC与△DBE是全等三角形,则图中相等的角有()A.1对 B.2对 C.3对 D.4对10.如图,△ABC ≌△FED ,则下列结论错误的是( )A .EC=BDB .EF ∥ABC .DF=BD D .AC ∥FD11.如图,在△ABC 中,AC >BC >AB ,且△ABC ≌△DEF ,则在△DEF 中,______<______<_______(填边).11题 12题12. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.13. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.应用拓展14.如图,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的.若∠1:∠2:∠3=28:5:3,则∠α= .14题 15题 F E DC BA15.如图,△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,则∠DFE= °,EC= .16.已知△ABC≌△DEF,且∠A=90°,AB=6,AC=8,BC=10,△DEF中最大边长是,最大角是度.17.如图,△ABC≌△FED,AC与DF是对应边,∠C与∠D是对应角,则AC//FD成立吗?请说明理由.创新突破18.如图,△ABC≌△ADE,∠CAD=10°,∠B= =25°,∠EAB=120°,求∠DFB和∠DGB的度数.19.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE BF=.求证:(1)AF CE∥.=;(2)AB CD答案1.D2.B3.C4.B 5.一定,一定不6.50°7.40°8.D 9.D 10.C 11. DE EF DF 12. 27° 13. 4cm或9.5cm 14. 80° 15. 100、 2 16. 10、 9017.解:AC//FD成立.因为AC与FD为对应边,所以∠ABC与∠FED为对应角.因为∠C与∠D为对应角,所以∠A与∠F为对应角.又因为△ABC≌△FED,所以∠A=∠F,从而AC//FD.18.解:因为△ABC≌△ADE,所以∠DAE=∠BAC=(∠EAC-∠CAD)=55°.从而∠DFB=∠FAB+∠B=∠FAC+∠CAB +∠B =10°+55°+25°.∠DGB=∠DFB-∠D =90°-25°=65°.19.证明:(1)在ABF△和△CDE中,AB CD DE BF=⎧⎨=⎩,,∴△ABF≌△CDE(HL).∴AF CE=.(2)由(1)知∠ACD=∠CAB,∴AB∥CD.1 2。

人教八年级数学上册同步练习题及详细答案

人教八年级数学上册同步练习题及详细答案

人教八年级数学上册同步练习题及详细答案————————————————————————————————作者:————————————————————————————————日期:23 / 104图1ABCED第十一章 全等三角形11.1全等三角形1、 已知⊿ABC ≌⊿DEF ,A 与D ,B 与E 分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm ,则F = ,FE = .2、∵△ABC ≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边 )∠A= ,∠B= ,∠C= ; (全等三角形的对应边 ) 3、下列说法正确的是( )A :全等三角形是指形状相同的两个三角形B :全等三角形的周长和面积分别相等C :全等三角形是指面积相等的两个三角形D :所有的等边三角形都是全等三角形4、 如图1:ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,∠B=40°,则AE=_____,∠C=____。

4 / 104课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);E B A D CFE DC B AED C B A D CB A5 / 10411.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。

人教版八年级上册数学全等三角形的判定同步练习(含答案)

人教版八年级上册数学全等三角形的判定同步练习(含答案)

人教版八年级上册数学12.2 全等三角形的判定同步练习一、单选题1.在下列各组图形中,是全等图形的是( )A .B .C .D . 2.已知图中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50° 3.如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒ 4.如图,在ABC 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30 5.如图,已知∠ABC ∠∠CDE ,其中AB =CD ,不正确的是( )A .AC =CEB .∠BAC =∠DCE C .∠ACB =∠ECD D .∠B =∠D 6.如图,ABC DEC ≌△△,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF CD ⊥,垂足为点F ,若65BCE ∠=︒,则CAF ∠的度数为( )A .30B .25︒C .35︒D .65︒ 7.如图,A ABC B C '''≌△△,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .60°B .100°C .120°D .135° 8.如图,△ABC ≌△ADE ,如果AB =5cm ,BC =7cm ,AC =6cm ,那么DE 的长是( )A .6cmB .5cmC .7cmD .无法确定二、填空题 9.如图,△EFG∠∠NMH ,△EFG 的周长为15cm ,HN=6cm ,EF=4cm ,FH=1cm ,则HG= ______ .10.如图,若∠ABC∠∠A 1B 1C 1,且∠A =110°,∠B =40°,则∠C 1=______°.11.如图,已知△ABC ∠∠BAD .若∠DAC =20°,∠C =88°,则∠DBA =________°.12.如图,∠ABD∠∠AC E,A E=3cm,AC=6 cm,则CD=__________cm.13.如图∠ABC,使A与D重合,则∠ABC______∠DBC,其对应角为_____,对应边是_______.14.如图,已知∠ABC∠∠DBC,∠A=45°,∠ACD=76°,则∠DBC的度数为_________°.15.如图△ACB∠A′CB′,∠A′CB=30°,∠ACB′=110°,则∠ACA′的度数是________度.16.已知△ABC∠∠DEF,若∠B=40°,∠D=30°,则∠F=________°.三、解答题17.如图,C为BE上一点,点A,D在线段BE的两侧,若△ABC∠∠CED,试说明:AB∠ED.18.如图,ABE DCE △≌△,点E 在线段AD 上,点F 在CD 延长线上,F A ∠=∠,求证:AD BF ∥.19.已知:如图,::3:10:5ABC A B C A BCA ABC ''∆∆∠∠∠=≌,,求A B BC ''∠∠,的度数.20.如图,已知∠ABF∠∠CDE.(1)若∠B =30°,∠DCF =40°,求∠EFC 的度数;(2)若BD=10,EF=2,求BF 的长.答案第1页,共1页 参考答案:1.C2.A3.C4.D5.C6.B7.C8.C9.4cm10.3011.3612.313. ∠ ∠A =∠D ,∠ABC =∠DBC ;∠ACB =∠DCB AB =DB ,AC =DC ,BC =BC . 14.9715.4016.11019.30A '∠=︒,50B BC '∠=︒20.(1)70°;(2)6.。

人教版八年级数学上册全等三角形同步训练习题

人教版八年级数学上册全等三角形同步训练习题

人教版八年级数学上册12.1《全等三角形》同步训练习题一.选择题(共12小题)1.(2015秋•蓟县期中)下列各组的两个图形属于全等图形的是()A. B.C. D.2.(2015春•山亭区期末)下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个3.(2015春•太康县期末)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.54.(2015春•泰山区期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个 B.2个C.3个 D.4个5.(2015秋•武平县校级月考)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°6.(2015春•东莞校级期末)如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15° B.20° C.25° D.30°7.(2015秋•南通校级期中)如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC 的度数等于()A.120°B.70° C.60° D.50°.8.(2015秋•淮安校级月考)如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD9.(2015秋•赵县校级月考)如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE 上,则∠BAD的度数为()A.15°B.20°C.25°D.30°10.(2015秋•德州校级月考)若△ABC≌△DEF,△ABC的周长为100,AB=30,EF=25,则AC=()A.55 B.45 C.30 D.2511.(2015秋•邗江区校级月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或512.(2014春•兴化市校级月考)△ABC≌△A1B1C1,其中△ABC三边为x、6、3,另一个△A1B1C1三边为3、y、8.那么2x+y()A.8 B.6 C.22 D.24二.填空题(共11小题)13.(2015•柳州)如图,△ABC≌△DEF,则EF= .14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE= .15.(2015春•黄冈校级期末)△ABC中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠DEF= .16.(2015春•衡阳县期末)如图,已知△ACE≌△DBF,CF=BF,AE=DF,AD=8,BC=2,则AC= .17.(2015秋•南江县校级期中)已知△ABC≌△DEF,且△DEF的周长为12,若AB=5,BC=4,AC= .18.(2015秋•泰兴市校级月考)如图,△ABC≌△ADE,BC的延长线交DE于F,∠B=30°,∠AED=110°,∠DAC=10°,则∠DFB的度数为.19.(2015秋•乐陵市校级月考)已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是厘米.20.(2015秋•泰兴市校级月考)如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,∠DEF的度数是.21.(2014春•榆树市期末)如图,已知△ABC≌△CDA,∠BAC=60°,∠DAC=23°,则∠D= .22.(2015春•苏州期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB= .23.(2015秋•都匀市期中)如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x ﹣1,3,若这两个三角形全等,则x= .三.解答题(共7小题)24.(2015春•太康县期末)如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.25.(2015春•安岳县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.26.(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.27.(2014秋•泰山区校级期中)已知在△ABC中,∠A=90°,D,E分别是边BC,AC上的点,且DE⊥BC于D,△ADB≌△EDB≌EDC,则∠C的度数为多少?.DE与DC之间有怎样的数量关系?说明理由.28.(2014秋•扶沟县期中)如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.29.(2014秋•盐城期中)如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?30.(2012春•永春县期中)如图,已知△ABC中,AB=AC=10厘米,BC=8cm,点D为AB的中点,点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由点C向点A点以a厘米/秒运动,设运动的时间为t秒,(1)求CP的长;(2)若以C、P、Q为顶点的三角形和以B、D、P为顶点的三角形全等,且∠B和∠C是对应角,求a 的值.人教版八年级数学上册12.1《全等三角形》同步训练习题参考答案一.选择题(共12小题)1.(2015秋•蓟县期中)下列各组的两个图形属于全等图形的是()A. B.C.D.选D2.(2015春•山亭区期末)下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个【考点】全等图形.【分析】分别利用全等图形的概念以及全等三角形的判定方法进而判断得出即可.【解答】解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)两角和一边对应相等的两个三角形全等,是一角的对边或两角的夹边对应相等,正确;(4)全等三角形对应边相等,正确.所以有3个判断正确.故选:C.【点评】此题主要考查了全等图形的概念与性质,正确掌握判定两三角形全等的方法是解题关键.3.(2015春•太康县期末)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.5【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.4.(2015春•泰山区期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.5.(2015秋•武平县校级月考)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD 的度数,再根据△ABG和△FDG的内角和都等于180°,所以∠DFB=∠BAD.【解答】解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.【点评】本题主要利用全等三角形对应角相等的性质,准确识图也是考查点之一.6.(2015春•东莞校级期末)如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,∵∠BED+∠CED=180°,∴∠A=∠BED=∠CED=90°,在△ABC中,∠C+2∠C+90°=180°,∴∠C=30°.故选D.【点评】本题主要考查全等三角形对应角相等的性质,做题时求出∠A=∠BED=∠CED=90°是正确解本题的突破口.7.(2015秋•南通校级期中)如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC 的度数等于()A.120°B.70°C.60°D.50°.【考点】全等三角形的性质.【分析】利用三角形内角和定理得出∠BAN的度数,再利用全等三角形的性质得出∠MAC的度数.【解答】解:∵∠ANC=120°,∴∠ANB=180°﹣120°=60°,∵∠B=50°,∴∠BAN=180°﹣60°﹣50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.【点评】此题主要考查了全等三角形的性质,得出∠BAN的度数是解题关键.8.(2015秋•淮安校级月考)如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.【点评】本题考查了全等三角形的性质和平行线的判定的应用,注意:全等三角形的对应角相等,对应边相等.9.(2015秋•赵县校级月考)如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE 上,则∠BAD的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】先由△ABC≌△DEF,根据全等三角形的性质得出∠B=∠E=60°,∠C=∠F=40°,由DF∥BC,得出∠1=∠C,等量代换得到∠1=∠F,那么AC∥EF,于是∠2=∠E=60°.由三角形内角和定理求出∠BAC=180°﹣∠B﹣∠C=80°,于是∠BAD=∠BAC﹣∠2=20°.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∠C=∠F=40°,∵DF∥BC,∴∠1=∠C,∴∠1=∠F,∴AC∥EF,∴∠2=∠E=60°.∵∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∴∠BAD=∠BAC﹣∠2=80°﹣60°=20°.故选B.【点评】本题考查了全等三角形的性质,平行线的判定与性质,三角形内角和定理,求出∠2=∠E=60°是解题的关键.10.(2015秋•德州校级月考)若△ABC≌△DEF,△ABC的周长为100,AB=30,EF=25,则AC=()A.55 B.45 C.30 D.25【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF=25,再根据三角形的周长公式列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=25,∵△ABC的周长为100,AB=30,∴AC=100﹣30﹣25=45.故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等.11.(2015秋•邗江区校级月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或5【考点】全等三角形的性质.【专题】动点型.【分析】分两种情况讨论:①若△BPD≌△CPQ,根据全等三角形的性质,则BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),根据速度、路程、时间的关系即可求得;②若△BPD≌△CQP,则CP=BD=6厘米,BP=CQ,得出,解得:v=3.【解答】解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故选C.【点评】此题考查了线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.12.(2014春•兴化市校级月考)△ABC≌△A1B1C1,其中△ABC三边为x、6、3,另一个△A1B1C1三边为3、y、8.那么2x+y()A.8 B.6 C.22 D.24选C二.填空题(共11小题)13.(2015•柳州)如图,△ABC≌△DEF,则EF= 5 .【考点】全等三角形的性质.【分析】利用全等三角形的性质得出BC=EF,进而求出即可.【解答】解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.【点评】此题主要考查了全等三角形的性质,得出对应边是解题关键.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE= 30°.【考点】全等三角形的性质.【专题】证明题.【分析】由△ABC≌△ADE可得∠BAC=∠DAE=60°,由D是∠BAC的平分线上一点可得∠BAD=∠DAC=∠BAC=30°,即可得∠CAE的度数.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.故答案填:30°.【点评】本题考查了全等三角形的性质及角平分线的性质,熟练掌握三角形全等的性质是解题的关键.15.(2015春•黄冈校级期末)△ABC中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠DEF= 40°.【考点】全等三角形的性质.【分析】先由△ABC中,∠A:∠C:∠B=4:3:2及三角形内角和定理求出∠B的度数,再根据全等三角形的对应角相等求出∠DEF.【解答】解:∵△ABC中,∠A:∠C:∠B=4:3:2,∴∠B=180°×=40°,∵△ABC≌△DEF,∴∠E=∠B=40°.故答案为:40°.【点评】本题考查了全等三角形的性质的应用,掌握全等三角形的对应角相等是解题的关键.也考查了三角形内角和定理.16.(2015春•衡阳县期末)如图,已知△ACE≌△DBF,CF=BF,AE=DF,AD=8,BC=2,则AC= 5 .【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等可得AC=DB,再求出AB=CD=(AD﹣BC)=3,那么AC=AB+BC,代入数值计算即可得解.【解答】解:∵△ACE≌△DBF,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD,∵AD=8,BC=2,∴AB=(AD﹣BC)=×(8﹣2)=3,∴AC=AB+BC=3+2=5.故答案为5.【点评】本题考查了全等三角形对应边相等的性质,熟记性质并求出AB=CD是解题的关键.17.(2015秋•南江县校级期中)已知△ABC≌△DEF,且△DEF的周长为12,若AB=5,BC=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形的周长相等求出△ABC的周长,根据三角形的周长公式计算即可.【解答】解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,又AB=5,BC=4,∴AC=3,故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的周长相等,面积相等是解题的关键.18.(2015秋•泰兴市校级月考)如图,△ABC≌△ADE,BC的延长线交DE于F,∠B=30°,∠AED=110°,∠DAC=10°,则∠DFB的度数为50°.【考点】全等三角形的性质.【分析】设AD与BF交于点M,要求∠DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求∠AMC的大小,再转化为在△ACM中求∠ACM就可以.【解答】解:设AD与BF交于点M,∵△ABC≌△ADE,∴∠AED=∠ACB=110°,∴∠ACM=180°﹣110°=70°,∠AMC=180°﹣∠ACM﹣∠DAC=180°﹣70°﹣10°=100°,∴∠FMD=∠AMC=100°,∴∠DFB=180°﹣∠D﹣∠FMD=180°﹣100°﹣30°=50°.故答案为:50°.【点评】本题考查了全等三角形的性质,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.19.(2015秋•乐陵市校级月考)已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是 3 厘米.【考点】全等三角形的性质.【分析】根据三角形的面积公式求出△ABC边BC上的高,再根据全等三角形对应边上的高相等解答.【解答】解:设△ABC边BC上的高为h,则△ABC的面积=BC•h=×6h=9,解得h=3,∵△ABC≌△DEF,BC=EF,∴EF边上的高是3cm.故答案为:3.【点评】本题主要考查了全等三角形对应边上的高相等的性质.20.(2015秋•泰兴市校级月考)如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,∠DEF的度数是35°.【考点】全等三角形的性质.【分析】由△ACB的内角和定理求得∠CAB=25°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=25°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠DEF的度数.【解答】解:∵∠ACB=105°,∠B=50°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣50°﹣105°=25°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=25°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=10°,∴∠EAB=25°+10°+25°=60°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣50°=70°,∴∠DEF=∠AED﹣∠AEB=105°﹣70°=35°.故答案为:35°.【点评】本题考查全等三角形的性质.全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.21.(2014春•榆树市期末)如图,已知△ABC≌△CDA,∠BAC=60°,∠DAC=23°,则∠D= 97°.【考点】全等三角形的性质.【分析】先由全等三角形的对应角相等得出∠BAC=∠DCA=60°,然后在△ADC中根据三角形内角和定理求出∠D的度数.【解答】解:∵△ABC≌△CDA,∴∠BAC=∠DCA=60°,∵∠DAC=23°∴∠D=180°﹣∠DCA﹣∠DAC=97°.故答案为97°.【点评】本题考查了全等三角形的性质及三角形内角和定理,根据全等三角形的对应角相等得出∠BAC=∠DCA=60°,是解题的关键.22.(2015春•苏州期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB= 66°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.【点评】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.23.(2015秋•都匀市期中)如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x ﹣1,3,若这两个三角形全等,则x= 3 .【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形的对应边相等得到3x﹣2=7且2x﹣1=5或3x﹣2=5且2x﹣1=7,然后分别解两方程求出满足条件的x的值.【解答】解:∵△ABC与△DEF全等,∴3x﹣2=7且2x﹣1=5,解得x=3,或3x﹣2=5且2x﹣1=7,没有满足条件的x的值.故答案为:3.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的对应边上的高、中线以及对应角的平分线相等.三.解答题(共7小题)24.(2015春•太康县期末)如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠C=∠D,∠OBC=∠OAD,再根据三角形的内角和等于180°表示出∠OBC,然后利用四边形的内角和等于360°列方程求解即可.【解答】解:∵△OAD≌△OBC,∴∠C=∠D,∠OBC=∠OAD,∵∠0=65°,∴∠OBC=180°﹣65°﹣∠C=115°﹣∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°﹣∠C+135°+115°﹣∠C=360°,解得∠C=35°.【点评】本题考查了全等三角形的性质,三角形的内角和定理,四边形的内角和定理,熟记性质与定理并列出关于∠C的方程是解题的关键.25.(2015春•安岳县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.【考点】全等三角形的性质.【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可.【解答】解:(1)∵△ABC≌△DEB,∴AB=DE=7,BE=BC=4,∴AE=AB﹣BE=7﹣4=3;(2)∵△ABC≌△DEB,∴∠A=∠D=35°,∠DBE=∠C=60°,∴∠DFA=∠A+∠AEF=∠A+∠D+∠DBE=130°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等分析.26.(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE,都减去∠ACE即可.【解答】解:AB的对应边为DE,∵△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD=40°.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.27.(2014秋•泰山区校级期中)已知在△ABC中,∠A=90°,D,E分别是边BC,AC上的点,且DE⊥BC于D,△ADB≌△EDB≌EDC,则∠C的度数为多少?.DE与DC之间有怎样的数量关系?说明理由.【考点】全等三角形的性质;含30度角的直角三角形.【分析】根据全等三角形的象征得出∠A=∠DEB=∠DEC=90°,∠ABD=∠EBD=∠C,跟即三角形内角和定理求出∠C=30°,根据含30度角的就三角形性质得出即可.【解答】解:当∠C=30°时,△ADB≌△EDB≌EDC,DC=2ED,理由是:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC=90°,∠ABD=∠EBD=∠C,∵∠A=90°,∴∠C+∠ABC=90°,∴3∠C=90°,∴∠C=30°,∵∠DEC=90°,∴DC=2DE.【点评】本题考查了全等三角形的性质,含30度角的直角三角形性质的应用,注意:全等三角形的对应边相等,题目比较好,难度适中.28.(2014秋•扶沟县期中)如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠BEA=∠CDE=100°,同时利用三角形的内角和求出∠DEC=45°,再根据角的计算得出即可.【解答】解:∵△EAB≌△DCE,∴∠BEA=∠CDE=100°,∵∠A=∠C=35°,∠CDE=100°,∴∠DEC=180°﹣100°﹣35°=45°,∵∠DEB=10°,∴∠BEC=45°﹣10°=35°,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形同步练习
一、选择题(每小题5分,共25分)
1.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15° B.20° C.25° D.30°
2.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是:()
A、BC=B′C′
B、∠A=∠A′
C、AC=A′C′
D、∠C=∠C′
3.根据下列条件,能判定△ABC≌△A′B′C′的是:()
A、AB=A′B′,BC=B′C,∠A=∠A′
B、∠A=∠A′,∠B=∠C′,AC=B′C′
C、∠A=∠A′,∠B=∠B′,∠C=∠C′
D、AB=A′B′,BC=B′C,△ABC的周长等于△A′B′C′的周长。

4.如图(2),OA=OC,OB=OD,则图中全等三角形共有:
()
A、2对
B、3对
C、4对
D、5对
5.两个三角形有两个角对应相等,正确的说法是()A.两个三角形全等
B.如果一对等角的角平分线相等,两三角形就全等C.两个三角形一定不全等
D.如果还有一个角相等,两三角形就全等
图(2)
A
图(1)
二.填空题(每小题5分,共25分)
1.如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,
且AD =AE ,AB =AC ,若∠=︒B 20,则
∠=
︒C
2.如图(4),已知AB=AC ,AD=AE ,∠BAD=25°,则∠CAE=。

3.如图(5),已知AB=DC ,AD=BC ,E 、F 是DB 上两点且BF=DE ,若∠AEB=120°,∠ADB=30°,则∠BCF=°。

4.如
图(6),AC=BC ,AD=BD ,AE=BE ,AF=BF ,则图中共有对全等三角形,把它
们一一表示出来为。

5、如图(7),已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是 三.解答题(每小题10分,共50分)
1.如图(8),在四边形ABCD 中,AB//CD ,AD//BC ,求证:△ABD
≌△CDB
2.已知:如图(9),在△ABC 中,AB=AC ,∠1=∠2,求证:(1)∠B=∠C ;(2)AD ⊥BC 。

图4A
B
C
E D
图(5)
B
A
F
E
C
D
图(6)
A
B
C
F
D
E
c
甲 c
b B A
C a
50º
72º
58º 50º
72º a
50º
a
50º
a


图(7)
图(8)
3.如图(10),已知点B 、C 、E 在一条直线上,AB=CD ,
AC=BD ,DE ∥AC ,试说明∠E=∠DBC 。

4.已知:如图(11),AB=CD ,CE ∥DF ,CE=DF ,问:AE 与
BF 相等吗?为什么?
5.图(12)为人民公园中的荷花池,现要
测量此荷花池两旁A 、B 两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺为测量工具设计一种测量方
案.
要求:(1)画出你设计的测量平面图; (2)简述测量方法,并写出测量的数据(长度用,,,c b a …表示); (3)根据你测量的数据,计算A 、B 两棵树间的距离.
全等三角形同步练习题答案
一.1、D 2、C 3、D 4、C 5、B 二.1、20° 2、25°3、90°4、6;△ACD ≌△BCD ,△ACE ≌△BCE 、△ACF ≌△BCF 、△ADE ≌△BDE 、△ADF ≌BDF 、△AEF ≌△
BEF 。

5、乙和丙 三.
图(10)
A
B
C
D
E
图(11)
A
B
C
D
F
E A
B
图(12)
1.证明: ∵AB//CD ,AD//BC ∴∠1=∠2,∠3=∠4在△ABD 与△CDB 中
2.证明:(1)在△ABD 与△ACD 中,
12AB AC AD AD =⎧⎪
∠=∠⎨⎪=⎩
∴△ABD ≌△ACD (SAS ) ∴∠B=∠C
(2)由(1)可得∠3=∠4 ∵D 在BC 上 ∴∠3=∠4=90° ∴AD ⊥BC
3.提示:过D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F 。

然后证明Rt △ADE ≌Rt △CDF 。

4.AE=BF
5.方法不唯一,这里用全等三角形的知识。

(1) 测量平面图如右图;
(2) 先在荷花池外找一点C ,连结AC 并延长AC 到E ,使AC=CE=b 米;连结BC 并
延长BC 到D ,使BC=CD=c 米,连结DE 。

测量出DE=a 米。

(3) 在△ABC 和△EDC 中,
AC EC BC DC
ACB ECD =⎧⎪
=⎨⎪∠=∠⎩
所以,△ABC ≌△EDC (SAS ),故AB=DE=a
(米)。

A C D
E。

相关文档
最新文档