二次函数概念演示文稿
合集下载
二次函数ppt课件

想一想 自变量的取值范围是 x>6 .
典 例3 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形 例 菜园ABCD,设AB边长为x米,求菜园的面积y(单位:平方米)与x(单位:米) 精 的函数关系式.
析 解:∵AB边长为x米.
D
C
A
B
在根据实际问题列二次函数关系式时,要注意自变量的取值范围.
第二十二章 二次函数
22.1.1二次函数
视 频
观察都匀 绿博园音
引 乐喷泉视
入 频有时会
形成一条
条曲
线.这些
曲线能否
用函数关
系式表示?
复 1.什么是函数? 习 一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x 巩 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是 固 自变量,y是x的函数.
典 例4 某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产 例 品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但 精 一天产量减少5件.若生产第x档次的产品一天的总利润为y元(其中x为正整数, 析 且1≤x≤10),求出y关于x的函数关系式.
解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一 个档次,每件利润加2元,但一天产量减少5件,
课 堂 小 结
作业设计
必做:课本41页1、2题
选做: 若函数
是二次函数,求:
(1)求a的值. (2)求函数关系式. (3)当x=-2时,y的值是多少?
共勉:
走进名家,乐享数学
一切问题都可以转化为数学问题,
一切数学问题都可以转化为代数问题,
而一切代数问题又可以转化为函数问题,
因此,一旦解决了函数问题,
典 例3 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形 例 菜园ABCD,设AB边长为x米,求菜园的面积y(单位:平方米)与x(单位:米) 精 的函数关系式.
析 解:∵AB边长为x米.
D
C
A
B
在根据实际问题列二次函数关系式时,要注意自变量的取值范围.
第二十二章 二次函数
22.1.1二次函数
视 频
观察都匀 绿博园音
引 乐喷泉视
入 频有时会
形成一条
条曲
线.这些
曲线能否
用函数关
系式表示?
复 1.什么是函数? 习 一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x 巩 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是 固 自变量,y是x的函数.
典 例4 某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产 例 品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但 精 一天产量减少5件.若生产第x档次的产品一天的总利润为y元(其中x为正整数, 析 且1≤x≤10),求出y关于x的函数关系式.
解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一 个档次,每件利润加2元,但一天产量减少5件,
课 堂 小 结
作业设计
必做:课本41页1、2题
选做: 若函数
是二次函数,求:
(1)求a的值. (2)求函数关系式. (3)当x=-2时,y的值是多少?
共勉:
走进名家,乐享数学
一切问题都可以转化为数学问题,
一切数学问题都可以转化为代数问题,
而一切代数问题又可以转化为函数问题,
因此,一旦解决了函数问题,
二次函数的应用课件ppt课件ppt课件ppt

要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
二次函数性质ppt课件

二次函数性质ppt课 件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的图象变换 • 二次函数的应用 • 习题与解答
01
二次函数的基本概 念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$ 。
详细描述
二次函数是数学中一种常见的函 数形式,其定义是基于变量的二 次方。在定义中,$a$、$b$和 $c$是常数,且$a neq 0$。
最值
总结词
当a>0时,二次函数有最小值;当a<0时,二次函数有最大 值。最值出现在对称轴上,即x=-b/2a处。
详细描述
由于抛物线的开口方向由系数a决定,当a>0时,抛物线有最 小值;当a<0时,抛物线有最大值。这些最值出现在对称轴 上,即x=-b/2a处。最值的y坐标可以通过公式c-b^2/4a计 算得出。
03
二次函数的图象变 换
平移变换
平移变换是指将二次 函数的图象沿x轴或y 轴进行移动。
如果将二次函数 y=ax^2+bx+c的图 象沿y轴平移k个单位 ,得到新的函数为 y=ax^2+bx+c-k。
如果将二次函数 y=ax^2+bx+c的图 象沿x轴平移k个单位 ,得到新的函数为 y=ax^2+(b2ak)x+c+ak^2。
翻折变换
翻折变换是指将二次函数的图 象沿某条直线进行翻折。
如果将二次函数 y=ax^2+bx+c的图象沿x轴翻 折,得到新的函数为y=-ax^2bx-c。
如果将二次函数 y=ax^2+bx+c的图象沿y轴翻 折,得到新的函数为y=ax^2+bx-c。
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的图象变换 • 二次函数的应用 • 习题与解答
01
二次函数的基本概 念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$ 。
详细描述
二次函数是数学中一种常见的函 数形式,其定义是基于变量的二 次方。在定义中,$a$、$b$和 $c$是常数,且$a neq 0$。
最值
总结词
当a>0时,二次函数有最小值;当a<0时,二次函数有最大 值。最值出现在对称轴上,即x=-b/2a处。
详细描述
由于抛物线的开口方向由系数a决定,当a>0时,抛物线有最 小值;当a<0时,抛物线有最大值。这些最值出现在对称轴 上,即x=-b/2a处。最值的y坐标可以通过公式c-b^2/4a计 算得出。
03
二次函数的图象变 换
平移变换
平移变换是指将二次 函数的图象沿x轴或y 轴进行移动。
如果将二次函数 y=ax^2+bx+c的图 象沿y轴平移k个单位 ,得到新的函数为 y=ax^2+bx+c-k。
如果将二次函数 y=ax^2+bx+c的图 象沿x轴平移k个单位 ,得到新的函数为 y=ax^2+(b2ak)x+c+ak^2。
翻折变换
翻折变换是指将二次函数的图 象沿某条直线进行翻折。
如果将二次函数 y=ax^2+bx+c的图象沿x轴翻 折,得到新的函数为y=-ax^2bx-c。
如果将二次函数 y=ax^2+bx+c的图象沿y轴翻 折,得到新的函数为y=ax^2+bx-c。
二次函数ppt课件演示文稿

方法二: 利用二次函数的顶点式. 设f(x)=a(x-m)2+n(a≠0). ∵f(2)=f(-1), 1 2 1 1 m ∴抛物线对称轴为x= 2 2 2 又根据题意函数有最大值y=8, 1 x 8 ∴y=f(x)=a 2 ∵f(2)=-1,∴a=-4
3. f(x)=x2+2(2-a)x+2在(-∞,2]上是减函数 ,则a的取值范围是________.
4, 解析:
要使f(x)在(-∞,2]上是减函数,只要对称轴 2 2 a x 2 ≥2即可,解得a≥4.
4. (教材改编题)函数y=x2+4x+3在[-1,0]上 的最大值是________,最小值是________. 3 0 解析:
第五节 二次函数
基础梳理 1.二次函数的性质与图像 y=ax2+bx+c(a≠0)叫做二次函数,它的 (1)函数_______________ 定义域是______ . R (2)二次函数有如下性质: 一条抛物线 ①函数的图象是__________ ,抛物线顶点的坐 b b 4ac b , x 标是________ ; 4a ,抛物线的对称轴是________ 2a 2a b ②当a>0时,抛物线开口______ ,函数在x= 2a 向上 b b f , 处取____ 最小 值________ 2a 上是减 2a ;在区间________ b 函数,在________ 上是增函数; 2a 向下,函数在 ③当a <0 时,抛物线开口 ______ b b f x 2a ________ 处取最大值________ ;在区间 2a b b , 2a ________ 上是增函数,在_______ 2a 上是减函数; (0,c ) ④与y轴的交点是______ ;
二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
二次函数(共26张PPT)

零点
零点
零点是函数与x轴的交点,对应于抛物线与x轴的交 点。
美丽的桥梁
这张照片是一张桥梁夕阳美景的照片,代表着美丽 与自然的结合。
判别式
二次函数的判别式Δ=b²-4ac表示抛物线与x轴的交点个数。如果Δ>0,则有两个 交点;如果Δ=0,则有一个交点;如果Δ<0,则没有交点。
基本形式
1 标准式
f(x)=ax²
二次函数
二次函数在数学中是一个重要的概念,涉及到图像、最值、应用等方面。本 次26张PPT涵盖了二次函数的各个方面,希望能帮助大家更好地理解这个概念。
定义
二次函数是形如f(x)=ax²+bx+c的函数,其中a、b、c为常数,且a≠0。二次函数的图像是一个开口朝上或朝下的 抛物线。
图像
二次函数图像
2 顶点式
f(x)=a(x-h)²+k
3 一般式
f(x)=ax²+bx+c
标准形式
定义
标准式是二次函数的一种形式, 其中二次项系数a=1,常数项 c=0。
公式
f(x)=x²
图像
开口朝上或下,左右对称
图像美学
蔚蓝海岸线和彩色天空构成完美背景,并营造出温 馨优美的氛围。
对称轴
二次函数的对称轴是过抛物线顶点的一条直线。对称轴可以是水平或垂直线。
顶点
顶点坐标
顶点坐标为(-b/2a, f(-b/2a))
寻找顶点
找到对称轴,然后代入函数公式求得顶点坐标
ห้องสมุดไป่ตู้
美丽的山景
这幅精美的照片展现了一个山丘和群山的自然美景,使我们感叹自然之美。
二次函数说课ppt课件ppt课件ppt课件

详细描述
二次函数在日常生活中有着广泛的应用,如最优化问题、经济模型、物理学中的抛物线 运动等。通过这些实际应用场景,学生可以更好地理解二次函数的实际意义和重要性。
物理中的二次函数
总结词
运动轨迹、能量变化
VS
详细描述
在物理学中,二次函数经常用于描述物体 的运动轨迹,如抛物线运动。此外,在能 量守恒问题中,二次函数也经常出现,用 于描述能量随时间的变化关系。通过与物 理学的结合,学生可以更深入地理解二次 函数的物理意义。
因式分解法
要点一
总结词
通过因式分解将二次函数转化为两个一次函数的乘积,便 于分析函数的零点、单调性和值域。
要点二
详细描述
因式分解法是将二次函数 $f(x) = ax^2 + bx + c$ 转化为 两个一次函数的乘积,如 $f(x) = (ax + b)(cx + d)$。通 过因式分解,可以方便地找到函数的零点(即 $f(x) = 0$ 的解),分析函数的单调性(根据导数符号判断)和值域 (根据函数图像和定义域判断)。
数学竞赛中的二次函数
总结词
难度高、技巧性强
详细描述
在数学竞赛中,二次函数经常作为压轴题目 出现,难度较高,技巧性强。通过解决这类 问题,学生可以提高自己的数学思维能力和 解决问题的能力,为未来的学习和竞赛打下 坚实的基础。
CHAPTER 04
二次函数的解题策略
配方法
总结词
通过配方将二次函数转化为顶点式,便于分 析函数的开口方向、对称轴和顶点坐标。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。当$a > 0$时,抛物线开口向上;当$a < 0$时 ,抛物线开口向下。系数$b$和$c$决定了抛物线的位置和顶点。通过研究二次 函数的图像,我们可以更好地理解其性质和特点。
初三二次函数课件ppt课件

02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m2 m 2
m1 0
解得,m 2 当m 2时,函数为二次函数。
关键:二次函数的二次项系数不能为零
展示才智
2、若函数 y (m2 1)xm2m 为二次函数,求 m的值。
解:因为该函数为二次函数,
则
m 2 m 2(1)
m
2
1
0(2)
解(1)得:m=2或-1
解(2)得: m 1且m 1
二次函数概念演示文稿
优选二次函数概念
复习回顾
1.一元二次方程的一般形式是什么?
ቤተ መጻሕፍቲ ባይዱax2+bx+c=0 (a≠0)
2.什么是函数?
在某一变化过程中: ①有两个变量x和y; ②自变量x在它的取值范围内的每一个值,y都有唯
一确定的值与之对应. 我们就把y叫做x的函数.
3.一次函数的一般形式是什么?
一次函数 y= kx+b (k ≠0) 特别地,当b=0时为正比例函数 y=kx (k ≠0)
比一比
下列函数中,哪些是二次函数?是二次函数 的请说出它的a,b,c的值。
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2+x
(6)y=x2-x(1+x)
典例分析
例1: 关于x的函数 y (m 1)xm2m 是二次函
数, 求m的值.
解: 由题意可得
练习1 下列函数中,哪些是二次函数?如果是,分 别说出它们的二次项系数、一次项系数和常数项.
(1) y 3x2 2
是
3, 0, 2
(2) y x2 1
否
x
(3) y (x 2)(x 3)
x2 5x 6
是
1, 5, 6
(4)y x2 2x 3
否
(5) y (x 2)( x 2) (x 1)2 否
(1) y x2
是
(2)
y
1 x2
(3) y x(1 x)
不是 是
(4) y (x 1)2 x2
不是
先化简后判断
问题2: n个球队参加比赛,每两队之间进行一场比 赛,比赛的场次数m与球队数n有什么关系?
m 1 nn 1 1 n2 1 n
2
22
此式表示了次数m与球队数n之间的关系,对于 n的每一个值,m都有一个对应值,即m是n的函数.
问题3: 某工厂一种产品现在的年产量是20件,计划
今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y将随计划所定的x的 值而确定, y与x之间的关系怎样表示?
新发现:二次函数与一元二次方程有着特殊的关系
最新发现:二次函数值的大小是有限制的噢!
小结 :
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0) 的函数叫做x的二次函数.
三个条件:自变量的最高次数是2;二次项的系数 a≠0;解析式必须是整式。
2、二次函数的一般形式:y=ax²+bx+c(a,b,c是常 数,a≠0)
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0)
二次函数
二次函数
问题1: 正方体的六个面是全等的正方形,设正
方形的棱长为x,表面积为y,显然对于x的每一个 值,y都有一个对应值,即y是x的函数,它们的具体关 系可以表示为
y=6x2
x
此式表示了正方体的表面积y与棱长x之间的 关系,对于x的每一个值,y都有一个对应值,即y是 x的函数.
2、二次函数的一般形式: (一般式)
二次项系数 一次项系数
y=ax2+bx+c (其中a、b、c是常数,a≠0)
二次项 一次项
常数项
二次函数的其它特殊形式:
(1)当b=0时, y=ax2+c (2)当c=0时, y=ax2+bx (3)当b=0,c=0时, y=ax2
抓住机遇 展示自我
1.下列函数中,哪些是二次函数?
所以m=2
典例分析
函数y ax2 bx c(其中a,b, c是常数), 当a,b, c满足什么条件时
(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
解:(1)a 0 (2)a 0,b 0
(3)a 0,b 0, c 0
典例分析
例3 已知二次函数y x2 2x 3 (1) 求当x 0 时,函数y的值; (2) 求当函数y的值是0时,自变量x的值. (3) 当函数y的值是-5时,x又为何值呢?
x2 4 (x2 2x 1) 2x 5
(6) y ax2 bx c
不一定!
巩固概念
练习2 写出下列各函数关系式,并判断其是否为二 次函数. (1)圆的半径为r,则圆的周长l关于r的函数关系 式 l 2 r (r 0) ; 不是二次函数
(2)菱形的两条对角线的和为26cm,则菱形的面
归纳总结
1、二次函数的定义: 一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
函数叫做二次函数。
注意:
(1)等号左边是变量y,右边是关于自变量x的整式;
(2)a,b,c为常数,且 a≠0; (3 )等式的右边最高次数为 2 ;
(4)x的取值范围是 任意实数(实际问题实际分析)
巩固概念
积S(cm2)与一对角线长x(cm)之间的函数关
系
S 1 x(26 x) (0 x 26)
2
;是二次函数
(3)如图所示,在直径为20 cm的圆
形铁片中,挖去了四个半径都为x cm
的圆,剩余部分的面积为y cm2,则y与x
间的函数关系式 y 100 4 x20 x 1(0 2-1.) 是二次函数
这种产品的原产量是20件, 一年后的产量是___2_0_(_1_+_x_)_件, 再经过一年后的产量是 20(1_+_x_)_2件, 即两年后的产量为: y=20(1+.x)2
即: y=20x2+40x+20
此式表示了两年后的产量y与计划增产的倍 数x之间的关系,对于x的每一个值,y都有一个对 应值,即y是x的函数.
二次函数的几种特殊形式
(1)y=ax²(当a≠0,b=0,c=0时).
(2)y=ax²+c(当a≠0,b=0,c≠0时).
(3)y=ax²+bx(当a≠0,b≠0,c=0时).
创设情境,导入新课
问题:
(1)你们喜欢打篮球吗? (2)你们知道:投篮时,篮球运动的 路线是什么曲线?怎样计算篮球达到 最高点时的高度?
m1 0
解得,m 2 当m 2时,函数为二次函数。
关键:二次函数的二次项系数不能为零
展示才智
2、若函数 y (m2 1)xm2m 为二次函数,求 m的值。
解:因为该函数为二次函数,
则
m 2 m 2(1)
m
2
1
0(2)
解(1)得:m=2或-1
解(2)得: m 1且m 1
二次函数概念演示文稿
优选二次函数概念
复习回顾
1.一元二次方程的一般形式是什么?
ቤተ መጻሕፍቲ ባይዱax2+bx+c=0 (a≠0)
2.什么是函数?
在某一变化过程中: ①有两个变量x和y; ②自变量x在它的取值范围内的每一个值,y都有唯
一确定的值与之对应. 我们就把y叫做x的函数.
3.一次函数的一般形式是什么?
一次函数 y= kx+b (k ≠0) 特别地,当b=0时为正比例函数 y=kx (k ≠0)
比一比
下列函数中,哪些是二次函数?是二次函数 的请说出它的a,b,c的值。
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2+x
(6)y=x2-x(1+x)
典例分析
例1: 关于x的函数 y (m 1)xm2m 是二次函
数, 求m的值.
解: 由题意可得
练习1 下列函数中,哪些是二次函数?如果是,分 别说出它们的二次项系数、一次项系数和常数项.
(1) y 3x2 2
是
3, 0, 2
(2) y x2 1
否
x
(3) y (x 2)(x 3)
x2 5x 6
是
1, 5, 6
(4)y x2 2x 3
否
(5) y (x 2)( x 2) (x 1)2 否
(1) y x2
是
(2)
y
1 x2
(3) y x(1 x)
不是 是
(4) y (x 1)2 x2
不是
先化简后判断
问题2: n个球队参加比赛,每两队之间进行一场比 赛,比赛的场次数m与球队数n有什么关系?
m 1 nn 1 1 n2 1 n
2
22
此式表示了次数m与球队数n之间的关系,对于 n的每一个值,m都有一个对应值,即m是n的函数.
问题3: 某工厂一种产品现在的年产量是20件,计划
今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y将随计划所定的x的 值而确定, y与x之间的关系怎样表示?
新发现:二次函数与一元二次方程有着特殊的关系
最新发现:二次函数值的大小是有限制的噢!
小结 :
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0) 的函数叫做x的二次函数.
三个条件:自变量的最高次数是2;二次项的系数 a≠0;解析式必须是整式。
2、二次函数的一般形式:y=ax²+bx+c(a,b,c是常 数,a≠0)
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0)
二次函数
二次函数
问题1: 正方体的六个面是全等的正方形,设正
方形的棱长为x,表面积为y,显然对于x的每一个 值,y都有一个对应值,即y是x的函数,它们的具体关 系可以表示为
y=6x2
x
此式表示了正方体的表面积y与棱长x之间的 关系,对于x的每一个值,y都有一个对应值,即y是 x的函数.
2、二次函数的一般形式: (一般式)
二次项系数 一次项系数
y=ax2+bx+c (其中a、b、c是常数,a≠0)
二次项 一次项
常数项
二次函数的其它特殊形式:
(1)当b=0时, y=ax2+c (2)当c=0时, y=ax2+bx (3)当b=0,c=0时, y=ax2
抓住机遇 展示自我
1.下列函数中,哪些是二次函数?
所以m=2
典例分析
函数y ax2 bx c(其中a,b, c是常数), 当a,b, c满足什么条件时
(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
解:(1)a 0 (2)a 0,b 0
(3)a 0,b 0, c 0
典例分析
例3 已知二次函数y x2 2x 3 (1) 求当x 0 时,函数y的值; (2) 求当函数y的值是0时,自变量x的值. (3) 当函数y的值是-5时,x又为何值呢?
x2 4 (x2 2x 1) 2x 5
(6) y ax2 bx c
不一定!
巩固概念
练习2 写出下列各函数关系式,并判断其是否为二 次函数. (1)圆的半径为r,则圆的周长l关于r的函数关系 式 l 2 r (r 0) ; 不是二次函数
(2)菱形的两条对角线的和为26cm,则菱形的面
归纳总结
1、二次函数的定义: 一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
函数叫做二次函数。
注意:
(1)等号左边是变量y,右边是关于自变量x的整式;
(2)a,b,c为常数,且 a≠0; (3 )等式的右边最高次数为 2 ;
(4)x的取值范围是 任意实数(实际问题实际分析)
巩固概念
积S(cm2)与一对角线长x(cm)之间的函数关
系
S 1 x(26 x) (0 x 26)
2
;是二次函数
(3)如图所示,在直径为20 cm的圆
形铁片中,挖去了四个半径都为x cm
的圆,剩余部分的面积为y cm2,则y与x
间的函数关系式 y 100 4 x20 x 1(0 2-1.) 是二次函数
这种产品的原产量是20件, 一年后的产量是___2_0_(_1_+_x_)_件, 再经过一年后的产量是 20(1_+_x_)_2件, 即两年后的产量为: y=20(1+.x)2
即: y=20x2+40x+20
此式表示了两年后的产量y与计划增产的倍 数x之间的关系,对于x的每一个值,y都有一个对 应值,即y是x的函数.
二次函数的几种特殊形式
(1)y=ax²(当a≠0,b=0,c=0时).
(2)y=ax²+c(当a≠0,b=0,c≠0时).
(3)y=ax²+bx(当a≠0,b≠0,c=0时).
创设情境,导入新课
问题:
(1)你们喜欢打篮球吗? (2)你们知道:投篮时,篮球运动的 路线是什么曲线?怎样计算篮球达到 最高点时的高度?