二次函数概念说课.课件演示教学

合集下载

《二次函数》课件

《二次函数》课件

一二
元次
二函
次数
方与

抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)

沪科版九年级上册21.1.1二次函数的概念(共17张PPT)

沪科版九年级上册21.1.1二次函数的概念(共17张PPT)

1 x2
不是
(3) y x(1 x)

(4) y (x 1)2 x2 不是
先化简后判断
知识巩固
2. 把下列函数化成二次函数的一般式,并分别说出二);
解:(1)y=(x-2)(x-3)=x2-5x+6; 1,-5,6
(2)y=(x+2)(x-2)-2(x-1)2; (3)y=-2(x+3)2.
S= x(20-x) =-x2+20
y=(190-10x)(15+x) =-10x2+40x+2850
上述三个问题中的函数表达式具有哪些共同的特征? 经化简后都具有y=ax²+bx+c(a,b,c是常数, a≠0 )的形式.
二次函数的相关概念
一般地,表达式形如 y=ax²+bx+c (其中a,b,c是常数,a≠0)的函数叫做x
(2)y=(x+2)(x-2)-2(x-1)2=-x2+4x-6; -1,4,-6 (3)y=-2(x+3)2=-2x2-12x-18. -2,-12,-18
例题分析
例1 关于x的函数 y (m 1)xm2m 是二次函数,求m的值.
解 根据题意得m+1≠0且 m²-m=2,解得m=2.
注意:二次函数的二次项系数不能为零.
课堂小结
y=ax²+bx+c(a,b,c是常数, a≠0 )
6. 列出函数表达式,并求自变量的取值范围. (1)一块矩形草地的长为100m,宽为80m,欲在中间修筑两条互相垂直的宽为 x(m)的小路,这时坪的面积为y(m²).求y与x的函数关系式,并求出x的取值范围.
(2)某商品每件成本40元,以单价55元试销,每天可售出100件。根据市场预 测,定价每减少1元,销售量可增加10件. 求每天销售该商品获利金额y(元)与定 价x(元)之间的函数关系.

二次函数课件 二次函数PPT

二次函数课件  二次函数PPT

y 2(x 2)2 3
向右平移
向下平移3
2个单位
个单位
y 2x2 向左平移 y 2(x 2)2 向上平移3 y 2(x 2)2 3
2个单位
个单位
(检测学生对该节课的掌握程度,并对该节课的内 容进行巩固。)
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax²+bx+c,我 们可以利用配方法推导出它的对称轴和 顶点坐标.
画图: 步骤:列表,描点,连线(光滑曲线)
y 3x2 y 3(x 1)2
老师指导学生按照步 骤画出图像,然后让 他们互相讨论,再做 总结,让学生在动手 操作中的过程中学到 知识,感受学习带来 的乐趣。
观察两个图形有什么关系?
老师给予适当的提示,引发学生思考,培养学生勤于思考的习惯。
函数 y 3x2 的图像
式是(A)
4
A、y 1 (x 2)2 2
4
B、y
1 4
(x
2)2
2
C、y 1 (x 2)2 2 4
D、y
1 4
(x
2)2
2
3、抛物线y=3x²先向上平移2个单位,后向右平移3个
单位,所得到的抛物线是( D )
A、y=3(x+3)²-2
B、 y=3(x+3)²+2
C、y=3(x-3)²-2
一般地,由y=ax²的图象便可得到二次函数y=a(x-h)²+k的图 象:y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴 整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左 平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平 移;当k<0时,向下平移)得到的.

二次函数说课PPT课件

二次函数说课PPT课件
22.1.1 二次函数
教材及学情分析 教学目标 教学重难点 教学方法与教学手段 教学过程 教学预测
板书展示
教材及学情分析
本章是学生在学习了一次函数的基础上,继续进行函 数的学习,是对函数知识的完善与提高,为高中继续学习 函数作准备.二次函数的概念是通过具体问题引入的,从 现实生活或具体情境中抽象出数学问题,用数学符号建立 函数中的数量关系和变化规律.这些内容的学习有助于学 生初步形成建模思想,提高学习数学的兴趣和应用意识.
联系生活,探索新知
设计意图:通过辨析,使 学生更深刻地认识二次函 数的概念,判断一个函数 是否为二次函数的关键是 看二次项系数a是否为0, 突破本节课的难点.
设计意图:提高学生分析问 题、解决问题的能力,让学 生在独立思考的基础上,参 与对问题的讨论,锻炼学生 的表达能力,培养学生的合 作意识,引导学生感受数学 的价值.
教学过程
创设情境 引入新课
联系生活 探索新知
反思总结 布置作业
游戏闯关 巩固新知
动手实践 应用新知
学生活动:自由设计,合作分享.
教师活动:通过实物投影把学生的设计的题目展示出来.
设计意图:这样的设计既促使学生灵活应用新知,又为学生创设 了一个充分展现创造力的空间,提供了一个实践与创新的机会,同时 也为学生搭建了一个展示自我的平台,获得成功的体验和与他人分享 的喜悦.
教学过程
创设情境 引入新课
联系生活 探索新知
反思总结 布置作业
游戏闯关 巩固新知
反动思手总实结践 布应置用作新业知
联系生活,探索新知
师生活动: 独立思考,小组讨论, 师生交流,共同总结, 类比思想,得出定义.
设计意图:通过几个实际问题引出二次函数的表达式,与一次函数对比,引 发学生的认知冲突,实现从一次函数到二次函数的顺利过渡突出本节课的重 点并引入课题.

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

《二次函数y=ax2的图象》说课稿课件

《二次函数y=ax2的图象》说课稿课件

y=x2的图象
作二次函数y=x2的图象。
(1)选择适当x值,并计算相应的y
y=x2
值,完成下表:
(2)在直角坐标系中描点。
(3)用光滑的曲线连接各点,便得
到函数y=x2的图象。
在这个环节我将引导学生通过列表、描点、连 线的方式做出最简单的二次函数y=x2的图象,做图 的过程将通过多媒体课件给学生详细讲解并把最后 的图形展示给学生。
人教版九年级数学下册第二十六章 第一节第二课时
二次函数y=ax2的 图象

一、教材分析

二、教法学法分析


三、教学过程分析

四、评价分析
(一) 教材的地位和作用 (二) 教学目标 (三) 教学重点、难点
(一)教材的地位和作用
在学习本课时之前,学生已经学习了一些函数的 图象与性质,以及二次函数的相关知识,为本节课的 学习打好了基础。本节课研究最简单的二次函数 y=ax2的图象,是学生学习函数知识的过程中的一个重 要环节,既是前面所学知识的延续,又是探究其它二 次函数的图象及其性质的基础,起到承上启下的作用 。
知识再现
y=x2的图象

观察

例题

探究

归纳

课堂练习
课堂小结
布置作业
知识再现
(1)二次函数的一般形式是什么?特殊形式是什么? (2)通常怎样画一个函数的图象?一次函数的图象是什么? 反比例函数的图象是什么? (3)二次函数的图象是什么形状呢?
首先是知识再现环节,由于学生已经学习过一些函数的 图象与性质,以及二次函数的相关知识。本节课我将通过提 问的方式复习旧的知识和引入新课,目的是通过这些问题让 学生回忆起二次函数的形式和用描点法画图的一般步骤,为 本节课的学习做好铺垫。

二次函数图象和性质省公开课获奖课件说课比赛一等奖课件

二次函数图象和性质省公开课获奖课件说课比赛一等奖课件

y 1 x2
-1
2
-2
(2) 描点
-3
(3) 连线 y x2
-4
-5
y 2 x2
函数y=-21 x2,y=-2x2旳图象与函数y=-x2 (图中蓝线图形)旳图象相比,有什么共同点和不同点?
共同点: 开口都向下; 顶点是原点而且是抛物线
旳最高点,对称轴是 y 轴
-3 -2
在对称轴旳左侧, y伴随x旳增大而增大。
3.当a<0时,开口向下,顶点是最高点, a值越大,抛物线开口越大; 在对称轴旳左侧,y随x旳增大而增大; 在对称轴旳右侧,y随x旳增大而减小。
巩固 1、说出下列函数图象旳性质:
(1) y 3x2 (2) y 3x2 (3) y 1 x2
3
2、已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线旳函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6旳点旳坐标。
-4
-6
?
-8
-10 y=-x2
y
y x2
当x<0 (在对称轴旳 左侧)时,y伴随x旳增大而 增大.
当x>0 (在对称轴 旳右侧)时, y伴随 x旳增大而减小.
当x= -2时,y= -4
当x= -1时,y= -1
抛物线y= -x2在x轴旳 下方(除顶点外),顶点 是它旳最高点,开口 向下,而且向下无限 伸展;当x=0时,函数y 旳值最大,最大值是0.
当x=1时,y= -1 当x= 2时,y= -4
y ax2
二次函数y=ax2旳性质
1.抛物线y=ax2旳顶点是原点, y ax2 对称轴是y轴.
2.当a>0时,抛物线y=ax2在x轴旳上方(除顶点外), 它旳开口向上,而且向上无限伸展;

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数是研究两个变量在某变化过程中的相互关 系,我们已学过正比例函数,反比例函数和一 次函数。看下面三个例子中两个变量之间存在 怎样的关系。

1、(1)圆的半径是r(cm)时,面积s (cm²)
与半径之间的关系是什么?
解:s=πr²(r>0)

2、用周长为20m的篱笆围成矩形场地,场
地面积y(m²)与矩形一边长x(m)之间的关系是什
数。但在实际问题中,自变量的取值范围是使实际问题 有意义的值。(如例1中要求r>0) 为什么二次函数定义中要求a≠0 ? (若a=0,ax2+bx+c就不是关于x的二次多项式了) 4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
也很容易分辨出哪个是二次函数。通过简单题目的练习,让学 生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数 学的信心。
五、反馈矫正,注重参与
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周 长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生 在实践中感悟什么样的函数是二次函数,将理论知识 应用到实践操作中。
四、启发诱导,初步应用
1.已知一个直角三角形的两条直角边长的和是10cm。 (1)当它的一条直角边的长为4.5cm时,求这个直角三角形
的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为 xcm,求 S关于x的函数关系式。
二次函数的概念说课稿
五龙口二中
一:教材分析
1.教材的地位和作用 二次函数的概念是人教版九年级数学下册第二十
六章第一节的内容。这节课是在学生已经学习了一次函 数、正比例函数、反比例函数的基础上,来学习二次 函数的概念。二次函数是初中阶段研究的最后一个具 体的函数,也是最重要的,在历年来的中考题中占有 较大比例。同时,二次函数和以前学过的一元二次方 程、一元二次不等式有着密切的联系。进一步学习二 次函数将为它们的解法提供新的方法和途径,并使学 生更为深刻的理解“数形结合”的重要思想。而本节 课的二次函数的概念是学习二次函数的基础,是为后 来学习二次函数的图象做铺垫。所以这节课在整个教 材中具有承上启下的重要作用。
么?
解: y=x(20/2-x)=x(10-x)=-x²+10x (0<x<10)
3、设人民币一年定期储蓄的年利率是x,一年到 期后,银行将本金和利息自动按一年定期储蓄转 存。如果存款额是100元,那么请问两年后的本息 和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)² =100(x²+2x+1) = 100x²+200x+100(0<x<1) 教师提问:以上三个例子所列出的函数与一次函
由例1可知,b和c均可为零.Leabharlann 若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊
形式,而y=ax2+bx+c是二次函数的一般形
式.
【设计意图】这里强调对二次函数概念的理解, 有助于学生更好地理解,掌握其特征,为接下 来的判断二次函数做好铺垫。
三、 教学重点与难点
重点:对二次函数概念的理解。 难点:由实际问题确定函数解析式和自 变量的取值范围。
四、学情分析
学生对函数已不陌生,在初二已经学过正比 例函数,一次函数,反比例函数,因此我从 三个方面:
1、从创设情境入手,通过知识再现,孕伏教 学过程
2、从学生活动出发,通过以旧引新,顺势教 学过程
数有何相同点与不同点?
【设计意图】通过三个具体事例,让学生列出关 系式,启发学生观察,思考,归纳出二次函数与 一次函数的联系: (1)函数解析式均为整式(这表 明这种函数与一次函数有共同的特征)。(2)自变 量的最高次数是2(这与一次函数不同)。
二、得出定义,揭示内涵
以上函数不同于我们所学过的一次函数,正比例函数, 反比例函数,我们就把这种函数称为二次函数。
三、手脑并用,深入理解
判断:下列函数中哪些是二次函数?哪些不是二次函

数?若是二次函数,指出a、b、c.
(1)y=3(x-1)²+1
(2) y x 2
1
x
(3)s=3-2t²
(4)y=(x+3)²- x²
(5)s=10πr²
(6)y=2²+2x
(7)y x25x6 (8)y=x4+2x2+1(可指出
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常 数) 的函数叫做二次函数。
巩固对二次函数概念的理解: 强调“形如”,即由形来定义函数名称。二次函数即y
是关于x的二次多项式(关于的x代数式一定要是整式)。 在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实
【设计意图】此题由具体数据逐步过渡到用字母表示关系式, 让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。 (1)分别写出S与x,V与x之间的函数关系式子; (2)这两个函数中,那个是x的二次函数? 【设计意图】简单的实际问题,学生会很容易列出函数关系式,
3、利用探索、研究手段,通过思维深入,领 悟教学过程
来激发学生兴趣。
五:教学过程
(一)温故知新,激发情趣 1.什么叫函数?我们之前学过了那些函数? (一次函数,正比例函数,反比例函数) 2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y=k/x, k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么? 常量是什么?为什么要有k≠0的条件? k值对函数性 质有什么影响? 【设计意图】复习这些问题是为了帮助学生弄清自变 量、函数、常量等概念,加深对函数定义的理解.强 调k≠0的条件,以备与二次函数中的a进行比较.
相关文档
最新文档