复习课件二次函数 概念.ppt

合集下载

二次函数图像与性质复习课件PPT课件一等奖新名师优质课获奖比赛公开课

二次函数图像与性质复习课件PPT课件一等奖新名师优质课获奖比赛公开课

方程的 方程 ax2+bx+c=0(a≠0)有两个相等的实数根;
关系 3.当 b2-4ac<0 时 抛物线与 x 轴___没__有_____交点,
方程 ax2+bx+c=0(a≠0)没有实数根.
中考解读
考点聚焦
中考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
考点 5 二次函数 y=ax2+bx+c(a≠0)的图象特征与 a、b、 c 之间的关系
皖考解读
考点聚焦
皖考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
解 可设所求二次函数的解析式为 y=a(x-1)2-1(a≠0), ∵抛物线过原点(0,0), ∴a(0-1)2-1=0,解得 a=1, ∴该函数解析式为 y=(x-1)2-1,即 y=x2-2x.
皖考解读
考点聚焦
皖考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
二次函 待定系数法确定二次函数的解析式分三种情况:
数解析 1.已知抛物线上任意三个点的坐标时,选用一般形式;
式的 2.已知抛物线顶点坐标时,选用顶点式;
确定 3.已知抛物线与 x 轴两个交点的坐标时,选用交点式.
中考解读
考点聚焦
中考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
考点4 二次函数与一元二次方程
数)的图象与 x 轴的一个交点为(1,0),则关于 x 的一元二次
方程 x2-3x+m=0 的两实数根是
(B )
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
解 析 由于二次函数 y=x2-3x+m(m 为常数)的图 象与 x 轴的一个交点为(1,0),即 x=1 是一元二次方程 x2 -3x+m=0 的根,代入得 12-3+m=0,m=2,原方程 为 x2-3x+2=0,解得 x1=1,x2=2,故选 B.

二十二-二次函数复习课PPT课件

二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的

x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6

中考数学专题《二次函数》复习课件(共18张PPT)

中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

人教版数学九年级上册第22章二次函数章节复习课件(共36张)

人教版数学九年级上册第22章二次函数章节复习课件(共36张)
温馨提示: (1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二 次项.
2.
y=ax2

图象

a>0 y
O x
a<0 yx
O
函 位置开

口方向 开口向上,在x轴上方
开口向下,在x轴下方
的 对称性
7.二次函数的应用
1.二次函数的应用包括以下两个方面 (1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问
题); (2)利用二次函数的图像求一元二次方程的近似解.
2.一般步骤:(1)找出问题中的变量和常量以及它们之间 的函数关系;(2) 列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质 解决实际问题;(4)检验结果的合理性,是否符合实际意义.
∵x1<x2<1,∴y1<y2 . 故选B.
下列函数中,当x>0时,y值随x值增大而减小的是( D )
A. y= x2
B.y=x-1 C. y 3 x
4
D.y=-3x2
3 二次函数 y=ax2+bx+c(a≠0)的图像与系数a,b,c的关系
【例3】已知二次函数y=ax2+bx+c的图像如图所示,下列结论:①abc>
关于y轴对称,对称轴是直线x=0

顶点坐标是原点(0,0)
象 顶点最值

当x=0时,y最小值=0
当x=0时,y最大值=0
性 增减性 质
在对称轴左侧递减 在对称轴右侧递增
在对称轴左侧递增 在对称轴右侧递减
2.二次函数的图象与性质
y=ax2+k 开口方向 对称轴 顶点坐标

二次函数复习-完整版PPT课件

二次函数复习-完整版PPT课件
学练优九年级数学上(RJ) 教学课件
第二十二章 二次函数
复习课
知识网络
专题复习
课堂小结
课后训练
知识网络
二次函数的概念
定义 一般形式
y=a2bc
a,b,c是常数,a≠0
自变量的取值范围 全体实数
图象
一条抛物线
一般式

次 解析式形式 顶点式


交点式
y=a2bca≠0 y=a-h2 y=a-1-2
y=a2bc
1,2);
y
C’
C
Q
B
OA x
图2
丙1,15

0,1
4,1
1m

2.5m

1m
4m
解:如图建立平面直角坐标系,可设抛物a线的b 解1析1式.5,为y=a2b1
点(1,15)、(4,1)在抛物线上,得 16a 4b 1 1,
解得:a , 所1 ,b以抛2 物线解析式为
63
y1x22x1(1≤ x≤ 4) , 63
当=25时,y=1625所以丁同学的身高为1625米


二次函数的概念 及图象特征
用数形结合 的方法去研 究和运用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解决实际问题
课后训练
=-2-523 ,下列说法正确的是( )
A
A开口向下,顶点坐标5,3 B开口向上,顶点坐标5,3
C开口向下,顶点坐标-5,3 D开口向上,顶点坐标-5,3
>0, b<0,c>0时,下列图象有可能是抛物线y=a2bc的是 ( A)
a ≠ 0 性 质 六点、一轴、一方及增减性与最值

二次函数图像和性质复习课件精选全文

二次函数图像和性质复习课件精选全文

例4 已知抛物线 y x2 k 4 x k 7,
①k取何值时,抛物线经过原点; ②k取何值时,抛物线顶点在y轴上; ③k取何值时,抛物线顶点在x轴上; ④k取何值时,抛物线顶点在坐标轴上。
解:①抛物线经过原点,则当x=0时,y
=0,所以 0 02 k 4 0 k 7,所以k=
-7,所以当k=-7时,抛物线经过原点;
在对称轴右侧,y随x的增大而减小
y x
y x
4.二次函数 y ax2 bx c 的性质:
(1)顶点坐标
b 2a
,
4ac 4a
b2
;
(2)对称轴是直线 x b
2a
(3)开口方向:当 a>0时,抛物线开
口向上;当 a<0时,抛物线开口向下。
(4)最值:
如果a>0,当 x
b 2a
②抛物线顶点在y轴上,则顶点横坐标为0,

b
k 4
0
,所以k=-4,所
2a
21
以当k=-4时,抛物线顶点在y轴上。
③抛物线顶点在x轴上,则顶点纵坐标为0,
即 4ac b2 4 1 k 7 k 42 0 ,整理得
4a
4 1
k2 4k 12 0 ,解得:k1 2, k2 6 ,所 以当k=2或k=-6时,抛物线顶点在x轴 上。 ④由②、③知,当k=-4或k=2或k=-6 时,抛物线的顶点在坐标轴上。
2a
①若b=0对称轴为y轴,
②若a,b同号对称轴在y轴左侧,
③若a,b异号对称轴在y轴右侧。
5.抛物线y=ax2+bx+c中a,b,c的作用。 (3)c的大小决定抛物线y=ax2+bx+c与y轴 交点的位置。 当x=0时,y=c,∴抛物线y=ax2+bx+c 与y轴有且只有一个交点(0,c), ①c=0抛物线经过原点; ②c>0与y轴交于正半轴; ③c<0与y轴交于负半轴。

第22章《二次函数》复习课PPT课件(人教版)

第22章《二次函数》复习课PPT课件(人教版)
形?若存在,求点N的坐标;若不存在,请说明理由
三、课堂练习
N M
N
重视知识归纳; 重视基本概念; 重视典型题型; 重视每日小练; 重视错题整理; 避免盲目大意。
九年级数学
第22章 《二次函数》 复习(2)
定形图 性 义式象 质
坦洲实验中学初三数学
一、知识回顾
归纳知识:
(1)开a口的向符上号:由抛物a线>0的开口y 方向确定
开口向下
(2)c的符号:
a<0
o
x
由抛物线与y轴的交点位置确定.
交点在y轴正半轴
c>0
y
交点在y轴负半轴
c<0
交点是坐标原点
c=0
ox
∴ OE=DE=1.5 即D(1.5,-1.5)
设直线OD为y=kx,代入D点坐标得y= -x
令x2-2x-3 = -x
二、典型例题
证明: b2-4ac=[-(2m-1)]2-4×1×(m2-m-2) =4m2-4m+1-4m2+4m+8 =9
即b2-4ac >0 ∴ 抛物线与x轴有两个不同的交点
三、课堂练习
C
一次函数y=ax+b经过的象限与a, b符号关系 A选项,经过一二四象限, a<0, b>0 B选项,经过一二三象限,a>0, b>0 C选项,经过一三四象限, a>0, b<0 D选项,经过一三四象限,a>0, b<0
三、课堂练习
·B
A2
6
三、课堂练习
-1·
·5
与x,y轴交点
-5·
二、典型例题
解:令x=0,解得y=m2-m-2 令y=0,得x2-(2m-1) x+m2-m-2=0 [x-(m-2)][x-(m+1)]=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数 y= kx+b (k ≠0)
特别地,当b=0时为正比例函数 y=kx (k ≠0)
.精品课件.
2
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0)
二次函数
.精品课件.
3
二次函数
.精品课件.
4
问题1: 正方体的六个面是全等的正方形,设正
m 1 nn 1 1 n2 1 n
2
22
此式表示了次数m与球队数n之间的关系,对于 n的每一个值,m都有一个对应值,即m是n的函数.
.精品课件.
6
问题3: 某工厂一种产品现在的年产量是20件,计划
今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y将随计划所定的x的 值而确定, y与x之间的关系怎样表示?
.精品课件.
14
典例分析
例3 已知二次函数y x2 2x 3 (1) 求当x 0 时,函数y的值; (2) 求当函数y的值是0时,自变量x的值.
(3) 当函数y的值是-5时,x又为何值呢?
新发现:二次函数与一元二次方程有着特殊的关系
最新发现:二次函数值的大小是有限制的噢!
.精品课件.
15
小结 :
积S(cm2)与一对角线长x(cm)之间的函数关

S 1 x(26 x) (0 x 26)
2
;是二次函数
(3)如图所示,在直径为20 cm的圆
形铁片中,挖去了四个半径都为x cm
的圆,剩余部分的面积为y cm2,则y与x
间的函数关系式 y 100.精品课4件. x20 x 1(0 2-1.) 是二次函10 数
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0) 的函数叫做x的二次函数.
三个条件:自变量的最高次数是2;二次项的系数 a≠0;解析式必须是整式。
2、二次函数的一般形式:y=ax²+bx+c(a,b,c是常 数,a≠0)
二次函数的几种特殊形式
(1)y=ax²(当a≠0,b=0,c=0时).
比一比
下列函数中,哪些是二次函数?是二次函数 的请说出它的a,b,c的值。
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2+x
(6)y=x2-x(1+x)
.精品课件.
11
典例分析
例1: 关于x的函数 y (m 1)xm2m 是二次函
数, 求m的值.
.精品课件.
8
巩固概念
练习1 下列函数中,哪些是二次函数?如果是,分 别说出它们的二次项系数、一次项系数和常数项.
(1) y 3x2 2

3, 0, 2
(2) y x2 1

x
(3) y (x 2)(x 3)
x2 5x 6

1, 5, 6
(4)y x2 2x 3

(5) y (x 2)( x 2) (x 1)2 否
解(2)得: m 1且m 1
所以m=2
.精品课件.
13
典例分析
函数y ax2 bx c(其中a,b, c是常数), 当a,b, c满足什么条件时
(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
解:(1)a 0 (2)a 0,b 0
(3)a 0,b 0,c 0
解: 由题意m 2 当m 2时,函数为二次函数。
关键:二次函数的二次项系数不能为零
.精品课件.
12
展示才智
2、若函数 y (m2 1)xm2m 为二次函数,求 m的值。
解:因为该函数为二次函数,

m 2 m 2(1)
m
2
1
0(2)
解(1)得:m=2或-1
方形的棱长为x,表面积为y,显然对于x的每一个 值,y都有一个对应值,即y是x的函数,它们的具体关 系可以表示为
y=6x2
x
此式表示了正方体的表面积y与棱长x之间的
关系,对于x的每一个值,y都有一个对应值,即y是
x的函数.
.精品课件.
5
问题2: n个球队参加比赛,每两队之间进行一场比 赛,比赛的场次数m与球队数n有什么关系?
(2)y=ax²+c(当a≠0,b=0,c≠0时).
(3)y=ax²+bx(当a≠0,b≠0,.精c品=课0件时. ).
16
.精品课件.
17
.精品课件.
18
.精品课件.
19
.精品课件.
20
.精品课件.
21
.精品课件.
22
.精品课件.
23
.精品课件.
24
创设情境,导入新课
问题:
(1)你们喜欢打篮球吗? (2)你们知道:投篮时,篮球运动的 路线是什么曲线?怎样计算篮球达到 最高点时的高度?
x2 4 (x2 2x 1) 2x 5
(6) y ax2 bx c 不一定! .精品课件.
9
巩固概念
练习2 写出下列各函数关系式,并判断其是否为二 次函数. (1)圆的半径为r,则圆的周长l关于r的函数关系 式 l 2 r (r 0) ; 不是二次函数
(2)菱形的两条对角线的和为26cm,则菱形的面
第二十二章 二次函数 22.1.1 二次函数
.精品课件.
1
复习回顾
1.一元二次方程的一般形式是什么?
ax2+bx+c=0 (a≠0)
2.什么是函数?
在某一变化过程中: ①有两个变量x和y; ②自变量x在它的取值范围内的每一个值,y都有唯
一确定的值与之对应. 我们就把y叫做x的函数.
3.一次函数的一般形式是什么?
.精品课件.
7
归纳总结
1、二次函数的定义: 一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
函数叫做二次函数。
注意:
(1)等号左边是变量y,右边是关于自变量x的整式;
(2)a,b,c为常数,且 a≠0; (3 )等式的右边最高次数为 2 ;
(4)x的取值范围是 任意实数(实际问题实际分析)
这种产品的原产量是20件, 一年后的产量是___2_0_(_1_+_x_)_件, 再经过一年后的产量是 20(1_+_x_)_2件, 即两年后的产量为: y=20(1+.x)2
即: y=20x2+40x+20
此式表示了两年后的产量y与计划增产的倍
数x之间的关系,对于x的每一个值,y都有一个对
应值,即y是x的函数.
.精品课件.
25
2、二次函数的一般形式: (一般式)
二次项系数 一次项系数
y=ax2+bx+c (其中a、b、c是常数,a≠0)
二次项 一次项
常数项
二次函数的其它特殊形式:
相关文档
最新文档