传感器原理设计与应用重点总结
化学传感器的设计与应用

化学传感器的设计与应用化学传感器是一种能够通过化学反应与目标物质发生作用,并将其转化为可测量信号的装置。
随着科技的进步和需求的增长,化学传感器在许多领域中得到广泛应用,如环境监测、生物医学、食品安全等。
本文将探讨化学传感器的设计原理和应用案例。
1. 化学传感器的设计原理化学传感器的设计原理基于目标物质与传感器之间的相互作用。
常见的相互作用包括化学反应、吸附、溶解、电荷转移等。
根据不同的相互作用方式,可以设计出不同类型的化学传感器,如光学传感器、电化学传感器、生物传感器等。
下面以光学传感器为例介绍其设计原理。
光学传感器利用目标物质与光的相互作用,通过测量光的吸收、散射、发射等属性来检测目标物质的存在与浓度。
其设计原理包括以下几个方面:1.1 光源:选择适当的光源,如白光发射二极管(LED)、激光等,根据目标物质的特性选择波长。
1.2 发射与接收光路设计:通过适当的光学元件,将光源发射的光束引导到目标物质上,并将反射、散射的光束引导到光电探测器上进行检测。
1.3 光检测与信号处理:利用光电探测器将光信号转化为电信号,并通过信号处理电路进行放大、滤波等处理。
1.4 响应机理与量化分析:根据目标物质与光的相互作用方式,建立响应机理模型,通过测量光信号的变化来定量分析目标物质的浓度。
2. 化学传感器的应用案例化学传感器在许多领域中展现出了广泛的应用前景。
下面将介绍几个典型的应用案例。
2.1 环境监测化学传感器在环境监测领域中起到了重要的作用。
例如,气体传感器用于检测空气中的污染物浓度,如二氧化硫、臭氧等;水质传感器用于监测水中的溶解氧、重金属离子等有害物质的浓度。
这些传感器能够及时准确地检测环境中的污染物,用于预警和监控,以保护环境和人民的健康。
2.2 生物医学化学传感器在生物医学领域中有着广泛的应用。
例如,血糖传感器用于监测糖尿病患者的血糖水平,可以帮助患者及时调整饮食和胰岛素的使用;药物检测传感器用于检测药物在体内的浓度,为合理用药提供依据。
温度传感器的原理和应用实验总结

温度传感器的原理和应用实验总结1. 引言温度传感器是一种常见的用于测量环境或物体温度的设备。
它可以将温度转换为电信号,进而提供给其他设备进行处理和控制。
本文将介绍温度传感器的工作原理,并总结一些常见的实验应用。
2. 温度传感器的工作原理温度传感器的工作原理基于热电效应、电阻变化或半导体温度特性等原理。
以下是几种常见的温度传感器工作原理:2.1 热电温度传感器热电温度传感器基于热电效应,利用不同材料之间的电动势差来测量温度。
常见的热电温度传感器包括热电偶和热电阻。
•热电偶:通过两种不同金属材料的接触,利用金属间的热电效应来生成电信号。
该电信号与温度呈线性关系,可用于测量高温环境。
•热电阻:使用金属、合金或半导体等材料的电阻变化来测量温度。
常见的热电阻包括铂电阻和铜电阻。
2.2 电阻温度传感器电阻温度传感器通过测量电阻值的变化来估计温度。
这种传感器通常使用金属或半导体材料,其电阻值与温度呈线性关系。
常见的电阻温度传感器包括铝电阻和硅电阻。
2.3 半导体温度传感器半导体温度传感器利用半导体材料在不同温度下的电阻变化来测量温度。
它们具有较高的精度和较小的尺寸,广泛应用于汽车、家电和电子设备中。
3. 温度传感器的应用实验温度传感器在各个领域都有广泛的应用。
以下是一些常见的温度传感器应用实验:3.1 温度监测利用温度传感器监测环境温度的变化。
可以将温度传感器放置在室内或室外,记录温度变化的数据,并进行分析和控制。
3.2 温度控制通过温度传感器控制设备的温度。
例如,将温度传感器与加热元件结合使用,可以实现对恒温箱、电炉等设备温度的控制。
3.3 温度报警当温度超过或低于设定阈值时,温度传感器会触发报警。
这种应用在实验室、仓库、冰箱等场所广泛使用,用于保护物品免受温度变化的影响。
3.4 温度补偿在某些应用中,温度传感器可用于补偿其他传感器测量值的温度误差。
例如,温度传感器可以补偿压力传感器在高温环境下的读数。
3.5 温度检测与追踪利用温度传感器对物体表面温度进行检测和追踪。
传感器原理及应用教程专用学习教案

传感器原理及应用教程专用学习教案一、教学内容本教案基于《传感器原理及应用》教材第3章“电阻式传感器”和第6章“光电传感器”,详细内容包括:1. 电阻式传感器的原理、类型及应用;2. 光电传感器的原理、类型、特性及应用实例。
二、教学目标1. 理解并掌握电阻式传感器和光电传感器的工作原理;2. 学习并了解不同类型的电阻式传感器和光电传感器的特点及应用;3. 培养学生的动手操作能力,学会使用传感器进行数据采集。
三、教学难点与重点1. 教学难点:传感器工作原理的理解,传感器类型及应用的选择;2. 教学重点:电阻式传感器和光电传感器的原理及其在实际应用中的使用。
四、教具与学具准备1. 教具:PPT课件、实验设备(电阻式传感器、光电传感器、数据采集卡等);2. 学具:笔记本、实验报告、传感器模块。
五、教学过程1. 引入实践情景:介绍传感器在生活中的应用,如智能家居、工业生产等;2. 理论讲解:a. 电阻式传感器原理、类型及应用;b. 光电传感器原理、类型、特性及应用实例;3. 例题讲解:讲解传感器在实际应用中的计算和数据处理;4. 随堂练习:让学生针对所学内容进行计算和分析;5. 实验操作:a. 安装并调试电阻式传感器和光电传感器;b. 使用数据采集卡进行数据采集;c. 数据处理和分析;六、板书设计1. 电阻式传感器原理、类型及应用;2. 光电传感器原理、类型、特性及应用实例;3. 实验结果展示。
七、作业设计1. 作业题目:a. 简述电阻式传感器和光电传感器的工作原理;2. 答案:见附件。
八、课后反思及拓展延伸2. 拓展延伸:a. 探索其他类型的传感器原理及应用;b. 了解传感器在物联网、智能制造等领域的应用;c. 鼓励学生参加传感器相关的竞赛和实践活动,提高实际操作能力。
重点和难点解析:1. 教学难点:传感器工作原理的理解;2. 教学重点:电阻式传感器和光电传感器的原理及其在实际应用中的使用;3. 实验操作:安装并调试电阻式传感器和光电传感器;4. 作业设计:简述电阻式传感器和光电传感器的工作原理及列举应用。
传感器期末总结心得

传感器期末总结心得随着科学技术的进步和人们对社会经济发展的不断追求,传感器技术在各个领域都得到了广泛的应用。
作为将物理量转变为可视化和可感知信号的设备,传感器在工业自动化、环境监测、医疗诊断等领域发挥着至关重要的作用。
在本学期的传感器课程学习中,我对传感器的原理、制作和应用有了更深入的了解,也积累了一些实际操作经验。
在本学期初,我们首先学习了传感器的基本原理和分类。
传感器的基本原理是根据物理量与电信号之间的相互转换关系来工作的。
根据传感器的工作原理和应用范围,我们将传感器分为了光学传感器、电磁传感器、声学传感器、压力传感器等不同类型。
通过学习不同类型传感器的工作原理和实际应用案例,我深刻体会到了传感器的多样性和重要性。
在传感器的制作与测量原理方面的学习中,我对传感器的结构有了更深入的了解。
传感器的结构由敏感元件、信号处理电路和输出电路组成。
敏感元件根据不同的物理量进行测量,信号处理电路将敏感元件获取的信号进行放大和滤波处理,输出电路将信号转化为标准信号输出。
通过实际操作,我学会了如何选择合适的敏感元件、如何设计信号处理电路和输出电路,以及如何进行精确的测量和校准。
除了理论学习,我们还进行了一些实验操作和实际应用探索。
在实验室中,我们利用传感器对不同物理量进行测量,如光强、温度、湿度等,并通过数据分析和处理来推测物理量的变化规律。
在实际应用探索中,我们使用传感器进行环境监测、安防系统的构建、智能家居的实现等,并通过编程和网络通信实现实时数据传输和远程控制。
这些实践操作让我更加深入地理解了传感器的工作原理和应用方法。
在本学期的传感器课程学习中,我侧重于理论知识的学习和实验操作的积累。
通过课堂的学习,我掌握了传感器的基本原理,学会了将物理量转换为电信号并进行测量分析。
通过实验的操作,我加深了对传感器结构和工作原理的理解,掌握了传感器的制作和校准技巧。
我还通过一些实际应用的探索,对传感器在物联网、智能制造等领域的应用有了更加深入的了解。
传感器原理及应用

传感器原理及应用传感器是一种能够感知、检测某种特定物理量并将其转化为可供人们观测或处理的信号的装置。
它在现代科技领域中起着至关重要的作用,广泛应用于工业控制、环境监测、医疗诊断、智能家居等领域。
本文将从传感器的原理及其应用展开介绍。
首先,传感器的原理是基于物理效应或化学效应实现的。
常见的传感器类型包括光电传感器、压力传感器、温度传感器、湿度传感器、气体传感器等。
光电传感器利用光电效应,将光信号转化为电信号,常用于光电开关、光电编码器等设备中。
压力传感器则是利用压电效应或电阻应变效应来检测压力变化,广泛应用于汽车制动系统、工业自动化等领域。
温度传感器则是利用热电效应、热敏电阻效应等原理来感知温度变化,常见于电子设备、空调系统等。
湿度传感器则是利用介电常数变化或电阻变化来检测湿度变化,应用于气象观测、农业温室等领域。
气体传感器则是利用气体的化学反应来检测气体浓度,常见于环境监测、工业安全等领域。
其次,传感器的应用非常广泛。
在工业控制领域,传感器常用于测量温度、压力、流量、液位等参数,用于实现自动化生产、设备监测等功能。
在环境监测领域,传感器被广泛应用于大气污染监测、水质监测、土壤湿度监测等方面,为环保工作提供重要数据支持。
在医疗诊断领域,传感器被用于测量体温、血压、心率等生理参数,为医生提供诊断依据。
在智能家居领域,传感器被用于感知人体活动、光照强度、温湿度等信息,实现智能灯光、智能门锁、智能空调等功能。
总之,传感器作为现代科技的重要组成部分,其原理和应用已经深入到人们的生活和工作中。
随着科技的不断发展,传感器的种类和性能将会不断提升,应用领域也将会不断拓展,为人们的生活和生产带来更多便利和可能。
希望本文能够为读者对传感器有更深入的了解提供一些帮助。
常用传感器原理及应用课件

电感式传感器
总结词
利用电磁感应原理检测物理量的传感器
缺点
灵敏度较低,需要进行温度补偿和湿度补 偿。
优点
结构简单、稳定性好、可靠性高。
工作原理
通过改变线圈的自感系数或互感系数来检 测位移、角度、重量等物理量变化,从而 输出相应的电信号。
应用领域
广泛应用于位移、角度、重量测量等领域 。
压电式传感器
工作原理
详细描述
传感器可以监测温度、压力、流量、物位、重量等参数,控制机器设备的运行状 态,实现自动化生产。例如,压力传感器可以监测液压系统的压力,温度传感器 可以监测冷却水的温度,流量传感器可以监测流体的流量。
环境监测
总结词
传感器在环境监测领域的应用主要是对大气、水质、土壤等环境因素进行实时监测,为环境保护和治理提供数据 支持。
交通工具
总结词
传感器在交通工具领域的应用主要是用于监测车辆的运行状态和路况信息,提高行车安 全和交通效率。
详细描述
传感器可以监测车辆的发动机参数、车速、油量等参数,以及路面状况、天气状况等信 息。这些数据可以帮助驾驶员及时了解车辆和路况状况,采取相应的行车措施,提高行 车安全和效率。同时,还可以用于智能交通系统的建设,实现交通信号灯的自适应控制
多功能化与集成化发展
多功能化
传感器正朝着多功能化方向发展,一个传感 器可以同时检测多种参数,如温度、湿度、 压力等,减少了系统的复杂性和成本,提高 了测量效率。
集成化
传感器集成化是未来发展的重要趋势,通过 将多个传感器集成在一个芯片上,可以实现 多参数同时检测和测量,提高了系统的可靠 性和稳定性。同时,集成化传感器也有利于 实现小型化、微型化发展,满足各种便携式
传感器的应用知识点总结PPT

在使用传感器进行数据采集和处理时,需要遵守相关法律 法规和政策要求,如《个人信息保护法》等,确保合法合 规。
2023
PART 06
传感器发展趋势与前沿技 术动态
REPORTING
微型化、集成化发展趋势
微型化
传感器正朝着微型化方向发展,通过采用先进的微纳加工技术,实现传感器尺寸的缩小和 性能的提升。
集成化
将多个传感器集成在一起,形成传感器阵列或传感器网络,实现多参数、多功能的综合测 量。
MEMS技术
微机电系统(MEMS)技术是传感器微型化、集成化的重要手段,通过MEMS技术可以 制造出高性能、低功耗的微型传感器。
智能化、网络化发展趋势
智能化
传感器正朝着智能化方向发展,通过集成微处理器、存储器等器 件,实现传感器的自校准、自诊断、自适应等功能。
传感器分类与特点
传感器分类
根据输入物理量可分为位移传感器、速度传感器、温度传感 器、压力传感器等;根据工作原理可分为电阻式、电容式、 电感式、压电式等。
传感器特点
不同类型的传感器具有不同的特点,如电阻式传感器具有结 构简单、线性度好等优点,但灵敏度较低;电容式传感器具 有高灵敏度、高精度等优点,但易受温度和寄生电容的影响 。
工作原理及性能指标
要点一
工作原理
传感器的工作原理是将被测量转换为电信号的过程。不同 类型的传感器采用不同的转换原理,如电阻式传感器利用 电阻值随被测量变化而变化的原理进行转换;电容式传感 器利用电容值随被测量变化而变化的原理进行转换。
要点二
性能指标
传感器的性能指标包括灵敏度、线性度、重复性、迟滞性 、稳定性等。其中,灵敏度表示传感器输出变化量与输入 变化量的比值;线性度表示传感器输出与输入之间的线性 程度;重复性表示在相同条件下多次测量结果的一致性; 迟滞性表示传感器在输入量变化时输出量的滞后程度;稳 定性表示传感器在长时间使用过程中保持其性能参数不变 的能力。
智能家居中的温度与湿度传感器设计与应用

智能家居中的温度与湿度传感器设计与应用智能家居是指通过各种智能设备和互联网技术实现家庭生活的智能化和自动化。
而温度和湿度传感器作为智能家居中重要的部分,广泛应用于室内环境监测、智能空调、智能门窗等领域。
本文将介绍温度与湿度传感器的设计原理、应用场景以及未来发展方向。
一、温度与湿度传感器的设计原理温度与湿度传感器是基于微机械原理和传感原理制成的微型传感器。
其主要通过测量温度和湿度的变化来实现室内环境的监测和控制。
一般而言,温度传感器采用热敏电阻、热电偶或半导体材料等作为测量传感元件,通过测量元件电阻或电压的变化来获取温度数值。
湿度传感器则通常采用电容式、电阻式或共振式等传感原理,测量空气中的湿度。
在设计温度与湿度传感器时,需要考虑以下几个关键因素:精确度、响应时间、功耗和稳定性。
高精度是确保传感器准确测量温湿度的关键要素。
较短的响应时间可以提供实时的环境反馈。
功耗低则有助于延长传感器的使用寿命。
而稳定性则能够确保测量的准确性和可靠性。
二、温度与湿度传感器的应用场景1. 室内环境监测温度与湿度传感器在智能家居中被广泛应用于室内环境监测系统中。
通过实时感知和测量室内温度与湿度的变化,智能家居系统可以实现智能空调的控制、自动化通风和湿度调节等功能,提供舒适、健康的室内环境。
2. 智能空调系统温度与湿度传感器在智能空调系统中起到至关重要的作用。
传感器测量室内温湿度数据,并将数据反馈给智能空调控制系统,实现温度调节和节能控制。
用户可以通过智能手机或语音助手与智能空调系统进行互动,实现个性化的温度控制和定时开关功能。
3. 智能门窗系统温度和湿度传感器可以用于智能门窗系统中,根据室内外温度和湿度的差异,智能门窗系统可以自动调节开关,实现室内外温湿度的平衡。
这不仅能提供更加舒适的室内环境,还能有效节约能源。
三、温度与湿度传感器的未来发展方向随着智能家居的快速发展,温度与湿度传感器在技术和功能上也在不断创新和改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。
考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。
建议大家根据自己的理解补充完善~第一章:传感器概论1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。
变换原理/规律涉及到物理、化学、生物学、材料学等学科。
2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。
3、传感器的分类按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。
按构成原理分类:结构型:依靠机械结构参数变化来实现变换。
物性型:利用材料本身的物理性质来实现变换。
按输入量的不同分类——>温度、压力、位移、流量、速度等传感器按变换工作原理分类:电路参数型:电阻型、电容型、电感型传感器按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器4、传感器技术的发展动向:教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器老师表述:微型化、集成化、廉价。
第二章:传感器的一般特性1、静态特性检测系统的四种典型静态特性线性度:传感器的输出与输入之间的线性程度。
传感器的理想输出-输入特性是线性的。
灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。
即S N=输入量的变化/输出量的变化=dy/dx迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。
(产生的原因:传感器机械部分存在的不可避免的缺陷。
)重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。
曲线的重复性好,误差也小。
产生的原因与迟滞性类似。
精确度.测量范围和量程.零漂和温漂.2、动态特性:(传感器对激励(输入)的响应(输出)特性)动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。
包括:稳态动态误差、暂态动态误差动态测试中的两个重要特征:时间响应、频率响应第三章:传感器中的弹性敏感元件1、什么叫敏感材料对电、光、声、力、热、磁、气体分布等待测量的微小变化而表现出性能明显改变的功能材料。
半导体材料最主要的特点是对温度、光、电、磁、各种气体及压力等外界因素具有敏感特性,是制造磁敏、热敏、光敏、力敏、离子敏等传感器件的主要材料。
2、引言:(1)变形:物体在外力作用下,改变原来的尺寸和形状的现象。
(2)刚度:弹性敏感元件在外力的作用下抵抗变形的能力 (3)弹性元件:具有弹性变形特性的物体。
弹性敏感元件作用:把力、力矩或压力变换成相应的应变或位移;然后由各种转换元件,将被测力、力矩或压力转换成电量。
3、弹性敏感元件的基本特性:(1)弹性特性:作用在弹性敏感元件上的外力与其引起的相应变形(应变、位移或转角)之间的关系。
可由刚度或灵敏度来表示。
(2)刚度:弹性敏感元件在外力作用下抵抗变形的能力。
dx dF x F k x =⎪⎭⎫ ⎝⎛∆∆=→∆0lim(3)灵敏度是刚度的倒数(4)弹性滞后:弹性元件在弹性变形范围内,弹性特性的加载曲线与卸载曲线不重合的现象。
(5)弹性后效:弹性敏感元件所加载荷改变后,不时立即完成相应的变形,而是在一定时间间隔中逐渐完成变形的现象。
(6)应力:反映物体一点处受力程度的力学量(7)应变:用以描述一点处变形的程度的力学量是该点的应变 (8)弹性模量=线性应力/线性应变第四章:电阻应变式传感器1、电阻应变片的种类(P63~P65)丝式应变片:(1)回线式应变片 (2)短接式应变片 箔式应变片 薄膜应变片 半导体应变片2、应变效益:金属导体或半导体在受到外力作用时,会产生相应的应变(拉伸或压缩),其电阻也将随之发生变化。
通过弹性敏感元件转换作用,将位移、力、力矩、加速度、压力等参数转换为应变因此可以将应变片由测量应变扩展到测量上述参数,从而形成各种电阻应变式传感器。
第五章:电容式传感器1、电容式传感器工作原理:由绝缘介质分开的两个平行金属板组成的平板电容器,当忽略边缘效应影响时,其电容量与真空介电常数、极板间介质的相对介电常数、极板的有效面积A以及两极板间的距离d 有关:dAC r εε0=若被测量的变化使式中d 、A、 三个参量中任意一个发生变化时,都会引起电容量的变化,因此可分为三种:变间隙式、 变面积式、变介电常数式。
第六章:电感式传感器(目测老师上课时没讲,之后视情况补充)第七章:压电式传感器1、概念:压电式传感器是以具有压电效应的压电器件为核心组成的传感器,已被广泛应用于超声,通信,宇航,雷达和引爆等领域。
2、(1)正压电效应(压电效应):在电介质的一定方向上施加机械力而产生电的极化,导致两个相对表面(极化面)上出现符号相反的束缚电荷Q ,且其电位移D 与外应力张量T 成正比: D=dT (d —压电常数矩阵 即压电系数)当外力消失,又恢复不带电原状;当外力消失,电荷极性随之而变。
(2)逆压电效应(电致伸缩):施加电场时,应变S 与外电场强度E 成正比:S= dE (d —逆压电常数矩阵 即压电系数)即能量类型转换:压电元件电能量机械量教材表述:x 轴平行于正六面体的棱线,称为电轴; y 轴垂直于正六面体的棱面,称为机械轴; z 轴表示其纵向轴,称为光轴。
压电效应:这些物质(压电材料)在沿一定的方向受到压力或拉力作用而发生形变时,其表面上会产生电荷;若将外力去掉时他们又回到不带电的状态,这种现象就称为压电效应。
在每一切片中,当沿电轴方向加作用力F 时,则在于电轴垂直的平面上产生电荷Q 。
逆压电效应:在片状压电材料的两个电极面上,如果加以交流电压,那么压电片能产生机械振动,即压电片在电极方向上有伸缩的现象压电材料的这种现象称为“电致伸缩效应”,也叫“逆压电效应”。
3、相关传感器:压电式加速度传感器、压电式力传感器、压电式压力传感器、测力传感器第八章:磁电式传感器1、概念:磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。
有时也称作电动式或感应式传感器。
根据电磁感应定律,当N 匝线圈在均恒磁场内运动时,设穿过线圈的磁通为Φ,则线圈内的感应电势e与磁通变化率d Φ/dt 有如下关系:dt d Ne φ-= 2、霍尔传感器(ppt 上没有相关内容,大家自己补充)第九章:热电式传感器1、热电偶温度计(热电偶温度计是以热电效应为基础的测温仪表 ) (1)组成:热电偶(敏感元件): 必须用两种不同的材料作热电极—>1 连接热电偶和测量仪表的导线(补偿导线及铜导线)—>2测量仪表(动圈仪表或电位差计)—>3123(2)结构:热电偶是由两种不同材料的导体焊接而成;导体被称为热电极。
工作端或热端:焊接的一端用来感受被测介质的温度。
自由端或冷端:与导线相连端。
(3)热电偶的基本原理:①热电效应:在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中就要产生热电势,称为Seebeck电势。
这一物理现象称为热电效应。
回路的总热电势为:αAB—为热电势率或Seebeck系数,其值随电极材料和两接点的温度而定。
热电效应产生的电势由珀尔帖效益和汤姆逊效应引起。
②接触电势(珀尔帖电势)——>珀尔帖效应将同温度的两种不同的金属互相接触。
由于不同金属内自由电子的密度不同,在金属A和B的接触处会发生自由电子的扩散现象,从密度大的A扩散到B;使A带正电, B带负电;直到在接点处建立了强度充分的电场,能够A BE AB(T)③温差电势——>Thomson效应假设在一匀质棒状导体的一端加热,则沿此棒状导体有一温度梯度。
导体内的自由电子将从高温端向低温端扩散,并在温度较低一端积聚起来,使棒内建立起一电场。
当该电场对电子的作用力与扩散力相平衡时,扩散作用停止,电场产生的电势称为Thomson电势(温差电势)。
E A(T)T T o温差电势远小于接触电势,常把它忽略掉。
回路的总热电势为:)()(),(0 0TETEdTTTEABABTT ABAB-==⎰α(4)插入第三种导线的问题:在热电偶回路中接入第三种金属导线对原热电偶所产生的热电势数值并无影响。
不过必须保证引入线两端的温度相同。
(5)补偿导线的选用 :(工作端与冷端离得很近,而且冷端又暴露在空间,受周围环境温度的影响,冷端温度难以恒定。
)可以采用一种专用导线,将热电偶的冷端延伸出来,这种专用导线称为“补偿导线”。
不同的热电偶所用的补偿导线也不同。
(6)热电偶的温度补偿方法(教材上表述方法有些许不同,大家自己补充吧~)①0℃恒温法:在标准大气压下,将清洁的水和冰鞋混合后放在保温容器内,可使T0保持0℃②补正系数修正法:设冷端温度为t n,此时测得温度为t1,其实际温度应为t= t1+kt n(k:补正系数)③延伸电极法:原理为连接导体定律④补偿电桥法:利用不平衡电桥产生的电压来补偿热电偶参考端温度变化引起的电势变化(7)热电偶的使用误差①分度误差:热电偶的分度是指将热电偶置于给定温度下测定其热电势,以确定热电势与温度的对应关系。
方法有标准分度表分度和单独分度两种。
②仪表误差δ=(T max-T min)K (式中T max、T min:仪表量程上,下限;K:仪表的精度等级。
)③延伸导线误差:一种是由延伸导线的热特性与配用的热电偶不一致引起的;另一种是由延伸导线与热电偶参考端的两点温度不一致引起的。
这种误差应尽量避免。
④动态误差产生原因:由于测温元件的质量和热惯性,用接触法测量快速变化的温度时,会产生一定的滞后,即指示的温度值始终跟不上被测介质温度的变化值,两者之间会产生一定的差值。
修正方法:在热电偶测量系统中引入与热电偶传递函数倒数近似的RC或RL网络⑤漏电误差产生原因:随温度升高(特别是在高温时)时,绝缘效果明显变坏,是热电势输出分流。
(8)热电偶的基本定律(P158):①均质导体定律:两种均质金属组成的热电偶,其电势大小与热电极的直径、长度及沿热电极长度上的温度分布无关,只与热电极材料和两端温度有关。
②中间导体定律:在热电偶回路中插入第三、四…种导体,只要插入导体的两端温度相同,切插入导体是均质的,则无论插入导体的温度分布如何,都不会影响原来热电偶的热电势的大小。
③中间温度定律:热电偶在接点温度为T,T0时的热电势等于该热电势在接点温度为T,T n和T n,T0时相应的热电势的代数和,即:E AB(T,T0)=E AB(T,T n)+E AB(T n,T0)(9)热电偶对热电极的材料的基本要求任意两种导体或半导体都能配成热电偶,当两个接点温度不同时就能产生热电势,但作为实用的测温元件,不是所有的材料都适于制作热电偶。