35kV及以下变电站典型主接线图
电站变电所电气主接线图(含说明)

35kv电气设计

目录摘要----------------------------------------------------------------------1一.电气主接线设计--------------------------------------------------- -2 35kv电气主接线图--------------------------------------------------2二.短路电流计算-------------------------------------------------------4三.主要电气设备选择--------------------------------------------------7断路器的选择--------------------------------------------7隔离开关的选择------------------------------------------8主变压器的选择------------------------------------------9母线的选择----------------------------------------------10 电流互感器的选择----------------------------------------12 避雷器选择---------------------------------------------13各主要电气设备选择结果一览表---------------------------13 四.总结-----------------------------------------------------14五.参考文献-------------------------------------------15摘要电能是社会建设和人民生活不可缺少的重要能源,电力工业在国民经济中占十分重要的地位。
35KV变站电气主接线设计

35KV变站电气主接线设计引言:35kV变电站是电力系统的重要组成部分,它起到将高压输电线路的电能进行降压、分配和供应给用户的作用。
为了保证变电站的安全稳定运行,电气主接线设计是十分关键的一环。
本文将对35kV变电站电气主接线设计进行详细阐述。
一、设计依据:2.电站设计规范:DL/T5183-2024变电站工程电气设计规范3.设备选型:参考国内外类似变电站、设备厂商评价、性价比分析等综合考虑二、设计步骤:1.需求分析:了解变电站的运行需求,包括负荷需求、电力分配需求、电能质量要求等。
2.主接线图设计:根据变电站的功能布置、设备选型、负荷需求等,设计主接线图。
主接线图应满足以下要求:-各设备之间的连接合理,布置紧凑。
-确保每个设备的最大电流能够通过。
-考虑主变压器的容量和并联变压器的选取。
-考虑备用设备的串并联,保证可靠性。
3.主接线布置设计:确定设备的放置位置,遵循以下原则:-各设备之间的距离符合安全操作和维护的要求。
-保证设备的冷却通风良好。
-考虑设备的重量和重心,保证稳定性。
4.主接线回路计算:根据电压等级、负荷要求等进行主接线回路计算。
计算包括电缆选型、电缆截面积确定、电缆长度计算、电缆负载流计算等。
5.系统接地设计:根据设计图纸和电气设备布置要求进行系统接地设计,包括接地电阻计算,接地极数量和布置等。
6.设备连接设计:根据设备类型和工作要求,确定设备之间的电缆连接,考虑电缆长度、连接方式等。
7.安全与可靠性设计:根据标准和规范,设计接地保护装置、电流互感器、电压互感器、分段绝缘开关等设备的选择和布置。
三、设计要点:1.主接线图设计时要考虑最大电流负荷,以及备用线路的布置,确保变电站的可靠性和灵活性。
2.设备的放置位置要合理,不能影响设备的冷却和通风,且便于操作和维护。
3.电缆的选型要充分考虑电流载流量、电压降和线损等因素,并满足国家标准和工程要求。
4.系统接地设计要符合标准和规范,确保人员安全和设备的可靠性。
变电站主接线图(非常好)

①设备较多,配电装置复杂,经济性较差;
②运行中需要用QS作为操作电器切换电路,容易发生误操作; ③当Ⅰ段母线故障时,在切换母线过程中,仍要短时地切除较 多的电源及出线。
湖南铁路科技职业技术 学院 电气一次
图5-7
36
1、 不分段的双母线接线
(4)适用:
35~60KV配电装置当出线回路数超过8回;
110~220KV配电装置当出线回路数为5回及以上。
送电操作: 先合母线侧隔离开关QSB,再合线路侧隔离开关QSL ,最后合断路器QF 停电操作: 先断断路器QF,再断线路侧隔离开关QSL,最后断母线侧隔离开关QSB
湖南铁路科技职业技术 学院 电气一次
图5-3
19
1 、 不分段的单母线接线
(3)特点: 优点:简单、经济。
①接线简单(设备少)、清晰、明了;
旁 路 断 路 器
3、 单母线带旁路母线接线
(2)运行方式 当检修出线断路器1QF时:QSa按等电位原则→先并后切
①先合旁路断路器QFa向旁路母线WBa充电,检查旁路母线WBa 是否完好,使WBa带电;
②再合该回路旁路隔离开关1QSa,实现旁路与正常工作回路 并联运行; ③再断开该回路出线断路器1QF; ④最后分别断开1QF两侧隔离开关1QSL和1QSB。使1QF退出运 行,即可对1QF进行检修。此时,线路1仍然保持供电。 主母线WB→旁路断路器QFa→旁路母线WBa→旁路隔离开关 1QSa→对线路1供电 这是利用旁路断路器QFa替代1QF来完成通断电路及保护作用
线上,每条引出线都
设置断路器QF和隔离 开关QS。
电气一次
图5-3
18
1 、 不分段的单母线接线
(2)运行分析: 断路器QF的作用:便于投入和切除任意一条进出线。 隔离开关QS作用:检修断路器QF时保证它与带电部分可靠隔离 若没有母线QSB,检修断路器QF时,母线要停电
变电站主接线图(解释)

变电站一次系统图1、单母线接线特点:只有一组母线,所有电源回路和出线回路,均经过必要的开关电器连接到该母线上并列运行。
主要优点:接线简单、清晰,所用电气设备少,操作方便,配电装置造价便宜。
主要缺点:适应性差,母线故障或检修,全部回路均需停电;任一回路断路器检修,该回路停电。
适用范围:单电源的发电厂和变电所,且出线回路数少,用户对供电可靠性要求不高的场合;10kV纯无功补偿设备出线(电容器、电抗器)。
2、单母线分段接线特点:与单母线接线方法相比,增加了分段断路器,将母线适当分段。
当对可靠性要求不高时,也可利用分段隔离开关进行分段。
母线分段的数目,决定于电源的数目,容量、出线回数,运行要求等。
母线分段一般分为2-3段。
优点:母线发生故障时,仅故障母线段停电,缩小停电范围;对重要用户由两侧共同供电,提高供电可靠性;缺点:当一段母线故障或检修时,与该段所连的所有电源和出线均需断开,单回供电用户要停电;任一出线断路器检修,该回路要停电。
适用:6~10kV,出线6回以上;35~66kV,出线不超过8回时;110~220kV,出线不超过4回时。
3、单母线分段带旁路母线接线优点:增设旁路母线,增设各出线回路中相应的旁路隔离开关,解决出线断路器检修时的停电问题。
为了节省投资,可不专设旁路断路器,而用母线分段断路器兼作旁路断路器。
因为电压越高,断路器检修所需的时间越长,停电损失越大,因此旁路母线多用于35kV以上接线。
适用:6~10kV接线一般不设旁路母线;35~66kV,可设不专设旁路断路器的旁路母线;110kV出线6回以上,220 kV出线4回以上,宜用专设旁路断路器的旁路母线;出线断路器使用可靠性较高的SF6断路器时,可不设旁路母线。
4、双母线接线优点:两条母线互为备用,一条母线检修时,另一条母线可以继续工作,不会中断对用户的供电;任一母线侧隔离开关检修时,只需断开这一回路即可;工作母线故障时,所有回路能迅速切换至备用母线而恢复供电;可将个别回路单独接在备用母线上进行特殊工作或试验;因而可靠性高,运行方式灵活,便于扩建。
发电厂电气部分-35KV变电站主接线设计

目录1 设计任务 (1)1.1 初始资料 (1)1.2 电力系统与本站连接情况 (1)1.3负荷情况 (1)2 变电站主接线设计 (1)2.1 主接线设计依据 (1)2.2主接线中设备配置 (2)2.3 设计步骤 (3)2.4 主接线方框图 (3)2.5 主接线方案的确定 (4)3 短路电流的计算 (5)3.1 概述 (5)3.2 短路计算的目的 (6)3.3 短路计算方法 (6)4 电气设备的选择 (7)4.1变压器的选择 (7)4.2断路器的选择与校验 (8)4.3隔离开关的选择 (9)4.4母线的选择 (10)5 设计结果 (10)5.1 设计图纸 (10)5.2 设计说明书 (11)1 设计任务1.1 初始资料(1)设计变电所在城市郊外,主要向市区及变电所附近农村和工厂供电(2)确定本变电所的电压等级为35kV/10kV,35kV是本变电所的电源电压,10kV是二次电压(3)出线向用户供电在35KV侧有2回出线,出线回路数在10KV侧有8回1.2 电力系统与本站连接情况电力系统通过35KV主接线,母线与本站直接连接1.3负荷情况该电站在5-10年建设扩建中10KV负荷为10MW。
其中1,2级负荷供电占75%,最小负荷为700MW,功率因数:cosφ=0.9,最大负荷年利用率:Tmax=4000h2 变电站主接线设计2.1 主接线设计依据(1)变电所在电力系统中的地位和作用:一般变电所的多为终端或分支变电所,电压一般为35kV。
(2)变电所的分期和最终建设规模:变电所建设规模根据电力系统5—10年发展计划进行设计,一般装设两台主变压器。
(3)负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证全部一级负荷不间断供电,对于二级负荷一般也要两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电,对于三级负荷一般只需一个独立电源供电。
(4)系统备用容量的大小:装有两台及以上主变电器的变电所,当其中一台事故断开时其余主变压器的容量应保证该变电所70%的全部负荷,在计及过负荷能力后的允许时间内,应保证用户的一、二级负荷供电。
变电站主接线图(解释)

变电站主接线图(解释)变电站⼀次系统图1、单母线接线特点:只有⼀组母线,所有电源回路和出线回路,均经过必要的开关电器连接到该母线上并列运⾏。
主要优点:接线简单、清晰,所⽤电⽓设备少,操作⽅便,配电装置造价便宜。
主要缺点:适应性差,母线故障或检修,全部回路均需停电;任⼀回路断路器检修,该回路停电。
适⽤范围:单电源的发电⼚和变电所,且出线回路数少,⽤户对供电可靠性要求不⾼的场合;10kV纯⽆功补偿设备出线(电容器、电抗器)。
2、单母线分段接线特点:与单母线接线⽅法相⽐,增加了分段断路器,将母线适当分段。
当对可靠性要求不⾼时,也可利⽤分段隔离开关进⾏分段。
母线分段的数⽬,决定于电源的数⽬,容量、出线回数,运⾏要求等。
母线分段⼀般分为2-3段。
优点:母线发⽣故障时,仅故障母线段停电,缩⼩停电范围;对重要⽤户由两侧共同供电,提⾼供电可靠性;缺点:当⼀段母线故障或检修时,与该段所连的所有电源和出线均需断开,单回供电⽤户要停电;任⼀出线断路器检修,该回路要停电。
适⽤:6~10kV,出线6回以上;35~66kV,出线不超过8回时;110~220kV,出线不超过4回时。
3、单母线分段带旁路母线接线优点:增设旁路母线,增设各出线回路中相应的旁路隔离开关,解决出线断路器检修时的停电问题。
为了节省投资,可不专设旁路断路器,⽽⽤母线分段断路器兼作旁路断路器。
因为电压越⾼,断路器检修所需的时间越长,停电损失越⼤,因此旁路母线多⽤于35kV以上接线。
适⽤:6~10kV接线⼀般不设旁路母线;35~66kV,可设不专设旁路断路器的旁路母线;110kV出线6回以上,220 kV出线4回以上,宜⽤专设旁路断路器的旁路母线;出线断路器使⽤可靠性较⾼的SF6断路器时,可不设旁路母线。
4、双母线接线优点:两条母线互为备⽤,⼀条母线检修时,另⼀条母线可以继续⼯作,不会中断对⽤户的供电;任⼀母线侧隔离开关检修时,只需断开这⼀回路即可;⼯作母线故障时,所有回路能迅速切换⾄备⽤母线⽽恢复供电;可将个别回路单独接在备⽤母线上进⾏特殊⼯作或试验;因⽽可靠性⾼,运⾏⽅式灵活,便于扩建。
35kV窑上变电站图纸 35kv电压互感器接线全图(窑上)

- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、单电源一台变压器,高供低计
2、
单电源一台变压器,高供高计(负荷开关)
3、
单电源二台变压器,高供高计(负荷开关)
4、
单电源一台变压器,高供高计(断路器)
5、
高压双电源一台变压器,高压单母变压器,高压线变组(负荷开关),低压单母线分段
7、
高压双电源二台变压器,高供高计(负荷开关),高压单母线、低压单母线分段
8、高压双电源(一主一备)三台变压器,高供高计(断路器),高压单母线、低压环形接线
9、高压双电源(两路同供)四台变压器,高供高计(断路器),高压单母线分段、低压多分段,加所变