沿程阻力实验指导书(给学生)

合集下载

实验一 管路沿程阻力测定

实验一  管路沿程阻力测定

实验一 管路沿程阻力测定一. 实验目的1. 掌握流体流经管道时沿程阻力损失的测定方法。

2. 测定流体流经直管时的摩擦阻力,确定摩擦系数λ与Re 的关系3. 测定流体流经管件时的局部阻力,并求出阻力系数ξ。

4. 学会压差计和流量计的使用。

二. 实验原理 1. 沿程阻力流体在水平均匀管道中稳定流动时,由截面1到截面2,阻阻力损失表现为压强降低:pp p h f 21-=湍流十分复杂需通过实验研究。

影响阻力损失因素:密度ρ,粘度μ,管径d ,管长l ,管壁粗糙度ε,流速u 。

变量关系式:△P=f (d ,l ,μ,ρ,u ,ε) 引入λ=φ(dR e ε,)则变为:22ud l ph f λρ=∆=上式中:λ称直管摩擦系数,滞流时,λ=64/e R ;湍流时:λ与e R 关系受管壁粗糙度影响。

由伯努利方程知沿程阻力损失由R 算出:ΔP=R (ρ指-ρ水)g2. 局部阻力当量长度法:2.2u d l l h e f ⎪⎪⎭⎫⎝⎛+=∑∑λ l 是管路长度,∑e l 是当量长度之和。

阻力系数法:2.2uh p ξ=ξ-局部阻力系数,无因次, u-在小截面管中流体的平均速度(m/s )p h 可由伯努利方程由读数R 求出,流速u 的计算:u=24/dV s π(m/s )三. 实验装置与流程1. 本实验装置及设备主要参数:被测元件:镀锌水管,管长20m ,管径(公称直径)0.0021m ,闸阀D=3/4 1) 测量仪表:U 形压差计(水银指示液);LW-15型涡轮流量计 2) 循环水泵。

3) 循环水箱。

4) DZ15-40型自动开关。

5)数显温度表2.流程四.实验操作步骤及注意事项1.打开压差计上平衡阀,关闭各放气阀。

2.启动循环水泵。

3.排气:(1)管路排气(2)测压管排气(3)关闭平衡阀,缓慢旋转压差计上放气阀排除压差计中的气泡,排气完毕,4.读取压差计零位读数。

5.开启调节阀至最大,确定流量范围,确定试验点,测量直管部分阻力和局部阻力。

沿程阻力实验指导书(给学生)

沿程阻力实验指导书(给学生)

沿程阻力系数测定实验报告班级:___________学号:___________姓名:___________一、实验目的1、学会测定管道沿程水头损失系数λ的方法;2、掌握圆管层流和紊流的沿程损失随平均流速变化的规律,绘制曲线;3、掌握管道沿程阻力损失系数的测量方法和气-水压差计测量压差的方法。

4、将实测得到的结果与莫迪图作对比分析。

二、实验原理1、对于通过直径不变的圆管的恒定水流,沿程水头损失为Z ( )h f =P 1-=△h 2P ( )Z 1P g++g P 1其值为上下游量测断面的压差计读数。

沿程水头损失也常表达为f =h λL d ·V 22gλ=△h2gV ·d L其中:λ为沿程水头损失系数;L 为上下游量测断面之间的管段长度;d 为管道直;V 为断面平均流速。

若在实验中测得△h 和断面平均流速,则可直接得到沿程水头损失系数. 2、不同流动形态的沿程水头损失与断面平均流速的关系是不同的.层流流动中的沿程水头损失与断面平均流速的1次方成正比。

紊流流动中的沿程水头损失与断面平均流速的1.75~2.0次方成正比。

见图1、图2.图2圆管内径向速度分布示意图g l 图1阻力随速度变化图3、沿程水头损失系数λ是相对粗糙度△/d 与雷诺数Re 的函数,△为管壁的粗糙度,Re=Vd/ν(其中ν为水的运动粘滞系数)。

(1) 对于圆管层流流动λ=64/Re(2) 对于水力滑管紊流流动可取105<Re ( )0.31641/4Re λ=可见在层流和紊流光滑管区,沿程水头损失系数λ只取决于雷诺数。

(3) 对于水力粗糙管紊流流动λ=2lg ( )2△d +1.74[ ]2沿程水头损失系数λ完全由粗糙度决定,与雷诺数无关,此时沿程水头损失与断面平均流速的平方成正比,所以紊流粗糙管区通常也叫做“阻力平方区".(4)对于在紊流光滑区和紊流粗糙管区之间存在过渡区,沿程水头损失系数λ与雷诺数和粗糙度都有关.三、实验装置实验台主要由二根不同的实验管路组成.每根管子中间L 长度的两断面上设有测压孔,可用压差板测出管路实验长度L 上的沿程损失;管路的流量测量采用体积法测量。

管路沿程阻力实验

管路沿程阻力实验
实验报告四
实验课目名称:管路沿程阻力实验
姓名:
学号:
日期:
一、 实验目的
1. 验证沿程水头损失与平均流速的关系。 2. 测定不同管路的沿程阻力系数。 3. 对照雷诺实验,观察层流和紊流两种流态及其转换过程。 二.实验器材及材料 三.实验原理 1.沿程水头损失与流速的关系 对沿程阻力两测点的断面列伯努利方程
线。 5)调节阀门逐次由大到小,共测定 10 次。
五、实验数据记录及分析
1.沿程水头损失与流速的关系实验数据及计算如表 4.1 所示, lg h f lg v 关
系曲线如图 4.2 所示。
仪器常数:d = 2.3cm, A = 4.15 cm2
L=
0.8
m, t=
20 ℃
表 4.1 数据表
No
h1
z1
p1
a1v12 2g
z2
P2

a2 v2 2
2g
hl
因实验管段水平,且为均匀流动,所以
由此得
z1 z2 , d1 d 2 , v1 v2 , 1 2 1, hl h f
hf

p1 y

p2
h
即管路两点的沿程水头损失 h f 等于测压管水头差 h 。
47.7
87.2
81.7
75.97
v lg v
(cm/s) 11.49 1.06 21.01 1.32 19.69 1.29 18.30 1.26
六.老师评审成绩
由此式求得沿程水头损失,同时根据实测流量计算平均流速 v ,将所得 h f 和 v 数
据绘在对数坐标纸上,就可确定沿程水头损失与平均流速的关系。 2.沿程阻力系数的测定 由上面的分析可以得到:

《流体力学》实验指导书

《流体力学》实验指导书

实验二 雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律2、 观察流体由层流变紊流及由紊流变层流的过度过程3、 测定液体在圆管中流动时的下临界雷诺数2c e R二、 实验原理及实验设备流体在管道中流动,由两种不同的流动状态,其阻力性质也不同。

雷诺数的物理意义,可表征为惯性力与粘滞力之比。

在实验过程中,保持水箱中的水位恒定,即水头H 不变。

如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v ,微启红色水阀门,这是红色水与自来水同步在管路中沿轴线向前流动,红颜色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。

此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。

如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。

如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态微紊流运动。

图1雷诺数实验台示意图1.水箱及潜水泵2.接水盒3. 上水管4. 接水管5.溢流管6. 溢流区7.溢流板8.水位隔板9. 整流栅实验管 10. 墨盒 11. 稳水箱 12. 输墨管 13. 墨针 14.实验管15.流量调节阀雷诺数表达式e v dR ν⋅=,根据连续方程:A=v Q ,Qv A=流量Q 用体积法测出,即在Δt 时间内流入计量水箱中流体的体积ΔV 。

tVQ ∆=42d A π=式中:A —管路的横截面积;d —实验管内径;V —流速;ν—水的粘度。

三、实验步骤1、准备工作:将水箱充满,将墨盒装上墨水。

启动水泵,水至经隔板溢流流出,将进水阀门关小,继续向水箱供水,并保持溢流,以保持水位高度H 不变。

2、缓慢开启阀门7,使玻璃管中水稳定流动,并开启红色阀门9,使红色水以微小流速在玻璃管内流动,呈层流状态。

3、开大出口阀门15,使红色水在玻璃管内的流动呈紊流状态,在逐渐关小出口阀门15,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。

沿程阻力损失实验.

沿程阻力损失实验.

沿程阻力损失实验一、实验目的1.加深了解圆管层流和紊流的沿程阻力损失变化的规律,绘制f h lg ~v lg 曲线。

2.掌握管道沿程阻力系数的测定和应用气—水压差计及电测仪测量压差的方法。

3.将测得的Re ~ 关系值与莫迪图对比,进一步提高实验成果分析能力。

10.实验流量调节阀 11.供水管与供水阀 12.旁通管与旁通阀 13.稳压筒1.实验装置配备 ● 自动水泵与稳压器自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。

压力超高时自动停机,过低时自动开机。

为避免因水泵直接向实验管道供水而造成压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。

● 旁通管与旁通阀由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成压力的波动。

为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出),通过分流可使水泵持续稳定运行。

旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。

实际上旁通阀又是本装置用以调节流量的重要阀门之一。

2.压差测量方法管道沿程阻力分别由压差计和电测仪量测,低压差用水压差计量测;而高压差用电子量测仪(电测仪)量测。

三、实验原理管道沿程阻力由达西公式gv d l h f 22⋅=λ得222241212Q h K Q d l gdh v lgdh f f f=⎪⎭⎫⎝⎛=⋅=πλ l gdK 852π=对于水平等直径圆管可得)(21p p h f -=f h 由压差计和电测仪量测,低压差用水压差计量测;高压差用电子量测仪(电测仪)量测。

四、实验方法与步骤1.实验准备●检查实验装置,连接好实验设备。

●开启所有阀门,包括进水阀、旁通阀、流量调节阀。

●打开水泵防尘罩,接通电源。

●排气。

测压架端软管排气:连续开关旁通阀数次,待水从测压架中经过即可。

排气完毕,打开旁通阀。

若测压管内水柱过高,可打开测压架顶部放气阀,(所有阀门都打开,)水柱自动降落,至正常水位拧紧放气阀即可。

沿程阻力系数实验报告

沿程阻力系数实验报告

沿程阻力系数实验报告沿程阻力系数实验报告引言:沿程阻力系数是描述流体在管道中流动过程中受到的阻力大小的一个重要参数。

准确测量沿程阻力系数对于流体力学研究和工程应用具有重要意义。

本实验旨在通过实验方法测量沿程阻力系数,并探讨其与流速、管道直径等因素的关系。

实验装置:本次实验采用的实验装置主要包括:水泵、流量计、压力计、流量调节阀、管道等。

其中,水泵用于提供流体流动的动力;流量计用于测量流体通过管道的流量;压力计用于测量管道中的压力;流量调节阀用于控制流体流动的速度。

实验步骤:1. 首先,将实验装置按照实验要求进行搭建,并将水泵连接到管道系统中。

2. 打开水泵,调节流量调节阀,使流量计示数稳定在一定数值。

3. 记录流量计示数和压力计示数,并计算流速和压力差。

4. 重复上述步骤,改变流量调节阀的开度,记录不同流速下的流量计示数和压力计示数。

5. 根据实验数据,计算沿程阻力系数。

实验结果:根据实验数据,我们得到了不同流速下的流量计示数和压力计示数。

通过计算,得到了相应的流速和压力差。

进一步分析实验数据,我们得到了不同流速下的沿程阻力系数。

讨论与分析:通过实验结果的分析,我们可以得到以下结论:1. 沿程阻力系数与流速呈正相关关系。

随着流速的增加,沿程阻力系数也会增加。

这是因为流速增加会导致流体分子之间的相互碰撞增加,从而增加了阻力。

2. 沿程阻力系数与管道直径呈反相关关系。

管道直径越大,沿程阻力系数越小。

这是因为管道直径增大会减小单位面积内的流体流速,从而减小了阻力。

3. 沿程阻力系数与流体的黏度有关。

黏度越大,沿程阻力系数越大。

这是因为黏度大的流体分子之间的相互作用力较大,从而增加了阻力。

结论:通过本次实验,我们成功测量了沿程阻力系数,并探讨了其与流速、管道直径、流体黏度等因素的关系。

实验结果表明,沿程阻力系数与流速、管道直径、流体黏度等因素密切相关。

这对于流体力学的研究和工程应用具有重要意义。

致谢:在此,我们要感谢实验指导老师的悉心指导和同组同学的合作。

圆管沿程阻力系数测定

圆管沿程阻力系数测定实验指导与报告学院_______专业_______班级______姓名_______同组者______指导教师____学号_______日期_______成绩______吉林大学圆管沿程阻力系数测定实验一.实验目的1. 测定不同雷诺数Re 时沿程阻力系数λ的值;2. 观察流体以定常流动流经圆管时,沿程水头损失h f 与流速v 之间的关系; 二.实验设备三.实验原理对等径直管的截面Ⅰ、Ⅱ列写伯努利方程:221122112222jv v Z h Z h h ggαα++=+++由于Ⅰ、Ⅱ两断面在同一水平线上,则Z 1=Z 2。

伯212v g222v g努利方程化简为:2211221222j v v h h h ggαα+=++;由连续性方程可知,1122v v A v A vA q ===; 因为v 1=v 2=v ,故α1=α2,h j =h 1-h 2=△h ;由此可见,等直径圆管中两横截面间的沿程压力水头损失h f 等于这两个截面上的压力水头差,根据达西公式可得:22f L v h d gλ= 采用体积法测量并计算截面平均流速,可求出沿程阻力系数λ为:22f gdh Lv λ=四.实验步骤及注意事项本实验涉及到的传感器和阀门如下:✧ 传感器:5#(压力传感器)、6#(压力传感器)、4#(流量传感器); ✧ 阀门 :4、5、8、9号阀门常开,其余阀门关闭,1号阀门用于调节流量; 实验步骤:1. 接通电源,开启水泵及计算机;2. 待水泵运行平稳后,单击桌面上的“多功能流体力学实验”图标,进入“计算机控制流体力学试验台”程序;3. 根据提示进入采集界面,单击“实验”选项卡进入子目录,选择沿程阻力系数测定,进入相应界面;4. 调节阀门1,进行10组不同流量的测量,流量可由大到小,因为涡流量计存在测量误差,故最小流量应控制在800cm 3/s 以上; 5. 点击操作界面右侧的测量按钮,即可获得测量数据,如测量数据不理想,可重新进行该操作,直到获取理想数据; 6. 实验完成后,点击打印按钮,获得实验数据; 7. 实验结束后,关闭计算机,关闭水泵,关闭电源;★相关实验参数D=14mm;L=2000mm;五.实验数据记录及计算六.实验结论与误差分析七.思考题1.分析当管路尺寸确定后,沿程损失h f与哪些物理量有关?2.多次试验测得的λ值不同的原因是什么?3.影响λ值的因素有哪些?。

沿程阻力实验报告

其中:
三角堰流量测量:
实验数据处理及计算:
表4-1实验测量数据
序号
孔板比压计
测针读数H(cm)
堰上水头
H=H-H0
H0=12.032
流量Q
(m3/h)
(流量计)
水温
(0C)
运动粘滞系数
X106
(m2/s)
读数1
(cm)
读数2
(cm)
读数差(cm)
1
66.61
37.92
28.69
20.694
8.662
6.119
4.96
27.5
0.8465
6
54.45
51.08
3.37
17.526
5.494
3.85
27.5
0.8465
7
53.9
51.59
2.31
17.182
5.15
3.21
27.5
0.8465
8
53.45
52.1
1.35
16.7
4.668
2.46
26.5
0.8651
表4-2数据处理结果
序号
孔板流量计流量1
11.3
27.5
0.8465
2
62.41
42.32
20.09
20.082
8.05
9.42
27.5
0.8465
3
58.76
46.4
12.36
19.226
7.194
7.4
27.5
0.8465
4
56.89
48.48
8.41
18.693
6.661
6.11

沿程阻力系数测定-实验报告

沿程阻力系数测定-实验报告实验目的:测定流体在不同管道内流动时的沿程阻力系数,分析流体流动的规律。

实验原理:流体在流动的过程中,由于管道内的摩擦、弯曲等原因,会产生一定的沿程阻力,阻碍流体的流动。

沿程阻力系数是描述阻力大小的物理量,可以反映出流体流动的特性。

测算沿程阻力系数需要通过实验测量不同位置的压力差,计算得出流速和阻力系数,最终得到流体在管道内的流动规律。

实验器材:一台流量计,一根不同内径的水流管,一个流量调节器,一个压力计,一套支架和夹子,水池、水泵等辅助设备。

实验步骤:1. 搭建实验装置,将水泵接入水池,利用泵将水流送入待测管道中。

2. 开始实验前,先测量管道各处的内径和长度,并计算管道的摩擦系数。

3. 将流量计安装在管道的某个位置,调节流量,使其保持在一定的范围。

4. 安装压力计,分别测量流过流量计前后不同位置处的压力差。

5. 根据所测得的数据,计算流体的流速和沿程阻力系数,绘制实验数据图表。

6. 根据实验结果,分析流体的流动规律以及影响沿程阻力系数的因素。

实验结果:通过实验测量,我们得到了不同位置处的压力差、流速和阻力系数等数据,并绘制成图表。

从图表中可以看出,在管道内距离流速计越远的位置,流速逐渐下降,同时沿程阻力系数也逐渐增加。

这说明管道内的摩擦力和阻力对流体的影响逐渐加剧,阻碍了流体的流动。

实验结论:通过本次实验,我们得到了流体在管道内流动时的流速和沿程阻力系数等数据,为研究流体的流动规律提供了实验依据。

我们也发现,管道内的摩擦力和阻力对流体的影响很大,需要注意管道的内径和表面材质等因素。

此外,实验数据也可以为管道设计和流动控制等领域提供参考。

沿程阻力实验

实验七、沿程阻力实验一、实验目的1. 掌握测定镀锌铁管管道沿程阻力系数的方法。

2. 在双对数坐标纸上绘制λRe关系曲线。

3. 进一步理解沿程阻力系数随雷诺数的变化规律。

二、实验装置本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。

在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。

另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。

F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路图7-1 管流综合实验装置流程图三、实验原理本实验所用的管路水平放置且等直径,因此利用能量方程式可以推导出管路两点间的沿程水头损失的计算公式:(1-7-1)式中λ——沿程阻力系数;L——实验管段两端面之间的距离,m;D——实验关内径,m;g——重力加速度(g=9.8 m/s2);v——管内平均流速,m/s;h f——沿程水头损失(由压差计测定),m。

由式(1-7-1)可以得到沿程阻力系数λ的表达式:(1-7-2)沿程阻力系数λ在层流时只与雷诺数有关,在紊流时与雷诺数、管壁粗糙度都有关。

当实验管路粗糙度保持不变时,可以得到该管的λRe关系曲线。

四、实验要求1.有关常数实验装置编号:No. 1 管路直径:D = 1.58×10-2m;水的温度:T = 19.2 ℃;水的密度:ρ= 998.27 kg/m3;动力粘度系数:μ= 1.00998×10-3Pa⋅s;运动粘度系数:ν= 1.012×10-6m2/s;两测点之间的距离:L= 5 m 2.实验数据记录及处理见表7-1和表7-2。

表7-1 沿程阻力实验数据记录表表7-2 沿程阻力实验数据处理表以其中一组数据写出计算实例。

答:取第9组数据进行分析所以有:V = 960×10-6 m 3 ;t = 30.93s ;1h = 79.5×10-2m ;2h = 75.1×10-2m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沿程阻力系数测定




班级:___________
学号:___________
姓名:___________
一、实验目的
1、学会测定管道沿程水头损失系数λ的方法;
2、掌握圆管层流和紊流的沿程损失随平均流速变化的规律,绘制曲线;
3、掌握管道沿程阻力损失系数的测量方法和气—水压差计测量压差的方法。

4、将实测得到的结果与莫迪图作对比分析。

二、实验原理
1、对于通过直径不变的圆管的恒定水流,沿程水头损失为
Z ( )h f =P 1-=△h 2P ( )Z 1P g
++g P 1
其值为上下游量测断面的压差计读数。

沿程水头损失也常表达为
f =h λL d ·V 22g
λ=
△h
2g
V ·d L
其中:λ为沿程水头损失系数;L 为上下游量测断面之间的管段长度;d 为管道直;V 为断面平均流速。

若在实验中测得△h 和断面平均流速,则可直接得到沿程水头损失系数。

2、不同流动形态的沿程水头损失与断面平均流速的关系是不同的。

层流流动中的沿程水头损失与断面平均流速的1次方成正比。

紊流流动中的沿程水头损失与断面平均流速的1.75~2.0次方成正比。

见图1、图2。

图2圆管内径向速度分布示意图
g l 图1阻力随速度变化图
3、沿程水头损失系数λ是相对粗糙度△/d 与雷诺数Re 的函数,△为管壁的粗糙度,Re=Vd/ν(其中ν为水的运动粘滞系数)。

(1) 对于圆管层流流动
λ=64/Re
(2) 对于水力滑管紊流流动可取
10
5
<Re ( )0.31641/4
Re λ=
可见在层流和紊流光滑管区,沿程水头损失系数λ只取决于雷诺数。

(3) 对于水力粗糙管紊流流动
λ=
2lg ( )
2△
d +1.74[ ]
2
沿程水头损失系数λ完全由粗糙度决定,与雷诺数无关,此时沿程水头损失与断面平均流速的平方成正比,所以紊流粗糙管区通常也叫做“阻力平方区”。

(4)对于在紊流光滑区和紊流粗糙管区之间存在过渡区,沿程水头损失系数λ与雷诺数和粗糙度都有关。

三、实验装置
实验台主要由二根不同的实验管路组成。

每根管子中间L 长度的两断面上设有测压孔,可用压差板测出管路实验长度L 上的沿程损失;管路的流量测量采用体积法测量。

利用水泵将储水箱中的水打入试验管路,经稳流箱稳定水流,再通过出水阀门控制出水流量。

通过计量水箱返回储水箱。

四、实验步骤
1、对照装置图和说明,搞清各组成部件的名称、作用及其工作原理;检查蓄水箱水位是否够高。

否则予以补水并关闭阀门;记录有关实验常数:工作管内径d和实验管长L。

2、接通电源,启动水泵。

打开供水阀。

3、调通量测系统:
(1)启动水泵排除管道中的气体。

(2)关闭出水阀,排除其中的气体。

随后,关闭进水阀,开出水阀,使水压计的液面降至标尺零附近。

再次开启进水阀并立即关闭出水阀,稍候片刻检查水位是否齐平,如不平则需重调。

(3)气-水压差计水位齐平。

(4)实验装置通水排气后,即可进行实验测量。

在进水阀全开的前提下,逐次开大出水阀,每次调节流量时,均需稳定2-3分钟,流量愈小,稳定时间愈长;测流量时间不小于8-10秒;测流量的同时,需测记压差计读数;
(5)结束实验前,关闭出水阀,检查水压计是否指示为零,若均为零,则关闭进水阀,切断电源。

否则,表明压力计已进气,需重做实验。

五、实验数据及整理(实测数据,计算过程,绘制表格)
1、有关常数
管径d= 管长L= 管道截面积A=
2、记录数据及计算数据,要求计算数据的过程
表1: 计算沿程损失因素λ
3、绘图分析
绘制LgV —lghf 曲线,并确定指数关系值n 的大小。

在坐标纸上以LgV 为横坐标,以lghf 为纵坐标,点绘所测的LgV —lghf 关系曲线,根据具体情况连成一段或几段直线。

求坐标上直线的斜率
=
n -lgh f 2f1lgh 2lgV -lgV 1
将从图纸上求得n 值与已知各流区的n 值(即层流n=1,光滑管流区n=1.75,粗糙管紊流区n=2.0,紊流过渡区1.75<n<2.0)进行比较,确定流态区。

六、分析与思考
1、为什么压差计的水柱差就是沿程水头损失?如果实验管道安装得不水平,是否影响实验结果?
2、次实验结果与莫迪图吻合与否?分析原因。

3、验中的误差主要由哪些环节产生?。

相关文档
最新文档