第一讲 速算与巧算(奥数)
四年级奥数第一讲速算与巧算课件

方法一 凑整补零法
求一位数的平方,在乘法口诀 的九九表中已经被同学们熟知,如 7×7=49(七七四十九)。对于两 位数的平方,大多数同学只是背熟 了10~20的平方,
11×11=121,12×12=144, 13×13=169,14×14=196
15×15=225,16×16=256,17×17= 3
=100…00
13
3976个0
练习 1、125×25×32
100000 2、567×422+567+577×567
567000 3、5328×9999
53274672 4.482×59+41×159-323×59
15900
14
测试题
一、选择合理的方法简算下面各题(50分) (1)173+58+92+142+108 (573) (2)853-39-153-161 (500) (3)369+245+155-169 (600) (4)903-(774-97)-126 (100) (5)947+(372-447-572) (300) (6)76543+1498+3458+5 (81504) (7)5613-(613+261)-239 (4500)
方法一: 凑整补零法 例1 求292和822的值。 解: 292=29×29
=(29+1)×(29-1)+12 =30×28+1 =840+1 =841 解: 822=82×82 =(82-2)×(82+2)+22
4
由上例看出, 因为29比30少1, 所以给29“补”1, 这叫“补少”;因为82比80多2, 所以从82中“移 走”2, 这叫“移多”。因为是两个相同数相乘, 所 以对其中一个数“移多补少”后, 还需要在另一个数 上“找齐”。本例中, 给一个29补1, 就要给另一个 29减1;给一个82减了2, 就要给另一个82加上2。最 后, 还要加上“移多补少”的数的平方。
四年级暑假奥数学习资料

例如:
首项是( ),末项是( ),公差是( )。
2.等差数列的有关公式。
等差数列的项数=(末项-首项)÷ 公差+1
等差数列的末项=首项+(项数-1)× 公差
等差数列的和=(首项+末项)× 项数÷2
【例1】有一个数列:4、10、16、22……52,这个数列有( )项。
【例2】有一等差数列:3、7、11、15……,这个数列的第100项是( )。
2007个6 2007个9 2007个9 2007个9 2007个9
第四讲:等差数列㈠
1.等差数列的有关知识。
若干个数排成一列称为数列。数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后一项与其相邻的前一项的差都相等的数列叫做“等差数列”。相邻两项的差叫做公差。
⑸612-375+275+(388+286)⑹756+1478+346-(256+278)-246
第二讲:速算与巧算㈡
【例1】325÷25 30000÷625 22400÷700
【例2】25×125×4×8 25×28
125×56 25×5×128×125
【例3】(360+108)÷36(450-75)÷15
第一讲:速算与巧算㈠
速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高自己的计算能力和思维能力。巧算方法主要是根据运算定律和运算性质,对算式适当变形,或改变运算顺序,或凑整,或改写等,从而变成一个易于算出结果的算式,使计算简便。
【例1】9+99+999+9999+99999 0.9+0.99+0.999+0.9999+0.99999
奥数小学三年级精讲与测试第一讲速算与巧算

奥数小学三年级精讲与测试第一讲速算与巧算第一讲速算与巧算知识点重点难点1.加法的简便运算.(1)A+B=B+A;(2)(A+B)+C=A+(B+C);2.减法的简便运算.(1)A-B-C=A-(B+C);(2)A-B+C=A-(B-C).加减法同级运算,括号外面是减号的,添上或去掉括号,括号里的符号:加号要变成减号、减号要变成加号。
当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为加号。
3.乘法的简便运算。
(1)A×B=B×A;(2)A×B×C=A×B×C;(3)(A±B)×C=A×C±B×C;4.除法的简便运算.(1)A÷B÷C=A÷(B×C);(2)A÷B×C=A÷(B÷C);(3)A÷B=(A×C)÷(B×C)乘除法同级运算,括号外面是除号的,添上或去掉括号,括号里的符号:乘号要变成除号、除号要变成乘号.当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为乘号.例题精讲例1 25+53+75+78+47=?解原式=(25+75)+(53+47)+78=100+100+78=278例2 91+90+88+92+93+84+85+95+97=?解原式=90×9+(1+0-2+2+3-6-5+5+7)=810+5=815例3 9999+4+97+998+95+7=?解原式=(9999+1)+(97+3)+(998+2)+(95+5)=10000+100+1000+100=1 1200例4 1200-856-144=?解原式=1200-(856+144)=1200-1000=200例5 7869-(234+869)=?解原式=7869-234-869=7869-869-234=7000-234=6766例6 1943-(132-57)=?解原式=1943-132+57=1943+57-132=2000-132=1868例7 459+78-259+22=?解原式=(459-2590)+(78+22)=200+100=300例8 936+(296-636)-596=?解原式=936+296-636-596=936-636-596+296=(936-636)-(596-296)=300-300=0例9 3333330000-5769=?解原式=3333300000+(30000-5769)=3333300000+24231=3333324231例10 1-2+3-4+5-6+7-8+9-10+11-12+13-14+15=?解原式=1+(3-2)+(5-4)+(7-6)+(9-8)+(11-10)+(13-12)+(15-14)=8例11 (125×78)×8=?解原式=125×78×8=125×8×78=1000×78=78000例12 (125+78)×8=?解原式=125×8+78×8=1000+624=1624例13 250×64×125×9=?解原式=(250×4)×(125×8)×(9×2)=1000×1000×18=18000000例14 950÷25=?解原式=(950×4)÷(25×4)=3800÷100=38例15 8442÷(21×67)=?解原式=8442÷21÷67=402÷67=6例16 7600÷(38÷25)=?解原式=7600÷38×25=200×25=5000例17 291÷50+9÷50=?解原式=(291+9)÷50=300÷50=6例18 999×222+333×334=?解原式=333×3×222+333×334=333×666+333×334=333×(666+334)= 333×1000=333000 例19 765×963963-765765×963=?解原式=765×963×1001-765×1001×963=0例20 2239+239×999=?解原式=2000+239+239×999=2000+239×(1+999)=2000+239000=241 000例21 760÷(38÷125)×80=?解原式=760÷38×125×80=(760÷38)×(125×80)=20×10000=200000例22 (2001+2000×2002)÷(2001×2002-1)=?解原式=[2001+2000×(2001+1)]÷(2001×2002-1)=(2001+2000×2001+2000)÷(2001×2002-1)=(2001×2001+2000)÷(2001×2002-1)=(2001×2001+2001-1)÷(2001×2002-1)=(2001×2002-1)÷(2001×2002-1)=1例23 (1234+2341+3421+4123)÷5=?解原式=1111×(1+2+3+4)÷5=1111×10÷5=2222水平测试1A 卷一、填空题1. 773+368+227=____________2. 10000-8927=__________3. 582-(82-14)=__________4. 4941-268+28=__________5. 125×19×8=___________6. 11500÷2300=__________7. (20+8)×125=_________8. 22500÷(100÷4)=______________9. 在加法算式中,两个加数都增加26,则和增加__________10. 在减法算式中,被减数与减数都增加6,则差_________二、解答题11. 计算:999+99+9+312. 计算:(24-15+37)+(26+63-35)13. 计算:3572-675-325-47214. 计算:56241×8÷2415. 计算:125×16×2516. 计算:375×823+177×37517. 计算:1624÷29-1334÷29B 卷一、填空题1. 34+47+53+66=___________2. 3000-99-9-999=__________3. 111000-(99998+9997)-996=__________4. 1028-(233-72)-67=______________5. 在加法算式中,一个加数增加53,另一个加数减少27,则和是___________6. 161÷23+92÷23+115÷23=____________7. 27^2-23^2=__________8.40408×25=_________9. 在乘法算式中,一个因数扩大20倍,另一个因数缩小4倍,则积是__________10. 在除法算式中,被除数缩小2倍,除数缩小10倍,则商是_________二、解答题11. 计算:69230÷11512. 在减法算式中,被减数减少10,减数减少25,那么差如何变化?13. 计算:500-1-4-7-10-……-2814. 计算:493+502+498+495+501+506+502+496+505+49915. 计算:(99+999+9999)×916. 计算:(111×58-148×16)÷37C 卷一、填空题1. 2000+2003+2006+2009+2012+2015=___________2. (1+2+3+……+2003)-(1+6+11+….+31+36)=____________3. 100+99-98-97+......+4+3-2-1=_________4. 25243+83214-8457=__________5. 22222222220000000000-2222222222=__________6.3333×6666=_____________7. 91×97=_______8. 60606÷273=________9. 123456789×36×5=___________10. 两个数相加后,乘以其中一个加数,减去这个数,除以这个数,其结果仍然是这个数,那么另外一个加数为___________二、解答题11. 三个不相同的正整数的平均数是80,其中一个数是90,且它是最大的数,那么这个数中最小的数可以是多少?12 写出计算99+99+99+99+99+99+6的三种简便计算式13. 算式(221+222+…..+370)-(31+32+…..+98)的结果是奇数还是偶数?14. 小明在做一道乘法题时,将一个因数的十位数字”6”看作是”9”,个位数字”7”看作”1”,那么计算结果与正确答案相差696,求另一个因数15. 计算:37037×23-273×14816. 计算:444444÷37037×34-999999÷185185×2017. 计算:(12345+23451+34512+45123+51234)÷5速算与口算答案:水平测试1A 卷1.原式=(773+227)+368=1000+368=13682.原式=10000-8000-900-20-7=2000-900-20-7=1100-20-7=1080-7=10733.原式=(582-82)+14=500+14=5144.原式=4941-(268-28)=4941-240=47015.原式=19×(125×8)=19×1000=190006.原式=(11500÷100)÷(2300÷100)=115÷23=57.原式=20×125+8×125=2500+1000=35008.原式=(22500÷100)×4=225×4=9009.和增加5210.差不变11.原式=(999+1)+(99+1)+(9+1)=1000+100+10=111012.原式=24-15+37+26+63-35=(24+26)+(37+63)-(15+35)=50+100-50=10013.原式=(3572-472)-(675+325)=3100-1000=210014.原式=56241÷(24÷8)=56241÷3=1874715.原式=(125×8)×(2×25)=1000×50=5000016.原式=375×(823+177)=375×1000=37500017.原式=(1624-1334)÷29=290÷29=10B 卷1. 原式=(34+66)+(47+53)=100+100=2002. 原式=1000+1000+1000-99-9-999=(1000-99)+(1000-9)+(1000-999)=901+991+1=18933. 原式=100000+10000+1000-99998-9997-996=(100000-99998)+(10000-9997)+(1000-996)=2+3+4=94. 原式=1028-233+72-67=(1028+72)-(233+67)=1100-300=8005. 增加26 53-27=266. 原式=(161+92+115)÷23=368÷23=167. 原式=(27+23)×(27-23)=50×4=2008. 原式=10102×(4×25)=10102×100=10102009. 扩大5倍10. 扩大5倍11. 原式=69230÷(23×5)=(69230÷23)÷5=3010÷5=60212. 被减数减少10,差减少10,减数减少25,差增加25,所以差增加25-10=1513. 原式=500-(1+4+7+…+28)=500-(1+28)×10÷2=500-145=35514.原式=(500-7)+(500+2)+(500-2)+(500-5)+(500+1)+(500+6)+(500+2)+(500-4)+(500+5)+(500-1)=500×10-(7+2+5+4+1-2-1-6-2-5)=5000-3=499715. 原式=99×9+999×9+9999×9=(100-1)×9+(1000-1)×9+(10000-1)×9=900-9+9000-9+90000-9=(900+9000+90000)-9×3=99900-27=9987316. 原式=111×58÷37-148×16÷37=(111÷37)×58-(148÷37)×16=3×58-4×16=174-64=110C 卷1.原式=(2000+2015)×6÷2=120452.原式=(1+2003)×2003÷2-(1+36)×8÷2=2007006-148=20068583.原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2+2+…+2+2=1004.原式=20000+5000+200+40+3+8000+3000+200+10+4-8000-400-50-7=100000+(5000+3000-8000)+(200+200-400)+(40+10-50)+(3+4-7)=1000005.原式=22222222200000000000+(20000000000-2222222222)=222222222177777777786.原式=3333×3×2222=9999×2222=(10000-1)×2222=22220000-2222=222177787.原式=(91+97-100)×100+(100-91)×(100-97)=8800+9×3=88278.原式=6×(10101÷273)=2×(3×37)=2×111=2229.原式=(123456789×9)×(4×5)=1111111101×20=2222222202010.[(a+b)×b-b]÷b=b,则a=(b×b+b)÷b-b=111.由于三个正整数的平均数是80,则三个数之和为240,由于其中一个数是90,且它最大,其他两个正整数中一个最多为89,那么另一个最小为240-90-89=6112.原式=(99+1)+ (99+1)+ (99+1)+ (99+1)+ (99+1)+ (99+1)=100×6=600.原式=99×6+6=600.原式=99×7-93=60013.在221+222+…+370共有奇数(370+1-221)÷2=75(个),所以221+222+…+370是75个奇数和再加上一些偶数,其和为奇数;同理可求出在31+32+…+98中共有奇数34个,其和为偶数,所以奇数减偶数其差为奇数.14. 696÷(91-67)=29.所以另一个因数是2915.原式=37037×3×23÷3-237×37×4=111111×23÷3-10101×4=2555553÷3-40404=851851-40404=81144716.原式=(111111÷37037)×(4×34)-(111111×9)÷(37037×5)×20=3×136-(111111÷37037)×(9×20÷5)=3×136-3×36=3×(136-36)=30017.原式=(11111×15)÷5=33333。
四年级奥数第一讲-速算与巧算含答案

第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。
二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。
解:原式100(9998)(9796)(32)1=+-+-++-+ 100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。
解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
四年级暑假奥数学习资料

第一讲:速算与巧算㈠速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高自己的计算能力和思维能力。
巧算方法主要是根据运算定律和运算性质,对算式适当变形,或改变运算顺序,或凑整,或改写等,从而变成一个易于算出结果的算式,使计算简便。
【例1】9+99+999+9999+99999 0.9+0.99+0.999+0.9999+0.99999【例2】489+487+483+485+484+486+488 571+569+573+568+567+576+572【例3】632―136―232 128+186+72-86【例4】248+(152-127)324―(124―97)283+(358-183)【例5】286+879-697 812-593+193练习题(一)⑴9+98+996+9997 ⑵19999+2998+396+497⑶198+297+396+495 ⑷1998+2997+4995+5994⑸19998+39996+49995+69996 ⑹9.9+9.99+9.999+9.9999+9.99999(二)⑴50+52+53+54+51⑵262+266+270+268+264⑶89+94+92+95+93+91+88+96+87⑷381+378+382+383+379⑸1032+1028+1033+1029+1031+1030⑹2451+2452+2446+2453(三)⑴1208―569―208⑵283+69-183⑶132-85+68⑷2318+625-1318+375(四)⑴348+(252-166)⑵629+(320-129)⑶462―(262―129)⑷662―(315―238)⑸5623―(623―289)+452―(352―211)⑹736+678+2386-(236+278)-186(五)⑴368+1859-859⑵582+393-293⑶632-385+285⑷2756-2478+1478+244⑸612-375+275+(388+286)⑹756+1478+346-(256+278)-246第二讲:速算与巧算㈡【例1】325÷25 30000÷625 22400÷700【例2】25×125×4×8 25×28125×56 25×5×128×125【例3】(360+108)÷36 (450-75)÷156342÷21 630÷15÷2【例4】158×61÷79×3 604×129÷302÷43【例5】103×96÷16 200÷(25÷4)(19×24×7×9)÷(8×7×9)练习题㈠450÷25 525÷25 3500÷12510000÷625 49500÷900 9000÷225㈡125×15×8×4 25×24 125×1675×16 125×25×32 25×5×64×125㈢(720+96)÷24 (4500-90)÷45 6342÷218811÷89 9000÷15÷3 73÷36+105÷36+146÷36㈣238×36÷119×5 138×27÷69×50624×48÷312÷8 406×312÷104÷203㈤612×366÷183 1000÷(125÷4)(13×8×5×6)÷(4×5×6)241×345÷678÷345×(678÷241)第三讲:速算与巧算㈢【例1】6.3×28+6.3×72 5.83+5.83×992.7×18+2.7×63+2.7×19 26×87-13×7424×13+240×8.8-2.4×1072×45-24×35【例2】333×334+999×222 8888×3333+6666×5556【例3】20012001×2002-20022002×2001 20072007×2008-20082008×2007 【例4】164×166-163×167 8353×363-8354×362【例5】888888×999999 555......5×999 (9)2007个5 2007个9练习题练习⑴8.3×28+8.3×72 7.83×101-7.8312.7×19+12.7×82-12.7 48×34+17×456×17+560×6.8+5.6×150126×46-38×43练习⑵9999×2222+3333×3334 37×18+27×42 46×28+24×63练习⑶192192×368-368368×192 19981998×1999-19991999×1998练习⑷243×247-242×248 987654321×123456789-987654322×123456788练习⑸666666×999999 99999×99999+199999666......6×999......9 999......9×999......9+1999 (9)2007个6 2007个9 2007个9 2007个9 2007个9第四讲:等差数列㈠1.等差数列的有关知识。
四年级《速算与巧算》奥数教案

师:那也就是说,我们得想个办法把这两个括号给去掉。
师:在要去括号之前,先认真观察这个式子,说说这个式子的特点是什么?生:偶数的和减去奇数的和。
师:唉,他说的对吗?生:对。
师:没错,我们通过观察可以发现,减号左边的括号里,都是像2、4、6一直到96、98、100的偶数相加的,而减号右边的则是1、3、5一直到99这样的奇数相加的。
两个括号里都是加号,而括号外面的则是减号,那如果把括号去掉,我们该怎么办呢?生:第二个括号里的加号都变成减号。
师:他说的没错吧?生:没错。
师:很好,但是先别急,当我们把两个括号都去掉之后,前面的偶数都是相加,到后面的奇数都变成相减的,这个已经没问题了,那最后还有一个,去掉括号之后,两两数字之间可以交换位置的吗?生:可以。
师:很好,如果我把2跟这个减1配对,等于多少?生:等于1。
师:把4跟减3配对呢?生:也等于1。
师:6减5?生:还是等于1。
师:所以你们发现了吗?生:相减之后都是等于1的。
师:没错,通过去括号,再交换位置之后,我们可以发现,原来偶数减去奇数的差是等于1的。
这样题目就变简单了吗?生:变简单了。
师:那最后到底有多少个1呢?生:50个。
师:你怎么知道的?生:因为1到100中有50个偶数,50个奇数。
师:说得非常好。
因为1到100中有50个偶数,50个奇数,所以最后就是有50个偶数减去奇数,就可以得出有50个1相加了,所以这道题的答案是多少?生:50师:很好。
【教师在讲解时,要配合课件演示整个解题过程,在讲解这道题时,注意要把话语权交给学生,教师适时引导就可以了。
】师:既然你们都理解了,那就一起来计算一下练习五的两道题吧。
师:我请两位同学上台板演,其他同学写在课堂练习本上。
【课件出示练习五,教师请两位中上的学生上台板演,教师下台巡视观察学生的解题情况。
】(2+4+6+…+96+98+100)-(1+3+5+…+95+97+99)= (2-1)+(4-3)+(6-5)+…+(96-95)+(98-97)+(100-99)= 1+1+1+…+1+1+1(50个1)。
五年级《速算与巧算》奥数教案
板书:
原式= + + +
=2
练习2:(5分)
计算: + + + -
分析:
将算式中的分数先化成最简分数,然后会发现化简后每个分数都是 。
板书:
原式= + + + -
=1
三、小结:(5分)
整数的加法交换律、结合律对分数的加减计算同样适用。
第二课时(50分)
师:那么我们可不可以将式子写成这种形式。
板书:
原式=(1- )+( - )+( - )+……+( - )
=1- + - + - +……+ -
=1-
=
师:从式子中我们发现中间的分数都是一加一减刚好抵消的。将数列中的每一
项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,我们
把这种解题方法叫做裂项相消法。
生: ,老师,我知道了,给式子加上一个 ,再在最后减去一个 ,
+ = , + = , + = ,最后式子变成1+2+3+4+5+ + - 。
师:恩恩,同学的反应能力很快,那么请你将过程板书到黑板上。
板书:
原式=1+2+3+4+5+ + + + +( + )-
=15+ + + +( + )-
=15+ + +( + )-
练习1:(5分)
计算: - + +
分析:
奥数第一讲速算与巧算
第一讲速算与巧算名师精讲:在四则运算中,有时需要应用运算定律和性质,或利用某些公式和其它方法可以使计算迅速简便.在这里我将讲授一些的乘法的速算与巧算的技巧,相信同学们在掌握这些技巧后,一定能使计算过程简洁,提高计算的正确率。
【名师精点1:乘法中的巧算】1. 几种特殊因数的巧算。
一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推。
例 1: ①24×10 ② 52×100 ③ 99×1000一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;以此类推。
例2:①12×9②12×99③12×999一个偶数乘以5,可以除以2添上0。
例3:①6×5②16×5③116×5一个数乘以11,“两头一拉,中间相加”。
例4:① 22×11② 123×11③ 2222×11一个偶数乘以15,“加半添0”.例5:①24×15② 142×152.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=25×4=125×8=1例6: ①123×4×25②125×2×8×25×5×43.分解因数,凑整先乘。
例7: ①24×25②56×125③125×5×32×54.应用乘法分配律。
例8:①175×34+175×66②123×101 ③123×99【名师精点2: 乘法中的速算】两个数之和等于10,则称这两个数互补。
在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。
四年级奥数第一讲速算与巧算
延伸拓展
用“组合法”巧算
812-593+193-647+247-374+174+200 =812-400-400-200+200 =12 1-2+3-4+5-6+……+1991-1992+1993
= 1+(3-2)+(5-4)+(7-6)+ ……+(1991-1990)+(1993-1992) =1+(1992÷2)×1 =1+996 =997
一、速算与巧算
记住它们的特色 2×5=10 25×4=100 125×8=1000 625×8=5000 625×16=10000
简便计算加减篇
例1、 8+98+998+9998+99998+999998
=(8+2)+(98+2)+(998+2)+(9998+2)+(99998+2)+(999998+2)-2×6 = 10+100+1000+10000+100000+1000000 = 1111110-12 = 1111098
例3、99…9× 99…9+199…9的末尾有多少个零?
1992个9 1992个9 1992个9
因为99…9接近100…0,所以把99…9转化成100…0
1992个9 19根据乘法分配率将99…9 × 99…9变成99…9 × 100…0- 99…9
1992个9 1992个9 1992个9 1992个9 1992个9
347×69+653×31+306×19
四年级奥数第一讲_速算与巧算含答案
四年级奥数第⼀讲_速算与巧算含答案第⼀讲速算与巧算⼀、知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的⽅法:如等差数列求知、凑整、拆数等等。
⼆、典例剖析:例(1) 19199199919999199999++++分析:运⽤凑整法来解⼗分⽅便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练⼀练:898998999899998999998+++++=例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若⼲个1,再与其余部分进⾏计算。
解:原式100(9998)(9796)(32)1=+-+-++-+100491=++150=练⼀练:989796959493929190894321+--++--++---++例(3) 1111111111?分析:111,1111121,11111112321?=?=?= 解:1111111111123454321?=练⼀练:2222222222?可以探索⼀下11×11,11×12,…11×19,11×21…11×29…例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、⼗位、百位、千位上均各出现⼀次。
解:原式1111222233334444=+++ 1111(1234)=?+++ 111110=? 11110=练⼀练:5678967895789568956795678++++例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲速算与巧算
一、“凑整”先算
1.计算:(1)24+44+56 (2)53+36+47
2.计算:(1)96+15 (2)52+69
3.计算:(1)63+18+19 (2)28+28+28
二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变
计算:(1)45-18+19(2)45+18-19
三、计算等差连续数的和
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等等都是等差连续数.
1.等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9 (2)计算:1+3+5+7+9 (3)计算:2+4+6+8+10
(4)计算:3+6+9+12+15 (5)计算:4+8+12+16+20
2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:
(1)计算:1+2+3+4+5+6+7+8+9+10(2)计算:3+5+7+9+11+13+15+17
(3)计算:2+4+6+8+10+12+14+16+18+20
四、基准数法
(1)计算:23+20+19+22+18+21 (2)计算:102+100+99+101+98
习题一
1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+21
2.计算:(1)98+67 (2)43+28(3)75+26
3.计算:(1)82-49+18(2)82-50+49(3)41-64+29
4.计算:(1)99+98+97+96+95 (2)9+99+999
5.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54 (4)12+14+16+18+20+22+24+26
6.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+84
7.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5。