ansys应力分布曲线

合集下载

基于ANSYS的焊接温度场和应力的数值模拟研究

基于ANSYS的焊接温度场和应力的数值模拟研究

基于ANSYS的焊接温度场和应力的数值模拟研究一、本文概述随着现代工业技术的飞速发展,焊接作为一种重要的连接工艺,在航空、汽车、船舶、石油化工等领域的应用日益广泛。

然而,焊接过程中产生的温度场和应力场对焊接结构的性能有着至关重要的影响。

为了深入理解焊接过程中的热-力行为,预测焊接结构的变形和残余应力,进而优化焊接工艺参数和提高产品质量,本文旨在利用ANSYS有限元分析软件,对焊接过程中的温度场和应力场进行数值模拟研究。

本文首先简要介绍了焊接数值模拟的意义和现状,包括焊接数值模拟的重要性、国内外研究现状和存在的问题等。

随后,详细阐述了ANSYS 软件在焊接数值模拟中的应用,包括其基本原理、分析流程、模型建立、参数设置等方面。

在此基础上,本文以某典型焊接结构为例,详细阐述了焊接温度场和应力场的数值模拟过程,包括模型的建立、边界条件的设定、求解参数的选择、结果的后处理等。

对模拟结果进行了详细的分析和讨论,验证了数值模拟方法的准确性和可靠性,为实际工程应用提供了有益的参考。

本文的研究不仅有助于深入理解焊接过程中的热-力行为,为优化焊接工艺参数和提高产品质量提供理论支持,同时也为ANSYS软件在焊接数值模拟领域的应用推广和进一步发展奠定了基础。

二、焊接理论基础焊接是一种通过加热、加压或两者并用,使两块或多块金属在原子层面结合形成永久性连接的工艺过程。

焊接过程涉及复杂的物理和化学变化,包括金属的熔化、凝固、相变以及应力和变形的产生等。

因此,深入了解焊接过程的理论基础对于准确模拟焊接过程中的温度场和应力分布至关重要。

焊接过程中,热源将能量传递给工件,导致工件局部快速升温并熔化。

熔池形成后,随着热源的移动,熔池中的液态金属逐渐凝固形成焊缝。

焊接热源的类型和移动速度、工件的材质和厚度等因素都会影响焊接过程的温度场分布。

为了准确模拟这一过程,需要了解各种热源模型(如移动热源模型、体积热源模型等)及其适用范围,并选择合适的模型进行数值模拟。

Ansys后处理-如何看应力

Ansys后处理-如何看应力

Ansys后处理-如何看应力点击数:3091 更新时间:2012-4-20 16:29:47SX:X-Component ofstress;SY:Y-Component of stress;SZ:Z-Component ofstress--X,Y,Z轴方向应力。

SXY:XY Shear stress;SYZ:YZ Shearstress;SXZ:XZ Shear stress--X,Y,Z三个方向的剪应力。

S1:1stPrincipal stress;S2:2st Principal stress;,S3:3st Principalstress--第一、二、三主应力。

区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1F2F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。

SINT:stress intensity--应力强度,是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。

SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。

Ansys 后处理中'VonMises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。

我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。

那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。

也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。

所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。

但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。

材料力学中的四种强度理论1.第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。

ansys 施加力曲线

ansys 施加力曲线

ansys 施加力曲线(实用版)目录1.ANSYS 简介2.施加力曲线的方法3.施加力曲线的步骤4.应用实例正文1.ANSYS 简介ANSYS 是一种用于机械、电子、流体和多物理场耦合分析的计算机辅助工程(CAE)软件。

它可以帮助工程师在产品设计过程中进行虚拟测试,以评估其在现实世界中的性能。

在 ANSYS 中,用户可以建立三维模型,并应用各种分析工具,如结构分析、热分析和疲劳分析等。

2.施加力曲线的方法在 ANSYS 中,有多种方法可以施加力曲线。

其中一种常见的方法是使用时间历程函数。

时间历程函数允许用户定义一个随时间变化的力,并将其施加到模型上。

这种方法的优点是,用户可以根据实际需求创建复杂的力曲线,以模拟实际情况。

另一种方法是使用预定义的力函数。

ANSYS 提供了许多预定义的力函数,如正弦函数、三角函数等。

用户可以根据需要选择合适的函数,并将其应用于模型。

这种方法的优点是简单易用,但缺点是力函数可能无法精确模拟实际情况。

3.施加力曲线的步骤以下是在 ANSYS 中施加力曲线的一般步骤:(1)创建模型:首先,用户需要创建一个三维模型,并确保模型的几何形状和材料属性符合实际需求。

(2)准备模型:在对模型进行分析之前,用户需要对模型进行一些预处理,如划分网格、设置边界条件等。

(3)选择分析类型:根据需求,用户需要选择合适的分析类型,如静态分析、动态分析或疲劳分析等。

(4)施加力曲线:在分析类型选择后,用户需要创建一个时间历程函数或选择一个预定义的力函数,并将其施加到模型上。

(5)运行分析:在模型准备就绪后,用户可以运行分析,以评估模型在不同力曲线下的性能。

(6)查看结果:分析完成后,用户可以查看分析结果,如应力、应变、位移等。

4.应用实例假设我们要分析一个简单的梁结构在不同力曲线下的应力分布。

首先,我们需要创建一个梁模型,并设置合适的边界条件。

然后,我们可以创建一个时间历程函数,用于模拟不同力曲线。

ANSYS基础教程——应力分析报告

ANSYS基础教程——应力分析报告
–许多软件包,包括ANSYS在, 允许读写IGES文件。
·输入IGES 文件到ANSYS中:
– Utility Menu > File > Import > IGES...
◆在弹出的对话框中,选择No defeaturing *(缺省值) ,按下OK (默认其他选项)。
◆在第二个对话框中选择想要的文件并点击OK.
ANSYS基础教程——应力分析
关键字:ANSYS应力分析ANSYS教程
信息化调查找茬投稿收藏评论好文推荐打印社区分享
应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要容有: 分析步骤、几何建模、 网格划分。
·前处理
–创建或输入几何模型
–对几何模型划分网格
·求解
–施加载荷
–求解
·后处理
–结果评价
–检查结果的正确性
·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;
·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入;
·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。也可以使用前处理器PREP7 施加载荷。
实常数
·实常数用于描述那些由单元几何模型不能完全确定的几何形状。例如:
–梁单元是由连接两个节点的线来定义的,这只定义了梁的长度。要指明梁的横截面属性,如面积和惯性矩,就要用到实常数。
–壳单元是由四面体或四边形来定义的,这只定义了壳的表面积,要指明壳的厚度,必须用实常数。
应力分析概述
·应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析。

ANSYS软件分析杆应力变化

ANSYS软件分析杆应力变化

关于用ANSYS软件分析杆应力变化的报告
一、问题描述:
悬臂梁杆一端固定,另一端为自由端。

从零时刻开始,给自由度施加随时间变化的应变,以确定不同时刻的应力分布。

载荷变化:
二、用ANSYS进行有限元分析:
1、建立有限单元的材料属性:
将模型设置为实体(solid),并设置为弹性,具体参数见下图:
图一材料属性
图二为面分配单元属性
2、建立实体模型并划分网格:
图三有限元模型
3、施加边界条件并施加集中力载荷:
在杆上,我们通过载荷步来施加集中力载荷,其中分了三步,并且按照问题描述中的载荷变化进行。

第一次输入力为-5e3,并且在载荷步终止时间上设置为5,同时最大子步数为5,即创建了第一个载荷步文件。

第二次同样选择悬臂梁右上端的节点,在弹出对话框中设置压力的Y分量以及输入压力的值为-5e3,在载荷步终止时间上设置为10,最大子步数为5,即创建了第二个载荷步文件。

第三次的与第二步类似,只是输入压力值为-5e4,同时载荷步终止时间为15,最大子步数为5,从而创建第三个载荷步文件。

4、读取载荷步文件,并开始求解:
具体设置如下图四:
图四读取载荷步文件开始求解三、用ANSYS分析应力变化结果:
结果如下图五所示:
图五15秒内求解得到的应力变化分布。

ansys各应力-推荐下载

ansys各应力-推荐下载

SX:X-Component ofstress;SY:Y-Component of stress;SZ:Z-Component ofstress--X,Y,Z轴方向应力。

SXY:XY Shear stress;SYZ:YZ Shearstress;SXZ:XZ Shear stress--X,Y,Z三个方向的剪应力。

S1:1stPrincipal stress;S2:2st Principal stress;,S3:3st Principalstress--第一、二、三主应力。

区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1F2F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。

SINT:stress intensity--应力强度,是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。

SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。

Ansys后处理中'VonMises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。

我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。

那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。

也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。

所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。

但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。

材料力学中的四种强度理论1.第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。

ansys入门之三(应力分析)

ansys入门之三(应力分析)

应力分析 - 前处理
...网格划分
指定网格控制 是网格划分的第二步。
ANSYS 中有许多可用的网格控制。现在, 我们 介绍一个指定网格密度的简单方法,智能网格划 分。
智能网格划分是一种运算法则,它按照线的长度, 曲率和对孔的近似确定模型中线的分割单元数。
30
你只需要指定从1(最细网格)到10(最粗网格) 的“尺寸水平”,其他的由ANSYS处理。
19
应力分析 - 前处理
...网格划分
实常数
20
实常数用于描述那些由单元几何模型不能完全确 定的几何形状。 例如:
梁单元是由连接两个节点的线来定义的,这只定义了梁的长度。 要指明梁的横截面属性,如面积和惯性矩,就要用到实常数。 壳单元是由四面体或四边形来定义的,这只定义了壳的表面积, 要指明壳的厚度,必须用实常数。
维数 -- 2-D (仅有X-Y 平面), or 3-D.
假定的位移形函数 -- 线性及二次
ANSYS有超过150个的单元类型可供选择。对于 如何选取单元类型稍后介绍,现在,请看如何定
应力分析 - 前处理
...网格划分
定义单元类型:
Preprocessor > Element Type > Add/Edit/Delete [Add] 添加新单元类型 选择想要的类型(如 SOLID92) 并按 OK键 [Options] 指定附加的单元 选项 或使用 ET 命令: et,1,solid92
...网格划分
先定义好材料类型 的结构树 接着输入单个材料 的性质值 或使用 MP 命令
mp,ex,1,30e6 mp,prxy,1,.3
26
应力分析 - 前处理

ansys应力时程曲线

ansys应力时程曲线

ANSYS应力时程曲线1. 介绍ANSYS是一种广泛使用的工程仿真软件,用于模拟和分析各种物理现象。

在工程设计中,应力时程曲线是一种重要的工具,用于描述材料在不同时间点上的应力变化情况。

本文将介绍如何使用ANSYS生成应力时程曲线,并解释其在工程设计中的重要性。

2. ANSYS应力分析ANSYS提供了多种方法来进行应力分析,其中最常用的方法是有限元法。

有限元法通过将复杂结构划分为小的有限元单元,并对每个单元进行计算,从而得出整个结构的应力分布情况。

首先,在ANSYS中建立几何模型并定义材料属性。

然后,通过网格划分将几何模型离散化为有限元网格。

接下来,定义边界条件和加载条件,并设置求解器参数。

最后,运行求解器以获得结构在给定加载条件下的应力分布。

3. 应力时程分析在某些情况下,我们需要了解材料在不同时间点上的应力变化情况,而不仅仅是静态加载下的应力分布。

这就需要进行应力时程分析。

ANSYS可以模拟结构在动态加载下的应力响应。

为了进行应力时程分析,需要定义加载的时间历史曲线。

这个曲线描述了在不同时间点上施加在结构上的载荷大小。

在ANSYS中,可以通过多种方式定义时间历史曲线。

例如,可以使用预定义的函数来描述载荷随时间的变化,也可以直接输入载荷值和对应的时间点。

4. 生成应力时程曲线一旦完成了动态加载条件的设置,就可以运行求解器获得结构在不同时间点上的应力响应。

然后,通过后处理功能,在ANSYS中绘制出应力时程曲线。

在绘制应力时程曲线之前,需要选择感兴趣的节点或单元,并提取这些节点或单元在每个时间点上的应力值。

可以选择多种类型的应力进行分析,如等效应力、最大主应力、最小主应力等。

一旦完成节点或单元上各个时间点上的应力值提取,就可以使用ANSYS中提供的绘图工具绘制出完整的应力时程曲线。

这样就能够直观地了解材料在不同时间点上承受载荷后产生的变化。

5. 应力时程曲线分析生成了应力时程曲线后,可以对曲线进行进一步的分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ansys应力分布曲线
在ANSYS中,绘制应力分布曲线的一般步骤如下:
1. 设置路径:选择深度方向的节点,进行应力随深度分布曲线的绘制。

2. 利用命名选择在最大塑性变形区域创建某一点的命名选择,例如命名为p1。

3. 创建p1点的应力图,同时选中该点的应力应变,利用菜单home中的chart命令创建应力应变图表。

X轴设置为总应变,输出设置为最大应力,最小应力、应变设置为omit,不显示。

4. 通过查看图表中的应力应变,可以验证其是否与材料BIH双线性各项同性硬化曲线基本一致。

少量误差可能是由于网格划分不够细致引起。

5. 选中model,利用path命令可创建路径曲线,并查看该路劲线上的应力情况。

相关文档
最新文档