CaesarII应力分析模型设计要点

合集下载

CAESAR_II_管道应力分析_理论

CAESAR_II_管道应力分析_理论

基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
二次失效情况 • 位移所引起。 • 自限性。 • 温度、位移和其它变化载 荷——例如,重力。
基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
• (1)= W + T1 + P1 (OPE) • 操作工况, 用于: – 约束& 设备载荷 – 最大位移 – 计算 EXP 工况 • 持续工况,用于一次载荷下规 范应力的计算。 • 膨胀工况,用于 “extreme displacement stress range” – 工况3的位移是从工况1的 位移减去工况2的位移而 得到。
基本应力理论 & CAESAR II 的实施
• • •
规范要求的载荷工况
• • • • 膨胀工况说明 (Obviously the load case numbers are subject to change on a job by job basis.) What do you get when you take "DS1 - DS2"? Well {x1} - {x2} yields {x'}, a pseudo displacement vector. {x'} is not a real set of displacements that you can go out and measure with a ruler, rather it is the difference between two positions of the pipe. Once we have {x'}, we can use the same routines used in the OPE or SUS cases to compute element forces, and finally element stresses.

caesar ii 数据输入及建模要点

caesar ii 数据输入及建模要点

Caesar II 数据输入及建模要点1. 数据输入的重要性数据输入是进行管道分析的第一步,其准确性和完整性对分析结果有着至关重要的影响。

在进行数据输入时,需要特别注意以下几个要点:2. 材料属性在进行管道分析时,需要准确输入管道所用材料的属性,包括材料的屈服强度、弹性模量、泊松比等参数。

这些参数将直接影响到分析结果的准确性,因此需要确保输入的材料属性准确无误。

3. 几何结构管道的几何结构也是进行分析时需要输入的重要参数,包括管道的直径、壁厚、长度等。

这些参数将影响到管道的应力分布、挠曲情况等,因此需要确保输入的几何结构准确无误。

4. 荷载情况在进行分析时,需要考虑管道所受到的各种荷载,包括内压力、外载荷、温度等。

这些荷载将影响到管道的应力情况,因此需要准确输入各种荷载的大小和作用方向。

5. 建模要点在进行管道建模时,需要特别注意以下几个要点:6. 管道支撑管道支撑是管道建模中的重要部分,不仅可以支撑管道本身,还可以影响到管道的应力分布和挠曲情况。

在进行建模时,需要准确设置管道支撑的类型、位置、刚度等参数。

7. 管道约束管道的约束也是建模中的重要部分,它可以限制管道的运动,影响到管道的应力情况。

在进行建模时,需要准确设置管道的约束情况,包括固定约束、弹簧约束、铰链约束等。

8. 单元类型在进行建模时,需要选择合适的单元类型来进行分析。

不同的单元类型适用于不同的分析情况,因此需要根据实际情况选择合适的单元类型。

9. 网格密度在进行建模时,需要确保网格的密度足够细致,以准确反映管道的几何结构和材料特性。

过于稀疏的网格将导致分析结果的不准确性,因此需要注意在进行建模时适当增加网格密度。

数据输入和建模是进行管道分析的重要环节,需要特别注意以上要点,以确保分析结果的准确性和可靠性。

在实际应用中,还需要根据具体情况进行进一步的优化和调整,以获得更为准确的分析结果。

数据输入的准确性和建模的合理性对于管道分析的结果影响深远。

CAESARII_管道应力分析_培训解读

CAESARII_管道应力分析_培训解读

CAESARII软件培训资料北京艾思弗计算机软件公司2002年4月12日1.管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。

2.管道应力分析的主要内容管道应力分析分为静力分析和动力分析。

静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏;2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏;3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行;4)管道支吊架的受力计算——为支吊架设计提供依据;5)管道上法兰的受力计算——防止法兰泄露。

动力分析包括:l)管道自振频率分析——防止管道系统共振;2)管道强迫振动响应分析——控制管道振动及应力;3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振;4)往复压缩机(泵)压力脉动分析——控制压力脉动值。

3.管道上可能承受的荷载(1)重力荷载:包括管道自重、保温重、介质重和积雪重等;(2)压力荷载:压力载荷包括内压力和外压力;(3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等;(4)风荷载;(5)地震荷载;(6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击:(7)两相流脉动荷载;(8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动;(9)机械振动荷载:如回转设备的振动。

4.管道应力分析的目的1)为了使管道和管件内的应力不超过许用应力值;2)为了使与管系相连的设备的管日荷载在制造商或国际规范(如NEMA SM-23、API-610、API-6 17等)规定的许用范围内;3)为了使与管系相连的设备管口的局部应力在ASME Vlll的允许范围内;4)为了计算管系中支架和约束的设计荷载;5)为了进行操作工况碰撞检查而确定管于的位移;6)为了优化管系设计。

5.管道柔性设计方法的确定一般说来,下述管系必须利用应力分析软件(如CAESAR II)通过计算机进行计算及分析。

CAESARII 应力分析基础理论讲义

CAESARII 应力分析基础理论讲义

1管道应力分析基础理论管道应力分析主要包括三方面内容:正确建立模型、真实地描述边界条件、正确地分析计算结果。

所谓建立模型就是将所分析管系的力学模型按一定形式离散化,简化为程序所要求的数学模型,模型的真实与否是做好应力分析的前提条件。

应力分析的根本问题就是边界条件问题,而体现在工程问题上就是约束(支架)、管口等具体问题的模拟,真实地描述这些边界条件,才能得到正确的计算结果。

要想能够熟练而正确地分析结果,首先会正确设计支吊架,有一定的相关理论知识如工程力学,流体力学,化工设备及机械等,另外需在一定时间内不断摸索,总结出规律性的问题。

第一章管道应力分析有关内容§1.1 管道应力分析的目的进行管道应力分析的问题很多CAESARII 解决的问题主要有:1、使管道各处的应力水平在规范允许的范围内。

2、使与设备相连的管口载荷符合制造商或公认的标准(如NEMASM23,API610 API617等标准)规定的受力条件。

3、使与管道相连的容器处局部应力保持在ASME 第八部分许用应力范围内。

4、计算出各约束处所受的载荷。

5、确定各种工况下管道的位移。

6、解决管道动力学问题,如机械振动、水锤、地震、减压阀泄放等。

7、帮助配管设计人员对管系进行优化设计。

§1.2 管道所受应力分类1.2.1 基本应力定义轴向应力Axial stress轴向应力是由作用于管道轴向力引起的平行管子轴线的正应力,:S L =F AX /A m其中S L =轴向应力MPaF AX =横截面上的内力NA m =管壁横截面积mm 2=πdo 2-di 2)/4管道设计压力引起的轴向应力为S L =Pdo/4t轴向力和设计压力在截面引起的应力是均布的,故此应力限制在许用应力[σ]t 范围内。

弯曲应力bending stress由法向量垂直于管道轴线的力矩产生的轴向正应力。

S L =M b c/I其中:M b =作用在管道截面上的弯矩N.mC -从管道截面中性轴到所在点的距离mmI -管道横截面的惯性矩mm 4=π(d o 4-d l 4/64当C 达到最大值时,弯曲应力最大S max =M b R 0/I= M b /Z弯曲应力在断面上是线性分布的,截面最外端应力达到最大时,其它地方仍处于弹性状态,故应力限制在1.5[σ]之内。

CAESARii数据输入及建模要点

CAESARii数据输入及建模要点

第一部分支架形式模拟........................................................ 错误!未定义书签。

普通支架的模拟................................................................................................... 错误!未定义书签。

U-band ............................................................................................................ 错误!未定义书签。

承重支架........................................................................................................... 错误!未定义书签。

导向支架........................................................................................................... 错误!未定义书签。

限位支架........................................................................................................... 错误!未定义书签。

固定支架........................................................................................................... 错误!未定义书签。

吊架................................................................................................................... 错误!未定义书签。

用CAESARⅡ做直接空冷主管道整体应力分析

用CAESARⅡ做直接空冷主管道整体应力分析

用CAESARⅡ做直接空冷主管道整体应力分析摘要:用CAESARⅡ对直接空冷主管道进行整体应力分析,提出各种荷载工况组合,详细阐述CAESARⅡ对直接空冷主管道计算、分析、结果评判的流程,。

关键词:主管道排汽管道直接空冷应力分析空冷电站中采用最广泛的冷却形式是直接空冷,而主管道(也称排汽管道)是直接空冷系统中较为重要的部件,它是从低压缸排汽出口至空冷凝汽器蒸汽分配管入口的管道。

主管道的设计是否合理,其刚度、强度、稳定性是否满足设计和使用要求,直接关系到电厂的运行的可靠性和安全性。

目前,国内有100MW 空冷机组、300MW空冷机组、600MW空冷机组在运行,甚至有1000MW空冷机组在设计、制造,相应的主管道直径有2m,3m,6m,8m等等,而且管道的走向也错综复杂。

这样,就必须对管道做整体应力分析,而目前国内外普遍采用的分析软件是CAESARⅡ。

1、利用CAESARⅡ做整体应力分析的目的和意义直接空冷主管道与其他热力管道不同,它不仅直径大、壁厚薄,而且是真空状态下运行。

采用CAESARⅡ可以很好地解决这个问题。

通过利用CAESAR Ⅱ计算、分析,可以解决波纹补偿器及减振器的选择和受力分析问题,也可以解决与主管道连接的设备接口受力及力矩问题,还可以解决支吊架(包括弹簧类)的荷载和位移问题,从而为设备和材料的控制提供了依据,有利于在保证主管道安全的前提下降低生产制造成本。

2、分析前的准备工作(1)明确主管道的概念,确定计算分析范围:主管道是指从汽轮机低压缸排汽出口(国内绝大部分是汽轮机低压缸排汽装置出口,也有少量的是汽轮机低压缸出来不设置排汽装置,直接给一方法兰出口,需要主管道设计者自己设计一个方圆过渡段,由于后者所占比例不大p3.1 材料及材料特性管道采用Q235B碳钢制造。

这种材料的性能参数如下:弹性模量:E = 208000 N/mm2泊松比:μ=0.3材料密度:р=7850 Kg/m3膨胀系数:α=1.142×10-51/℃屈服强度:σs = 235 MPa抗拉强度:σb = 375MPa3.2 确定管径、壁厚和加强圈的尺寸根据汽轮机排汽参数,可以确定管径,本文的主管径是DN5800,支管径是DN2600。

利用CAESAR II高效准确的进行管道模型应力分析

利用CAESAR II高效准确的进行管道模型应力分析

间历
Intergraph CADWorx & Analysis Solutions, Inc.
CAESAR II 的其它功能
创建直观的分析模型 高级的图形输出 设计工具和向导 荷载以及可视化管道模型 全面的错误检查 用户自定义报告模板 国际管道应力规范 丰富的材料数据库 钢结构数据库和模型 膨胀节数据库 与鹰图的CADWorx® 和Smart Plant工厂设计软件的双向接口
进行动力分析,防止管道系统因机械振动、流体锤、压力脉 动、安全阀泄放等动载荷造成的管道振动及破坏
软件除了可以进行非线性静力分析, 还可以进行谐波分析、模 态分析,反应谱分析,时 程等分析方法。利用这些 方法,用户可以完成对振 动管线,排放管线,柱塞 流管线,气锤管线等进行 定性的分析,并得到解决 方案。
Intergraph CADWorx & Analysis Solutions Overview
ICAS解决方案包括4个产品: – CADWorx 一款基于AutoCAD平台的三维工厂设计套件, 包括智能的工厂建模模块、创建智能的流程图 表而且可以自动生成用于工厂设计的可交付成 果 – CAESAR II 世界上被最为广泛使用的管道压力分析软件, – PV Elite 帮助全球的工程师、设计人员、费用估算师、 制造人员、产品检查人员等,针对压力容器和 热交换器的设计和分析提供完整的解决方案 – TANK 针对储罐进行设计和分析For the design and analysis of oil storage tanks
Intergraph CADWorx & Analysis Solutions, Inc.
CAESAR II 的应用
计算法兰等连接处受力,进行法兰泄露校核,防止管道连 接处泄露

CAESAR II 教程之应力分析概述

CAESAR II 教程之应力分析概述

b).机器动平衡差---修改基础设计
Intergraph CADWorx & Analysis Solutions, Inc.
管道应力分析专业的职责及任务
c). 减少脉动和气柱共振的方法:
1)加大缓冲罐---依据API618计算缓冲罐的体积,一般为气缸容积的10 倍以上; 使缓冲罐尽量靠近进出口;但不能放在共振管长位置 2)两台或三台压缩机的汇集总管为进口管面积之和的三倍。 3)孔板消振---在缓冲罐的出口加一块孔板。.
Intergraph CADWorx & Analysis Solutions, Inc.
管道应力分析专业的职责及任务
C. 动力分析要点: a).振源
①机器动平衡差---基础设计不当 ②气流脉动---气柱共振 ③阻力、流速、流向变化异径管、弯头、阀门、孔板等附近产生激 力 ④共振---激振力频率等于或接近管线固有频率
我们为什么要进行管道应力分析
随着国民经济的发展,化工装置规模越来越大,工况 越来越复杂。人们对安全的重视程度越来越高。应力分析 管线,一般为高温高压,介质易燃易爆的管线。如果管道 发生泄漏或者破坏,将造成严重的生命财产损失,同时污 染环境,并会对企业造成严重的负面影响。 所以,我们要通过管道的应力分析,确保工厂运行的 安全。在设计的过程中,通过计算,我们还可以帮助其它
Intergraph CADWorx & Analysis Solutions, Inc.
管道应力分析专业的职责及任务
B当
t Do 或 P 6

t
0.385时
t的确定应根据断裂理论、疲劳、热应力及材料特性等因素综合考虑确定。 (高压管道的计算)
C 外压直管的壁厚,应根据GB150规定的方法确定。 D 其它的管件(如Y型三通、孔板等)依据相应的规范 (GB50316-2000)或公式进行计算。 E 高压管的应力分析 F 大口径薄壁管的应力分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分支架形式模拟 (2)1.0 普通支架的模拟 (2)1.1 U-band (2)1.2 承重支架 (3)1.3 导向支架 (3)1.4 限位支架 (7)1.5 固定支架 (7)1.6 吊架 (8)1.7 水平拉杆 (8)1.8 弹簧支架模拟 (9)2.0 附塔管道支架的模拟 (11)3.0弯头上支架 (13)4.0 液压阻尼器 (14)5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15)第二部分管件的模拟 (15)1.0 法兰和阀门的模拟 (15)2.0 大小头模拟 (17)3.0 安全阀的模拟 (18)4.0 弯头的模拟 (19)5.0 支管连接形式 (20)6.0 膨胀节的模拟 (21)6.1 大拉杆横向型膨胀节 (22)6.2 铰链型膨胀节 (34)第三部分设备模拟 (42)1.0 塔 (42)1.1 板式塔的模拟 (42)1.2 填料塔的模拟 (44)1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47)2.0 换热器,再沸器 (48)2.1 换热器模拟也分两种情况 (48)3.0 板式换热器 (51)4.0 空冷器 (52)4.1 空冷器进口管道和出口管道不在同一侧 (52)4.2 空冷器进口管道和出口管道在同一侧 (54)5.0 泵 (56)6.0 压缩机,透平 (58)第四部分管口校核 (59)1.0 WRC107 (59)2.0 Nema 23 (62)3.0 API617 (64)4.0 API610 (65)第五部分工况组合 (68)1.0 地震 (69)2.0 风载 (70)3.0 安全阀起跳工况 (72)4.0 沉降 (74)第一部分支架形式模拟1.0 普通支架的模拟1.1 U-band在CAESAII的输入界面找到restraints选项,并双击打勾,在Node项目,输入该支架位置的节点,在type项填入支架的约束形式,U-band只需在type项中输入X,y用户还需输入支架的摩擦系数Mu,通常规定:钢与钢接触的承重支架摩擦系数输入0.3不锈钢与PTFE板接触的承重支架摩擦系数输入为0.1支架选项中,stif代表支架生根部份的刚度,不输代表无穷大,用户可以把生根部件的刚度输入其中,单位为N/cm1.2 承重支架+Y1.3 导向支架1.3.1 水平管道若导向支架的挡块与管托之间有间隙,可在图中(Gap:)中输入间隙,不输表示导向的间隙为01.3.2 垂直管道 1.3.2.1 四向导向+YX1.3.2.2 单边导向1.4 限位支架1.5 固定支架+Y ZStopperANC1.6 吊架双击restrains选项,承重吊架为+Yrod,并在len中输入吊杆的摆动的长度1.7 水平拉杆1.8 弹簧支架模拟双击Hangers出现如下图框Node输入支架的节点号Hanger Talbe:选择弹簧的型号,国内项目选择13-Sinopec(China)Avalable Space(neg for can)若该点由弹簧支撑,可以输入一个负的距离,该距离为支称点与弹簧底板之间的距离Allowable load Variation(%):为弹簧的荷载变化率=(热态载荷-冷态载荷)/热态载荷的绝对值乘以100%,一般弹簧的荷载变化率控制在25%内,但是在一些敏感设备附近,如压缩机,透平管口附近,弹簧的荷载变化率需控制在10%内,这时用户需在此选项中输入10Rigid Support Displacement Criteria:在应力计算中,有时软件自选的弹簧热位移很小,例如1mm左右,在不是敏感设备附近,工程上常用刚性支架来代替弹簧支架,用户可以人为输入刚性支架代替弹簧支架热位移标准,如输入1mm,则若软件算出弹簧的热位移小于1mm,软件就自动将该弹簧代替为刚性支架Max.Allowed Travel Limit:该项定义了可变弹簧最大位移量,若软件算出的热位移量超过该输入值,则软件将自动把可变弹簧替换为恒力弹簧No。

Hangers at Location:指该点弹簧的个数,有时立管上某个支点往往要2个或4个弹簧支架支撑,这时就可以输入弹簧的个数,软件会通过载荷的分配,自动选出每个弹簧的型号Allow Short Range Springs:双击该选项,允许软件选择短量程弹簧Operating Load Case Design Option:该选项是让用户设定弹簧热态时的载荷,若为两个弹簧时,应输入总的载荷,而不是每个弹簧的热载荷Multiple load case design option:该选项让用户定义按哪个工况来设计弹簧,默认为T1,即Temp1工况,但是在有一开一备工况下,有时设计弹簧需切换相应工况,确保弹簧是按管道正常操作温度下的工况选择的Free Restrains at Node:该选项常用在压缩机,透平,泵的第一个弹簧支架中,由于这些动设备都需要无应力安装,通过该选项可以通过调节弹簧的载荷,确保管口受力最小,比如透平口法兰面节点号为10点,20点为靠近其管口的最近一个弹簧支架,并且使法兰上Y方向受力最小则输入如下Spring Rate:此项可以输入弹簧的刚度,此项主要用在模拟已购买好的弹簧Theoretical Cold(Installation) Load:此项可以输入弹簧的安装载荷,此项主要用在模拟已购买好的弹簧Constant Effort Support Load:此项输入可以输入恒力弹簧的工作载荷。

2.0 附塔管道支架的模拟在支架模拟中,附塔管道支架的模拟较为复杂,因为附塔管道支架是生根在塔上面,而塔由于热胀往往有较大的热位移,因此需将该热位移准确模拟到附塔管道的支架上。

双击restrains选项:说明:1000点为与该支架同一标高塔中心点位置,1010为塔外壁。

10点为管道上的支架,11点为与10点连接点,在from 11点to 1010点需输入常温和常压,并双击rigid ,在直径和壁厚选项中需输入附塔设备的直径和壁厚,From 1010 to 1000点需输入设备的温度和压力,在直径和壁厚选项中需输入附塔设备的直径和壁厚3.0弯头上支架在装置中,我们经常看到在弯头有支架,如何在CAESARII中弯头上输入支架,最常见的也是最简单的模拟方法就是在弯头的中点位置输入支架先双击bend选项,找到angle 为M的节点号(该节点号往往自动生成)再双击restrains,选项,在node一览中输入angle 为M的节点,并在type栏中输入支架的形式。

对于靠近敏感设备附近的弯头支架,Caesar II指导说明中给出更为精确的模拟方法该法称为偏移输入法,该模拟方法可使假腿位置准确定位在弯头曲线上,并且假腿作用在垂直管道的中心线上,缺点是模拟比较复杂.具体模拟方法见application guide hangers Vertical Dummy Leg on Bends:Offset Element Method4.0 液压阻尼器液压阻尼用来控制管道的振动,模拟液压阻尼器步骤如下1先运行不带阻尼器情况下该位置的操作工况2记录上述工况下该点的位移及转角3输入阻尼器,并在CNode点中输入上述位移和转角4将附加位移值加在操作工况下并在load case editor中找到所有含有动载荷的工况(如地震,风载,安全阀反力等)并激活阻尼器,5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟虾米弯的模拟方法较为复杂,可参考caesarII自带的application guide chapter 2 mitered bends第二部分管件的模拟1.0 法兰和阀门的模拟法兰、阀门为装置中的重要原件,在应力计算中,它们往往是集中载荷,必需对法兰、阀门的重量进行模拟,首先根据阀门、法兰的类型,在对应的标准或样本中找出相应的重量并输入模型,现以阀门带配对法兰为例:710点到720点为管道上法兰先输入法兰高度,点击rigid,在rigid weight中输入法兰的重量720点到730点为阀门首先输入阀门的长度点击在rigid weight中输入阀门的重量730点到740点为阀门另一侧管道上的法兰,输法与710点到720点相同2.0 大小头模拟440点为大小头的大头端,管道直径为大小头大头侧的直径和壁厚(此例为406.4x9.525)450点为大小头的小头端,管道直径为大小头小头侧的直径和壁厚(此例为273.05x9.271) 440点到450点输入大小头的长度(如dx:356mm),若是同心大小头无需输入偏移量对与偏心大小头,偏移量需模拟(如dy:67mm)点击输入大小头另一段的直径和壁厚(此例为小头端直径x壁厚273x9.2710)即可。

3.0 安全阀的模拟先模拟安全阀入口侧管道上的配对法兰,输入方法见法兰模拟再输入安全阀的垂直部份(node125-130)并在rigid中输入rigid weight(安全阀垂直部份的重量为安全阀总重量的一半)然后输入安全阀泄压侧即水平段(node130-140)并在rigid中输入rigid weight(安全阀水平部份的重量为安全阀总重量的一半)最后输入泄压侧的管道上的配对法兰安全阀反力的模拟在工况中详细说明4.0 弯头的模拟在管道拐弯处往往要用弯头连接点击raidus中可输入弯头的半径,默认弯头半径为1.5倍的管道直径type:single flange 为弯头附近带一片法兰的形式double flange 为弯头附近带片法兰的形式注:法兰离开弯头末端两倍直径内,才需使用上述选项Angle1: 和node定义了弯头的具体部位例如angle1:M Node1:9表示弯头中点的节点号为9,Angle 2:0 Node2:8表示第8点为弯头起始点在输出报告中,可以读出弯头相应部位的应力5.0 支管连接形式通过点击出现对话框在node中输入支管连接处节点号Type中输入支管连接的形式1 Reinforced 带补强圈或鞍件的增强制造三通2 Unreinforced 未补强的预制三通3 Welding 按B16.9的焊接三通4 Sweepolet 插入式焊接管座5 Weldolet 整体加强的座焊支管6 Extruded 挤压成型的焊接三通6.0 膨胀节的模拟膨胀节模拟有简单模拟和复杂模拟两种,简单模拟请参考CAESARii 自带的手册这里介绍两种常用的膨胀节的复杂模拟法6.1 大拉杆横向型膨胀节大拉杆横向型膨胀节可以按膨胀单元拆分建模(复杂模型),下图所示,节点20和节点6.2 铰链型膨胀节复杂模型如下图所示,节点20和节点50之间是一铰链型膨胀节,膨胀节参数如下:角向刚度:1029 N.m/︒,扭转刚度:902557N.m/︒,波纹管有效直径:775mm,膨胀节重量:672Kg。

相关文档
最新文档