管道应力分析设计规定

合集下载

管道应力分析计算书编制规定

管道应力分析计算书编制规定
本标准适用于管道应力分析专业同时也适用于配管热力储运和医药等专业的管道应力分析计2管道柔性分析和应力计算书内容和深度的规定管道柔性分析和应力计算书应包括计算书封面管道柔性分析和应力计算一览表应力计算轴测图应力计算输入文件应力计算输出报告设备管口受力校核法兰泄漏计算和附图附表等
中国石化集团上海工程有限公司标准
· 附录 6.6 加热炉管口受力校核表 2.7 法兰泄漏计算
法兰的泄漏计算详见附件7。
2.8 其它附图
其它附图是指应力计算时所需的各专业的条件。包括设备总装详图或小样图,膨胀节的示意图,转
动设备制造商提供的设备图和管口位移量等。
3 管道柔性分析和应力计算书的签署规定
管道应力分析报告的签署应按公司标准Q/SSEC ITE06-2003《压力管道设计管理制度》的规定签署。
Q/SSEC aabb00-2005
前 言
本标准是中国石化集团上海工程有限公司(简称SSEC)技术标准之一,属于配管室技术标准。 本标准由配管工程室提出。 本标准由配管工程室归口。 本标准主要起草人:方 立、史习庆、倪 钧。 本标准于2006年首次发布。
Q/SSEC aabb00-2005
Q/SSEC aabb00-2005
第 1 页 共 7 页
· 管道在偶发载荷(如风,地震)作用下的应力和一次应力组合后的最大偶发应力(OCC)和相
应的节点号。
· 各约束点在操作工况(OPE)和安装工况(SUS)下的受力。
· 各节点在操作工况(OPE)和安装工况(SUS)下的位移量。
管线号
管道 保温 流体 P1 P2 Pt T1 T2 T2 等级 型式,厚度 密度 MPa MPa MPa ℃ ℃ ℃

供热管道应力验算

供热管道应力验算

供热管道应力验算1 一般规定1.1 管道的应力验算应采用应力分类法,并应符合下列规定:1 一次应力的当量应力不应大于钢材的许用应力;2 一次应力和二次应力的当量应力变化范围不应大于3倍钢材的许用应力;3 局部应力集中部位的一次应力、二次应力和峰值应力的当量应力变化幅度不应大于3倍钢材的许用应力。

1.2 进行管道应力计算时,计算参数应按下列规定取值:1 计算压力应取管道设计压力;2 工作循环最高温度应取供热管网设计供水温度;3 工作循环最低温度,对于全年运行的管道应取30℃,对于只在采暖期运行的管道应取10℃;4 计算安装温度应取安装时的最低温度;5 计算应力变化范围范围时,计算温差应采用工作循环最高温度与工作循环最低温度之差;6 计算轴向力时,计算温差应采用工作循环最高温度与计算安装温度之差。

1.3 保温管与土壤之间的单位长度摩擦力应按下式计算:⎪⎭⎫⎝⎛⨯⨯-+⨯⨯+=g D G D K F ρπσπμ2c v c 0421 (5.1.3-1)ϕsin 10-=K (5.1.3-2)式中:F ——单位长度摩擦力(N/m );μ——摩擦系数;c D ——外护管外径(m );v σ——管道中心线处土壤应力(Pa );G ——包括介质在内的保温管单位长度自重(N/m ); ρ——土壤密度(kg/m 3),可取1800 kg/m 3; g ——重力加速度(m/s 2); 0K ——土壤静压力系数;ϕ——回填土内摩擦角(°),砂土可取30°。

1.4 土壤应力应按下列公式计算:1 当管道中心线位于地下水位以上时的土壤应力:H g ⨯⨯=ρσv (5.1.4-1)式中:v σ——管道中心线处土壤应力(Pa )ρ——土壤密度(kg/m 3),可取1800 kg/m 3; g ——重力加速度(m/s 2);H ——管道中心线覆土深度(m ); 2 当管道中心线位于地下水位以下时的土壤应力:()w sw w v H H g H g -⨯+⨯⨯=ρρσ (5.1.4-2)式中:sw ρ——地下水位线以下的土壤有效密度(kg/m 3),可取1000 kg/m 3;w H ——地下水位线深度(m )。

管道应力分析及计算全

管道应力分析及计算全

B、动力分析包含的内容 a)管道固有频率分析 — 防止共振。 b)管道强迫振动响应分析 — 控制管道振动及应力。 c)往复式压缩机(泵)气(液)柱频率分析 — 防止气柱 共振。
d)往复式压缩机(泵)压力脉动分析 — 控制压力脉动 值(δ值)。
C、动力分析要点
a)
振源
机器动平衡差 — 基础设计不当
⑶ 编制临界管线表(三级签署) — 应力分析管线表
静力分析
⑷ 应力分析
(三、四级);
动力分析
⑸ 卧式容器固定端确定,立式设备支耳标高确定;
⑹ 支管补强计算;
⑺ 动设备许用荷载校核(四级)
⑻ 夹套管(蒸汽、热油、热水)计算(端部强 度计算、内部导向翼板位置确定、同时 包括任何应力分析管道的所有内容);
三、管道的柔性设计
3.1、柔性定义及柔性设计的方法和目的 a)定义 b)目的 c)设计方法 d)端点位移考虑 3.2、是否进行详细柔性设计的判别方法 a)应进行详细柔性设计的管道 b)可以不进行详细柔性设计的管道 c)判别式的使用方法与注意事项 3.3、管道的热补偿
三、管道的柔性设计
3.4、应力增大因子 3.5、柔性分析方程 3.6、弹性模量随温度变化效应 3.7、柔性分析的另一规则
2)两台或三台压缩机的汇集总管截面积至少为进口管 截面积的三倍,且应使柱塞流的冲击力不增加。
3)孔板消振 — 在缓冲罐的出口加一块孔板。
孔径大小:
d D
4
U,
U
V气体流速 V介质内的声速
d 0.3 ~ 0.5 D
孔板厚度=3~5mm
孔板位置 — 在较大缓冲罐的进出口均可
d)减少激振力——减少弯头、三通、异径管等管件。
A、当

管道设计中关于管道应力的分析与考虑

管道设计中关于管道应力的分析与考虑

管道设计中关于管道应力的分析与考虑摘要:管道应力分析应该保证在设计的条件下有足够的柔性,为的是防止管道因为过度膨胀冷缩、管道自振或者是端点附加位移造成应力问题,在管道设计的时候,一部分管道要求必须进行管道应力分析和相关计算,同时还有一部分管道是不需要进行应力分析的,这种的管道分为两个部分,一种是根据实际的经验或者是已经成功的工程案例,在管道的设计中加上相应的弯管、膨胀节等环节来避免,所以就不需要进行管道应力分析,另一种就是管道的管径比较小,管道比较短,常温常压,不连接设备或者是不会产生振动,所以就不需要进行应力分析,文章就对管道的应力分析进行了详细的介绍说明。

关键词:管道设计应力分析柔性标准一、管道应力分析的主要内容管道应力分析主要分为两个部分,动力分析和静力分析:1、管道应力分析中的动力分析动力分析主要包括了六个方面,第一是管道自振频率的分析,为的是有效的防止管道系统的共振现象;第二是管道强迫振动相应的分析,目的是能够有效的控制管道的振动和应力;第三是往复压缩机(泵)气(液)柱的频率分析,通过对压缩机(泵)气(液)柱的频率的相关分析有效的防止气(液)柱的共振现象发生;第四是往复压缩机(泵)压力脉动的分析,起到控制压力脉动值的作用;第五是冲击荷载作用下的管道应力分析,可以防止管道振动和应力过大;第六是管道地震分析,为防止管道地震应力过大。

2、管道应力分析中的静力分析静力分析包括了六个方面的内容:第一是压力荷载以及持续荷载作用下的一次应力计算,为的是有效的防止塑性变形的破坏;第二是管道热胀冷缩和端点附加位移产生的位移荷载作用下的二次应力计算,通过二次应力分析计算防止疲劳破坏;第三是管道对设备产生的作用力的相应计算,能够防止作用力太大,有效的保证设备的正常运行;第四是对于管道的支吊架的受力分析计算,能够为支吊架的设计提供充足的依据;第五是为了有效的防止法兰的泄漏而对管道法兰进行的受力分析;第六是管系位移计算,防止管道碰撞和支吊点位移过大2、管道应力分析的目的对管道进行应力分析为的就是能够使管道以及管件内的应力不超过许可使用的管道应力值;为了能够使和管道系统相连接的设备的管道荷载保持在制造商或者是国际规定的许可使用范围内;保证和管道系统相连接的设备的管口局部管道应力在ASME Vlll允许的范围内;为了计算管道系统中支架以及约束的设计荷载;为了进行操作的工况碰撞检查而进行确定管道的位移;为了能够尽最大可能的优化管道系统的设计。

管道应力分析计算书编制规定

管道应力分析计算书编制规定

Q/SSEC aabb00-2005
第 3 页 共 3 页
附件 1
管道柔性分析和应力计算书的封面
项 目 号
PROJECT NO.
图 号
FILE NO.
计 算 书 CALCULATION SHEET
管道柔性分析和应力计算书应包括计算书封面参照公司标准的计算书封面,应填写内容包括项目名 称、项目号、装置名称、所在区域、设计阶段、计算文件号、编制、校对、审核及版次等。格式参照附 件1。 2.2 管道柔性分析和应力计算一览表
管道柔性分析和应力计算一览表中应包括所分析的管道的工艺条件-包括管线号、管道等级、工艺 参数(温度,压力等)、流体的密度、保温厚度和管道的规格-包括管道的外径、壁厚、管道的材料以 及管道材料在不同操作温度下的许用应力。
Q/SSEC aabb00-2005
前 言
本标准是中国石化集团上海工程有限公司(简称SSEC)技术标准之一,属于配管室技术标准。 本标准由配管工程室提出。 本标准由配管工程室归口。 本标准主要起草人:方 立、史习庆、倪 钧。 本标准于2006年首次发布。
Q/SSEC aabb00-2005
所 在 区 AREA
Q/SSEC aabb00-2005
第 4 页 共 4 页
设计阶段 DESIGN STAGE
版次 编制/日期 校对/日期 审核/日期
REV. DESN/DATE
CHKD/DATE
RVW/DATE
Q/SSEC aabb00-2005
中国石化集团上海工程有限公司 发布
Q/SSEC aabb00-2005
“目次”是自动生成的。在正文编写完
成之后,右键点击本页内容,点击“更新

管道应力分析主要内容及要点

管道应力分析主要内容及要点

管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。

ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。

它们是子ASME B31 压力管道规范委员会领导下的编制的。

每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列:B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。

B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。

B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。

B31.5 冷冻管道:冷冻和二次冷却器的管道B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。

B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。

B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。

管道应力分析的主要内容一、管道应力分析分为静力分析析1.静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏;2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏;3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行;4)管道支吊架的受力计算——为支吊架设计提供依据:5)管道上法兰的受力计算一防止法兰汇漏。

2.动力分析包括:1)管道自振频率分析一一防止管道系统共振:2)管道强迫振动响应分析——控制管道振动及应力;3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振;4)往复压缩机(泵)压力脉动分析——控制压力脉动值。

压力管道管理—压力管道应力设计技术规定

压力管道管理—压力管道应力设计技术规定

压力管道管理—压力管道应力设计技术规定压力管道应力设计技术规定1 / 20压力管道管理—压力管道应力设计技术规定前言本标准是根据《压力管道安全管理与监察规定》、《压力容器压力管道设计单位资格许可与管理规则》及中国石油化工集团公司《压力容器压力管道设计单位资格许可与管理规则实施细则(试行)》的规定编写。

本次修订主要增加了防振设计部分,本标准对压力管道的强度计算、柔性设计、防振设计及抗震设计等方面作了规定。

本标准由胜利油田胜利工程设计咨询有限责任公司标准化委员会提出并归口。

本标准由胜利油田胜利工程设计咨询有限责任公司机械设备室起草并负责解释。

本标准起草人:高晋徐松林。

本标准首次发布时间 1999-04-23,本标准修订时间2003-07-10。

压力管道管理—压力管道应力设计技术规定压力管道应力设计技术规定1 范围本标准适用于压力管道的强度计算、柔性设计、防振设计及抗震设计。

2 引用标准下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB 50316-2000 工业金属管道设计规范SH 3041-2002 石油化工管道柔性设计规范SH 3039-2003 石油化工非埋地管道抗震设计通则SH 3059-2001 石油化工管道设计器材选用通则SH 3073-1995 石油化工企业管道支吊架设计规范JB/T 8130.2-1999 可变弹簧支吊架JB/T 8130.1-1999 恒力弹簧支吊架GB/T 12777-1999 金属波纹管膨胀节通用技术条件SH 3501-2002 石油化工有毒、可燃介质管道工程施工及验收规范SH/T 3014-2002 石油化工企业储运系统泵房设计规范GB150-1998 钢制压力容器3 一般规定3.1应保证管道在设计条件下,所用管道材料的壁厚能满足强度的需要。

管道应力分析

管道应力分析

管道应力分析第一章任务与职责1. 管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1) 因应力过大或金属疲劳而引起管道破坏;2) 管道接头处泄漏;3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4) 管道的推力或力矩过大引起管道支架破坏;2. 压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10) GB 150-1998《钢制压力容器》3. 专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4. 工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10) 设置、调整支吊架11) 设置、调整补偿器12) 评定管道应力13) 评定设备接口受力14) 编制设计文件15) 施工现场技术服务5. 工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1. 管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主编部室:管道室参编部室:参编人员:参校人员:说明:1.文件版号为A、B、C......。

2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。

本规定()自2003年月实施。

目录1. 总则 (1)2. 应力分析管线的分类及应力分析方法 (2)3. 管道应力分析设计输入和设计输出 (6)4. 管道应力分析条件的确定 (9)5. 管道应力分析评定准则 (11)附件1 管线应力分析分类表 (14)附件2 设备管口承载能力表 (15)附件3 柔性系数k和应力增强系数i (16)附件4 API 610《一般炼厂用离心泵》(摘录) (17)附件5 NEMA SM23 (摘录) (22)附件6 API 661 《一般厂用空冷器》(摘录) (23)1. 总则适用范围1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。

本规定所列内容为管道应力分析设计工作的最低要求。

1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题:1)管道的应力过大或金属疲劳引起管道或支架破坏。

2)管道连接处泄漏。

3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应力,而影响了设备的正常运行。

4)管架因强度或刚度不够而造成管架破坏。

5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。

6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管道振动及破坏。

应力分析设计工作相关的标准、规范:1) GB150-1999 《钢制压力容器》2) GB50316-2000 《工业金属管道设计规范》3) HG/T20645-1998 《化工装置管道机械设计规定》4) JB/-95 《可变弹簧支吊架》5) JB/-95 《恒力弹簧支吊架》6)《简化柔性计算的规定》7) ASME/ANSI Process Piping8) ASME/ANSI Power Piping9) ASME/ANSI Liquid Transmission and Distribution pipingsystems10)ASME/ANSI Gas Transmission and Distribution piping systems11)API 610 Centrifugal Pumps for General Refinery Services12)API 617 Liquid Transportation System for Hydrocarbone,Liquid ,Petroleum Gve, Anhydrone Ammonis , and Alcohols13) NEMA SM-23 Steam Turbine14) API 661 Air-Cooled Heat Exchangers for General RefineryService15)《管道配管设计规定》16)《管架设计工程规定》17)《石油化工企业管道柔性设计规范》18) GB 50316-2000 《工业金属管道设计规范》2. 应力分析管线的分类及应力分析方法应力分析管线的分类原则上,所有的管线均应做应力分析,并根据管线的类别(温度、压力、口径、壁厚、所连接的设备的荷载要求等)确定应力分析的方法和详细程度。

如果项目中没有具体规定,可按以下方法对应力分析管线进行分类。

2.1.1 Ⅰ类管线(见附录1)此类管线采用目测检验或简化分析方法。

2.1.2 Ⅱ类管线(见附录1)此类管线要求进行分析,并可采用公认的简化计算方法(或图表)进行分析计算。

(详见附录1)此种分析计算应有分析计算报告,分析报告适用于:1) 高压管线2) 锅炉水管线3) 工艺管线4) 天然气及液化天然气管线2.1.3 Ⅲ类管线(见附录1)此类管线应严格进行计算机辅助计算分析,下列管线均属于此类管线范畴:2.1.3.1与具有对载荷敏感的转动机械相连的管线,它包括以下几类:1)与泵相连的管线,由于泵口载荷校核依据操作工况下的载荷进行,故当管线操作条件为以下条件时,应做详细应力分析。

a)温度≥150°C (或≤-140°C),公称直径大于或等于DN100(4”)的管线;b)温度≥120°C (或≤-90°C),公称直径大于或等于DN300(12”) 的管线;c)温度≥150°C(或≤-140°C),且管线公称直径大于管口公称直径的管线。

2)与往复式、离心式压缩机、透平相连接的管线,由于设备管口载荷校核依据操作工况下的载荷进行,故当管线操作温度高于120°C,公称直径大于或等于DN80(3”)的管线,应做详细应力分析。

3)与空冷器相连的管线,当其管径大于或等于DN150(6”)或设计温度大于或等于120°C时,应做详细应力分析。

2.1.3.2与对应力敏感的设备相连的管道,应进行应力分析。

它包含以下几类:1)与按照ASME第Ⅷ卷第二章部分设计的设备相连的管道;2)与加热器相连的管道;3)与铝制设备相连的管道;4)进出加热炉及蒸汽发生器的工艺管道,以及再生及除焦管道;5)进出汽轮机的蒸汽管道;6)与衬里设备相连的管道。

2.1.3.3夹套管道。

2.1.3.4附录1中所有的Ⅲ类管道。

2.1.3.5其它的用图表法或公式法分析后,属于应力、柔性不能满足要求的管道。

2.1.4 Ⅳ类管线(见附件1)应力分析工程师对此类管线应特别注意,应采用特别的应力分析方法,因为在得到设备和结构的布置之前去做这些管线的分析是没用的。

这类管线有下列几类:1)管线的设计温度和压力高于ASME/ANSI 中的定义的2500磅等级;2)在下列温度值下长期工作的管道3)4)薄壁管线(t/D≤ t:壁厚 D:管径);5)管线的设计循环次数高于22000次;6)根据应力分析工程师的意见,上述第Ⅲ类管线中要求做其它附加的应力分析的管线。

应力分析的方法通常在设计中根据以下条件确定应力分析方法:1)介质的危险性(有毒、易燃、易爆等);2)管线操作工况(温度、压力、脉动、工作循环强度等);3)地震烈度;4)工厂类型(化工、石油、电力、核工业等)。

2.2.1 目测方法根据以往的经验或与已分析过的管线的比较相类似,则采用目测的方法已经足够,不需要进行更详细的应力分析。

此时,需目测者具有相当的工程经验。

2.2.2 简单分析(图表法、公式法)简单分析将确保管线有足够的柔性,以吸收位移(热膨胀)。

尽管简单分析不能提供准确的载荷和应力,但这种分析简单而快速,甚至可以由非专职应力分析工程师来完成。

下面给出两种简单分析方法:2.2.2.1第一种方法是采用公司标准《简化柔性计算的规定》()的快速管道应力分析方法。

它基于一种简单的(可靠的)计算方法,更多的是考虑管线的位移在允许的范围内——即管线有足够的柔性,能够吸收管线由于受热荷载等产生的位移。

需要注意的是,此种方法不适合于下列管线:1) DN>600 (24”);2) 设计温度超出-20°C ~350°C 范围; 3) 薄壁管(t/D ≤ t:壁厚 D :管径); 4) 需准确知道约束(端点)反力的管线; 5) 夹套管; 6) 非金属管 。

2.2.2.2第二种简单计算方法依据ASME/ANSI 标准,它包含一个标准的计算过程;它要求管线具有同一直径,两端固定,无中间约束。

3.208)(2≤-•U L YD式中:D —管子外径,mmY —管子吸收的总位移, mm L —两固定点间管子总长度,m U —两固定点间的直线距离,m需注意的是,此种分析方法不适用于下列管线1) 管线的约束多于两个; 2) 需准确知道约束反力的管线; 3) 夹套管;4) 管线的工作循环次数大于7000次; 5) 两固定点间的管径或壁厚有改变; 6) 非金属管道;7) 大直径薄壁管(t/D ≤);8) 端点附加位移量占总位移量大部分管道; 9) L/U>的不等腿U 型管道或近似直线的锯齿状管道。

2.2.3 计算机辅助应力分析使用专门的管道应力分析软件(CAESAR Ⅱ)对管道进行详细的应力计算和结果分析。

计算并分析评定管道各分支点的应力、约束点和端点(设备管口)的力和力矩等。

管道应力分析分为静力分析和动力分析。

对一般管道,通常只做静力分析即可。

但对一些特殊工况的管线则应做动力分析(如往复泵、往复式压缩机的进出口管线)。

2.2.3.1静力分析包括:1)管道在持续外载(压力、自重、集中力等)作用下的一次应力计算及评定;2)管道在温度荷载及端点附加位移载荷作用下的二次应力计算及评定;3)管道对设备管口的作用力计算;4)管道支吊架的受力计算;5)管道上的法兰和分支点受力计算。

2.2.3.2动力分析包括:1)管道固有频率分析;2)管道强迫振动响应分析;3)往复式压缩机(泵)气柱频率分析;4)往复式压缩机(泵)压力脉动分析。

3.管道应力分析设计输入和设计输出设计输入管道应力分析设计输入包括以下条件:1)工艺流程图(P﹠ID)2)工艺管线表3)设备数据表4)结构图5)建筑图6)总图7)机泵条件8)设备总装配图9)设备布置图10)配管图(平、立面)11)管道轴测图(如果需要)12)管道等级规定设计输出1)应力分析工程规定2)临界管线表3)应力分析报告(包括首页、计算内容页、应力分析轴测图、输入数据、各工况下的位移、应力、约束反力、弹簧架表、有许用载荷要求的动设备管口校核报告等)4)设备管口荷载条件5)设备预焊件条件6)结构荷载条件7)柔性件数据表8)弹簧架数据表典型的管道应力分析输出报告见附件3应力分析报告标准格式应力分析报告的标准格式参见标准《管机专业入库文件标准格式及规定》(XXX-XX)。

计算机辅助应力分析工作程序图3.3.1管道计算机辅助应力分析工作程序如下图所示。

3.4管道应力分析适用的软件美国COADE公司的CAESARⅡ。

3.5管道应力分析的校审依据《压力管道设计文件校审与签暑制度》及《校审细则》的规定执行。

4. 管道应力分析条件的确定计算压力4.1.1 管道计算压力应根据工艺管线表中设计压力确定。

4.1.2管道计算压力应不低于正常操作中预计的最高压力或在最苛刻温度下同时发生的内压或外压,取其最危险工况。

对工艺有特殊要求的工况(指温度与压力的耦合)也应予以考虑。

计算温度4.2.1 管道计算温度应根据工艺管线表中的设计温度确定。

4.2.2管道计算温度应不低于正常操作中预计的最高温度或在其它工况下的最苛刻温度,取其最高值,或二者均应考虑计算。

相关文档
最新文档