CAESAR_II_管道应力分析_理论

合集下载

国内电力行业压力管道利用CAESARII软件应力分析的问题及探讨

国内电力行业压力管道利用CAESARII软件应力分析的问题及探讨

国内电力行业压力管道利用CAESARII软件应力分析的问题及探讨国内电力行业压力管道利用CAESAR II软件应力分析的问题及探讨引言:随着我国电力行业的快速发展,压力管道在电力设备中扮演着重要角色。

为了确保电力设备的安全运行,对压力管道进行应力分析是必不可少的。

CAESAR II软件作为压力管道应力分析的主要工具,已经广泛应用于国内电力行业。

本文将探讨国内电力行业压力管道利用CAESAR II软件进行应力分析时面临的问题,并提出相应的解决方案。

I. CAESAR II软件及其应用CAESAR II是一款应用广泛的压力管道分析软件,可以对各种复杂的管道系统进行分析和设计。

该软件具有强大的计算能力和友好的用户界面。

国内电力行业已经广泛使用CAESAR II软件对压力管道进行应力分析,以确保其安全运行和设计合理性。

II. 国内电力行业压力管道应力分析存在的问题然而,在实际应用中,国内电力行业利用CAESAR II软件进行应力分析时还存在一些问题,主要表现在以下几个方面:1. 参数准确性问题CAESAR II软件的应用需要输入各种参数,如管道尺寸、材料参数、荷载等。

但是,在实际操作中,这些参数往往由设计人员提供,并存在一定的误差,这会影响到应力分析的准确性。

2. 模型建立问题CAESAR II软件需要建立管道的三维模型,以进行应力分析。

但是,在国内电力行业中,缺乏对CAESAR II软件的使用培训,设计人员对模型建立不熟悉,导致建模过程中存在一定的困难。

3. 多参数耦合分析问题实际电力行业的压力管道系统通常存在多种参数的耦合作用,如温度、压力、力矩等。

而CAESAR II软件在进行应力分析时,往往是单一参数的分析,难以模拟实际情况,存在一定的局限性。

III. 解决方案及探讨为了解决国内电力行业压力管道应力分析中存在的问题,可以从以下几个方面进行改进:1. 参数精确度的提高设计人员需要准确提供各种参数,并在输入过程中加强验证和校对,以确保参数的准确性。

CAESAR_II_管道应力分析_理论

CAESAR_II_管道应力分析_理论
绪论
3D 梁单元的特征 • 无限薄的杆。 • 描述的所有行为都是根 据端点的位移。 • 弯曲是粱单元的主要行 为。
基本应力理论 & CAESAR II 的实施
绪论
3D 梁单元的特征 • 仅说明了总体的行为。 • 没有考虑局部的作用 (表面没有碰撞)。 • 忽略了二次影响。 (使转角很小) • 遵循Hook’s 定律。
基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
• 膨胀工况说明 Putting everything back together, we are told to compute stresses from the extreme displacement range. How can we do this? Consider the equation being solved; [K] {x} = {f}. In this equation, we know [K] and {f}, and we are solving for {x}, the displacement vector. In CAESAR II, when we setup an expansion case, we define it as "DS1 - DS2", where the "1" and "2" refer to the displacement vector ({x}) of load cases 1 and 2 respectively.
基本应力理论 & CAESAR II 的实施
由于压力产生的径向应力
• 垂直于表面。 • 内表面应力为 -P。 • 外表面应力通常为 0。 • 由于最大的弯曲应力发生在外表面,所以这一项被忽 略。

压力管道应力分析基础理论

压力管道应力分析基础理论
疲劳失效的研究最早由A.R.C. Markl et. al.在上世纪 40至50年代进行;
疲劳失效
温度的变化导致结构可能在冷热两个状态下产生屈 服变形;
疲劳失效
与垮塌性荷载不同的是,当材料发生屈服时,如果 应力峰值满足一定条件下,并不会立即发生非自限 性的失效,而是系统停止运行后,产生自限性的残 余应力。
强度理论
我们如何来评价失效?——通过强度理论 第一强度理论:最大主应力理论(Rankine) 第二强度理论:最大伸长线应变 第三强度理论:最大剪应力理论(Tresca) 第四强度理论:最大变形能理论(Von mises)
强度理论
第三强度理论: 第四强度理论:
S13
S 1 21 2 2 2 3 2 3 1 2
CAESAR II 管道应力分析理论
AECSOFT
前言
我们为什么要进行管道应力分析? 我们需要做什么? 我们如何模拟一个管道系统? 我们如何来分析计算的结果?
我们为什么要进行管道应力分析?
复杂管线中可能存在压力、重量、温度、风、海浪、土壤约 束以及地震、动设备的振动、阀门关闭、开启导致的水锤气 锤等外力载荷作用。载荷是管道产生应力问题的原因。
梁单元上纯弯曲的概念:
当梁发生纯弯曲时,各截面上的弯矩值唯一(整个 截面的弯矩由唯一值表示),且不存在剪力,截面 发生转动,梁轴线变为弧线,但转动后各截面仍为 平面。在这种假设下,应力S=M/Z.(胡克定律)
如果不使用纯弯曲假设,则上式不一定适用。
3D梁单元示例
这是一个简单的悬臂梁模型:当在自由端作用集中 载荷P之后,其挠度为:
应力计算式:
S 1 F A / X A m M / Z P / 4 t d S h
一次应力通常暗示了支架跨距是否满足要求;

CAESARⅡ动态分析在管道应力分析中的应用

CAESARⅡ动态分析在管道应力分析中的应用

CAESARⅡ动态分析在管道应力分析中的应用【摘要】本文以往复压缩机的管道振动为例,对管道的应力进行动态分析,具体考虑了单向约束,动静载荷,疲劳破坏等问题。

通过具体实例,说明CAESAR Ⅱ对管道的应力分析作用十分显著,它能直接生成图形和计算结果,便于分析,特别是对于动态分析,能直接生成变化图形,且操作简单,便于初学者掌握。

【关键词】CAESARⅡ;管道应力;动态分析1.CAESARⅡ简介CAESARⅡ是由美国COADE工程软件公司研制的一款专门对管道应力分析的软件,与中国长沙优易软件开发有限公司开发的AutoPSA7.0各有优劣,CAESARⅡ采用了以有限元分析为基础的专用CFD求解器Ployflow,它能通过使用简单梁为最基本单元建立管系模型,并在此基础上定义系统中的载荷,计算生成系统中的位移、荷载、应力表示结果。

更因为它能通过屏幕或表格进行数据输入,形成管系模型,使用方便,计算快捷,受到当今世界工程界的极大欢迎,是目前世界上用户最多的应力分析软件。

CAESARⅡ软件的管道应力分析包括静力分析和动力分析两种。

静力分析包括:①压力荷载和连续续荷载的平均应力分析;②管道对设备的作用力的分析;③管道支吊架的受力分析;④管道法兰所受压力的分析。

动力分析包括:①管道强迫振动的响应分析;②往复压缩机的频率分析;③管道自振频率的分析;④往复压缩机的压力脉动分析。

2.CAESARⅡ动态分析在受力分析中的应用实例CAESARⅡ软件可以进行静力分析和动力分析,本文以往复压缩机的管道振动为例进行管道振动的动态应力分析。

管道振动及应力分析主要有管道系统的静力分析和动力分析。

静力分析由管道支吊架及法兰的受力分析,压力载荷和持续压力作用下的一次应力计算校核等,动力学分析包括管道系统的模态分析,受迫振动的响应分析等。

根据力学性质分类可分为直接应力,间接应力和峰值应力。

直接应力是由管道的自重,外部载荷和内部压力等直接载荷所引起的正应力和剪应力,直接应力随着载荷的增加而增加,因此,在系统的应力分析中,必须首先满足直接应力的许用值。

CAESARII 应力分析基础理论讲义

CAESARII 应力分析基础理论讲义

1管道应力分析基础理论管道应力分析主要包括三方面内容:正确建立模型、真实地描述边界条件、正确地分析计算结果。

所谓建立模型就是将所分析管系的力学模型按一定形式离散化,简化为程序所要求的数学模型,模型的真实与否是做好应力分析的前提条件。

应力分析的根本问题就是边界条件问题,而体现在工程问题上就是约束(支架)、管口等具体问题的模拟,真实地描述这些边界条件,才能得到正确的计算结果。

要想能够熟练而正确地分析结果,首先会正确设计支吊架,有一定的相关理论知识如工程力学,流体力学,化工设备及机械等,另外需在一定时间内不断摸索,总结出规律性的问题。

第一章管道应力分析有关内容§1.1 管道应力分析的目的进行管道应力分析的问题很多CAESARII 解决的问题主要有:1、使管道各处的应力水平在规范允许的范围内。

2、使与设备相连的管口载荷符合制造商或公认的标准(如NEMASM23,API610 API617等标准)规定的受力条件。

3、使与管道相连的容器处局部应力保持在ASME 第八部分许用应力范围内。

4、计算出各约束处所受的载荷。

5、确定各种工况下管道的位移。

6、解决管道动力学问题,如机械振动、水锤、地震、减压阀泄放等。

7、帮助配管设计人员对管系进行优化设计。

§1.2 管道所受应力分类1.2.1 基本应力定义轴向应力Axial stress轴向应力是由作用于管道轴向力引起的平行管子轴线的正应力,:S L =F AX /A m其中S L =轴向应力MPaF AX =横截面上的内力NA m =管壁横截面积mm 2=πdo 2-di 2)/4管道设计压力引起的轴向应力为S L =Pdo/4t轴向力和设计压力在截面引起的应力是均布的,故此应力限制在许用应力[σ]t 范围内。

弯曲应力bending stress由法向量垂直于管道轴线的力矩产生的轴向正应力。

S L =M b c/I其中:M b =作用在管道截面上的弯矩N.mC -从管道截面中性轴到所在点的距离mmI -管道横截面的惯性矩mm 4=π(d o 4-d l 4/64当C 达到最大值时,弯曲应力最大S max =M b R 0/I= M b /Z弯曲应力在断面上是线性分布的,截面最外端应力达到最大时,其它地方仍处于弹性状态,故应力限制在1.5[σ]之内。

CAESARII_管道应力分析_培训解读

CAESARII_管道应力分析_培训解读

CAESARII软件培训资料北京艾思弗计算机软件公司2002年4月12日1.管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。

2.管道应力分析的主要内容管道应力分析分为静力分析和动力分析。

静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏;2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏;3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行;4)管道支吊架的受力计算——为支吊架设计提供依据;5)管道上法兰的受力计算——防止法兰泄露。

动力分析包括:l)管道自振频率分析——防止管道系统共振;2)管道强迫振动响应分析——控制管道振动及应力;3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振;4)往复压缩机(泵)压力脉动分析——控制压力脉动值。

3.管道上可能承受的荷载(1)重力荷载:包括管道自重、保温重、介质重和积雪重等;(2)压力荷载:压力载荷包括内压力和外压力;(3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等;(4)风荷载;(5)地震荷载;(6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击:(7)两相流脉动荷载;(8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动;(9)机械振动荷载:如回转设备的振动。

4.管道应力分析的目的1)为了使管道和管件内的应力不超过许用应力值;2)为了使与管系相连的设备的管日荷载在制造商或国际规范(如NEMA SM-23、API-610、API-6 17等)规定的许用范围内;3)为了使与管系相连的设备管口的局部应力在ASME Vlll的允许范围内;4)为了计算管系中支架和约束的设计荷载;5)为了进行操作工况碰撞检查而确定管于的位移;6)为了优化管系设计。

5.管道柔性设计方法的确定一般说来,下述管系必须利用应力分析软件(如CAESAR II)通过计算机进行计算及分析。

利用CAESAR II高效准确的进行管道模型应力分析

利用CAESAR II高效准确的进行管道模型应力分析

间历
Intergraph CADWorx & Analysis Solutions, Inc.
CAESAR II 的其它功能
创建直观的分析模型 高级的图形输出 设计工具和向导 荷载以及可视化管道模型 全面的错误检查 用户自定义报告模板 国际管道应力规范 丰富的材料数据库 钢结构数据库和模型 膨胀节数据库 与鹰图的CADWorx® 和Smart Plant工厂设计软件的双向接口
进行动力分析,防止管道系统因机械振动、流体锤、压力脉 动、安全阀泄放等动载荷造成的管道振动及破坏
软件除了可以进行非线性静力分析, 还可以进行谐波分析、模 态分析,反应谱分析,时 程等分析方法。利用这些 方法,用户可以完成对振 动管线,排放管线,柱塞 流管线,气锤管线等进行 定性的分析,并得到解决 方案。
Intergraph CADWorx & Analysis Solutions Overview
ICAS解决方案包括4个产品: – CADWorx 一款基于AutoCAD平台的三维工厂设计套件, 包括智能的工厂建模模块、创建智能的流程图 表而且可以自动生成用于工厂设计的可交付成 果 – CAESAR II 世界上被最为广泛使用的管道压力分析软件, – PV Elite 帮助全球的工程师、设计人员、费用估算师、 制造人员、产品检查人员等,针对压力容器和 热交换器的设计和分析提供完整的解决方案 – TANK 针对储罐进行设计和分析For the design and analysis of oil storage tanks
Intergraph CADWorx & Analysis Solutions, Inc.
CAESAR II 的应用
计算法兰等连接处受力,进行法兰泄露校核,防止管道连 接处泄露

CAESAR II 教程之应力分析概述

CAESAR II 教程之应力分析概述

b).机器动平衡差---修改基础设计
Intergraph CADWorx & Analysis Solutions, Inc.
管道应力分析专业的职责及任务
c). 减少脉动和气柱共振的方法:
1)加大缓冲罐---依据API618计算缓冲罐的体积,一般为气缸容积的10 倍以上; 使缓冲罐尽量靠近进出口;但不能放在共振管长位置 2)两台或三台压缩机的汇集总管为进口管面积之和的三倍。 3)孔板消振---在缓冲罐的出口加一块孔板。.
Intergraph CADWorx & Analysis Solutions, Inc.
管道应力分析专业的职责及任务
C. 动力分析要点: a).振源
①机器动平衡差---基础设计不当 ②气流脉动---气柱共振 ③阻力、流速、流向变化异径管、弯头、阀门、孔板等附近产生激 力 ④共振---激振力频率等于或接近管线固有频率
我们为什么要进行管道应力分析
随着国民经济的发展,化工装置规模越来越大,工况 越来越复杂。人们对安全的重视程度越来越高。应力分析 管线,一般为高温高压,介质易燃易爆的管线。如果管道 发生泄漏或者破坏,将造成严重的生命财产损失,同时污 染环境,并会对企业造成严重的负面影响。 所以,我们要通过管道的应力分析,确保工厂运行的 安全。在设计的过程中,通过计算,我们还可以帮助其它
Intergraph CADWorx & Analysis Solutions, Inc.
管道应力分析专业的职责及任务
B当
t Do 或 P 6

t
0.385时
t的确定应根据断裂理论、疲劳、热应力及材料特性等因素综合考虑确定。 (高压管道的计算)
C 外压直管的壁厚,应根据GB150规定的方法确定。 D 其它的管件(如Y型三通、孔板等)依据相应的规范 (GB50316-2000)或公式进行计算。 E 高压管的应力分析 F 大口径薄壁管的应力分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本应力理论 & CAESAR II 的实施
由于压力产生的环向应力
垂直于半径 (圆周) Pd / 2t 再一次用薄壁的近似值。 环向应力很重要,尽管它不是“综合应力”的一部 分。 • 环向应力根据直径、操作温度下的许用应力、腐蚀 余量,加工偏差和压力用来定义管子的壁厚。 • 根据Barlow, Boardman, Lamé来计算。 • • • •
绪论
3D 梁单元的特征 • 无限薄的杆。 • 描述的所有行为都是根 据端点的位移。 • 弯曲是粱单元的主要行 为。
基本应力理论 & CAESAR II 的实施
绪论
3D 梁单元的特征 • 仅说明了总体的行为。 • 没有考虑局部的作用 (表面没有碰撞)。 • 忽略了二次影响。 (使转角很小) • 遵循Hook’s 定律。
基本应力理论 & CAESAR II 的实施
纵向应力分量
• 沿着管子的轴向。 • 轴向力
– 轴向力除以面积 (F/A)
• 压力
– Pd / 4t or P*di / ( do2 - di2 )
• 弯曲力矩
– Mc/I – 最大应力发生在圆周的最外面。 – I/半径 Z (抗弯截面系数);使用 M/Z
基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
• • • 膨胀工况说明 Consider the question again; "Is DS1-DS2 the same as a load case with just T1?". The answer to this is maybe. If you have a linear system (from a boundary condition point of view), then the answer is yes. You will get exactly the same results. However, if the system is non-linear (i.e. you have +Ys, or gaps, or friction), then the answer is no. You will get different results - how different depends on the job. The reason for this can be found by examining the equation [K] {x} = {f} for the two different methods.
基本应力理论 & CAESAR II 的实施

规范要求的载荷工况
• • • • 膨胀工况说明 However, these element forces are also pseudo forces, i.e the difference in forces between two positions of the pipe. Similarly, the stresses computed are not real stresses, but stress differences. This is exactly what the code wants, the stress difference, which was computed from a displacement range. As to whether or not this stress difference is the extreme, well that depends on the job.
基本应力理论 & CAESAR II 的实施
由于压力产生的径向应力
• 垂直于表面。 • 内表面应力为 -P。 • 外表面应力通常为 0。 • 由于最大的弯曲应力发生在外表面,所以这一项被忽 略。
基本应力理论 & CAESAR II 的实施
剪切应力
• 平面内垂直于半径。 • 剪切力
– 这个载荷在外表面最小,因此在管系应力计 算中省略了这一项。 – 在支撑处要求局部考虑。
基本应力理论 & CAESAR II 的实施
••Biblioteka 规范要求的载荷工况• 膨胀工况说明 For this discussion, rearrange the equation to {x} = {f} / [K], where we know we don't really divide by [K], we multiply by its inverse. OPE: {xope} = {fope} / [Kope] = {W + T1 + P1} / [Kope] SUS: {xsus} = {fsus} / [Ksus] = {W + P1} / [Ksus] EXP: {xexp} = {xope} - {xsus} = {W + T1 + P1} / [Kope] - {W + P1} / [Ksus] Can we simplify the above equation as follows? EXP: {xexp} = {W + T1 + P1} / [K] - {W + P1} / [K}
• (2) = W + P1 (SUS) • (3) = DS1 - DS2 (EXP)
基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
膨胀工况说明 • What does “DS1 - DS2 (EXP)” mean? • Is a load case with “T1 (EXP) the same thing?
• 扭矩
– 最大的应力发生在外表面。 – MT/2Z
基本应力理论 & CAESAR II 的实施
“综合应力”中的基本应力 综合应力” 综合应力
评价 3-D 应力 • S = F / A + Pd / 4t + M / Z • 轴向、环向压力和纵向弯曲所产生的应力之和。 • 根据规范和载荷工况的不同上式将发生变化。
基本应力理论 & CAESAR II 的实施
基本应力
使用局部坐标系可以将管系应力 (以及产生这些应 以及产生这些应 力的载荷) 分为下面几种: 力的载荷)the loads that cause them) 分为下面几种:
• 纵向应力 - SL • 环向应力 - SH • 径向应力 - SR • 剪切应力 - τ
基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
二次失效情况 • 位移所引起。 • 自限性。 • 温度、位移和其它变化载 荷——例如,重力。
基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
• (1) = W + T1 + P1 (OPE) • 操作工况, 用于: – 约束& 设备载荷 – 最大位移 – 计算 EXP 工况 • 持续工况,用于一次载荷下规 范应力的计算。 • 膨胀工况,用于 “extreme displacement stress range” – 工况3的位移是从工况1的 位移减去工况2的位移而 得到。
基本应力理论 & CAESAR II 的实施
• • •
规范要求的载荷工况
• • • • 膨胀工况说明 (Obviously the load case numbers are subject to change on a job by job basis.) What do you get when you take "DS1 - DS2"? Well {x1} - {x2} yields {x'}, a pseudo displacement vector. {x'} is not a real set of displacements that you can go out and measure with a ruler, rather it is the difference between two positions of the pipe. Once we have {x'}, we can use the same routines used in the OPE or SUS cases to compute element forces, and finally element stresses.
基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
膨胀工况说明 • The code states that the expansion stresses are to be computed from the "extreme displacement stress range". These are all very important words. Consider their meaning … • EXTREME: In this sense it means the most, or the largest. • RANGE: Typically a difference. What difference? The difference between the extremes. What extremes? • DISPLACEMENT: This defines what extremes to take the difference of. • STRESS: What we are eventually after.
• • • •
基本应力理论 & CAESAR II 的实施
规范要求的载荷工况
• 膨胀工况说明 Can we simplify the above equation as follows? EXP: {xexp} = {W + T1 + P1} / [K] - {W + P1} / [K] Canceling like terms (the ones in red) yields: {xexp} = {T1} / [K] The assumption here is that [Kope] is the same as [Ksus]. This assumption is only true for linear systems. For non-linear systems, the stiffness matrix is unique for each load case and the above cancellation of loading terms is incorrect. You get the wrong stress results for the expansion case if you setup load cases this way. & 基本应力理论
相关文档
最新文档